Spaces:
Running
Running
Commit
·
6bd893f
1
Parent(s):
644e3c2
feat: separate direct and wet audio outputs and enable compressor control
Browse files
app.py
CHANGED
@@ -8,6 +8,7 @@ import pyloudnorm as pyln
|
|
8 |
from hydra.utils import instantiate
|
9 |
from soxr import resample
|
10 |
from functools import partial
|
|
|
11 |
|
12 |
from modules.utils import chain_functions, vec2statedict, get_chunks
|
13 |
from modules.fx import clip_delay_eq_Q
|
@@ -109,6 +110,7 @@ def z2fx():
|
|
109 |
|
110 |
@torch.no_grad()
|
111 |
def fx2z():
|
|
|
112 |
state_dict = fx.state_dict()
|
113 |
flattened = torch.cat([state_dict[k].flatten() for k in param_keys])
|
114 |
x = flattened[feature_mask]
|
@@ -133,10 +135,24 @@ def inference(audio):
|
|
133 |
if y.shape[1] != 1:
|
134 |
y = y.mean(dim=1, keepdim=True)
|
135 |
|
136 |
-
|
|
|
|
|
|
|
|
|
137 |
if np.max(np.abs(rendered)) > 1:
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
|
142 |
def get_important_pcs(n=10, **kwargs):
|
@@ -294,12 +310,17 @@ def plot_t60():
|
|
294 |
|
295 |
|
296 |
@torch.no_grad()
|
297 |
-
def
|
298 |
-
match type(getattr(
|
299 |
case torch.nn.Parameter:
|
300 |
-
getattr(
|
301 |
case _:
|
302 |
-
setattr(
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
|
305 |
with gr.Blocks() as demo:
|
@@ -388,11 +409,15 @@ with gr.Blocks() as demo:
|
|
388 |
audio_output = gr.Audio(
|
389 |
type="numpy", label="Output Audio", interactive=False, loop=True
|
390 |
)
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
|
|
395 |
)
|
|
|
|
|
|
|
396 |
with gr.Row():
|
397 |
with gr.Column(min_width=160):
|
398 |
_ = gr.Markdown("High Pass")
|
@@ -514,7 +539,63 @@ with gr.Blocks() as demo:
|
|
514 |
label="Q",
|
515 |
)
|
516 |
|
517 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
delay_plot = gr.Plot(
|
519 |
plot_delay(), label="Delay Frequency Response", elem_id="delay-plot"
|
520 |
)
|
@@ -558,7 +639,7 @@ with gr.Blocks() as demo:
|
|
558 |
):
|
559 |
s.input(
|
560 |
lambda *args, eq=eq, attr_name=attr_name: chain_functions( # chain_functions(
|
561 |
-
lambda args: (
|
562 |
lambda args: (fx2z(), args[1]),
|
563 |
lambda args: args[1],
|
564 |
lambda i: update_pc(i) + [model2json(), plot_eq()],
|
@@ -569,6 +650,30 @@ with gr.Blocks() as demo:
|
|
569 |
outputs=update_pc_outputs + [json_output, peq_plot],
|
570 |
)
|
571 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
572 |
render_button.click(
|
573 |
# lambda *args: (
|
574 |
# lambda x: (
|
@@ -582,6 +687,8 @@ with gr.Blocks() as demo:
|
|
582 |
],
|
583 |
outputs=[
|
584 |
audio_output,
|
|
|
|
|
585 |
],
|
586 |
)
|
587 |
|
@@ -600,6 +707,13 @@ with gr.Blocks() as demo:
|
|
600 |
lp.params.Q.item(),
|
601 |
hp.params.freq.item(),
|
602 |
hp.params.Q.item(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
603 |
]
|
604 |
update_fx_outputs = [
|
605 |
pk1_freq,
|
@@ -616,6 +730,13 @@ with gr.Blocks() as demo:
|
|
616 |
lp_q,
|
617 |
hp_freq,
|
618 |
hp_q,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
619 |
]
|
620 |
update_plots = lambda: [
|
621 |
plot_eq(),
|
|
|
8 |
from hydra.utils import instantiate
|
9 |
from soxr import resample
|
10 |
from functools import partial
|
11 |
+
from torchcomp import coef2ms, ms2coef
|
12 |
|
13 |
from modules.utils import chain_functions, vec2statedict, get_chunks
|
14 |
from modules.fx import clip_delay_eq_Q
|
|
|
110 |
|
111 |
@torch.no_grad()
|
112 |
def fx2z():
|
113 |
+
plt.close("all")
|
114 |
state_dict = fx.state_dict()
|
115 |
flattened = torch.cat([state_dict[k].flatten() for k in param_keys])
|
116 |
x = flattened[feature_mask]
|
|
|
135 |
if y.shape[1] != 1:
|
136 |
y = y.mean(dim=1, keepdim=True)
|
137 |
|
138 |
+
direct, wet = fx(y)
|
139 |
+
direct = direct.squeeze(0).T.numpy()
|
140 |
+
wet = wet.squeeze(0).T.numpy()
|
141 |
+
rendered = direct + wet
|
142 |
+
# rendered = fx(y).squeeze(0).T.numpy()
|
143 |
if np.max(np.abs(rendered)) > 1:
|
144 |
+
scaler = np.max(np.abs(rendered))
|
145 |
+
rendered = rendered / scaler
|
146 |
+
direct = direct / scaler
|
147 |
+
wet = wet / scaler
|
148 |
+
return (
|
149 |
+
(44100, (rendered * 32768).astype(np.int16)),
|
150 |
+
(44100, (direct * 32768).astype(np.int16)),
|
151 |
+
(
|
152 |
+
44100,
|
153 |
+
(wet * 32768).astype(np.int16),
|
154 |
+
),
|
155 |
+
)
|
156 |
|
157 |
|
158 |
def get_important_pcs(n=10, **kwargs):
|
|
|
310 |
|
311 |
|
312 |
@torch.no_grad()
|
313 |
+
def update_param(m, attr_name, value):
|
314 |
+
match type(getattr(m.params, attr_name)):
|
315 |
case torch.nn.Parameter:
|
316 |
+
getattr(m.params, attr_name).data.copy_(value)
|
317 |
case _:
|
318 |
+
setattr(m.params, attr_name, torch.tensor(value))
|
319 |
+
|
320 |
+
|
321 |
+
@torch.no_grad()
|
322 |
+
def update_atrt(comp, attr_name, value):
|
323 |
+
setattr(comp.params, attr_name, ms2coef(torch.tensor(value), 44100))
|
324 |
|
325 |
|
326 |
with gr.Blocks() as demo:
|
|
|
409 |
audio_output = gr.Audio(
|
410 |
type="numpy", label="Output Audio", interactive=False, loop=True
|
411 |
)
|
412 |
+
direct_output = gr.Audio(
|
413 |
+
type="numpy", label="Direct Audio", interactive=False, loop=True
|
414 |
+
)
|
415 |
+
wet_output = gr.Audio(
|
416 |
+
type="numpy", label="Wet Audio", interactive=False, loop=True
|
417 |
)
|
418 |
+
|
419 |
+
_ = gr.Markdown("## Parametric EQ")
|
420 |
+
peq_plot = gr.Plot(plot_eq(), label="PEQ Frequency Response", elem_id="peq-plot")
|
421 |
with gr.Row():
|
422 |
with gr.Column(min_width=160):
|
423 |
_ = gr.Markdown("High Pass")
|
|
|
539 |
label="Q",
|
540 |
)
|
541 |
|
542 |
+
_ = gr.Markdown("## Compressor and Expander")
|
543 |
+
with gr.Row():
|
544 |
+
with gr.Column():
|
545 |
+
comp = fx[6]
|
546 |
+
cmp_th = gr.Slider(
|
547 |
+
minimum=-60,
|
548 |
+
maximum=0,
|
549 |
+
value=comp.params.cmp_th.item(),
|
550 |
+
interactive=True,
|
551 |
+
label="Comp. Threshold (dB)",
|
552 |
+
)
|
553 |
+
cmp_ratio = gr.Slider(
|
554 |
+
minimum=1,
|
555 |
+
maximum=20,
|
556 |
+
value=comp.params.cmp_ratio.item(),
|
557 |
+
interactive=True,
|
558 |
+
label="Comp. Ratio",
|
559 |
+
)
|
560 |
+
make_up = gr.Slider(
|
561 |
+
minimum=-12,
|
562 |
+
maximum=12,
|
563 |
+
value=comp.params.make_up.item(),
|
564 |
+
interactive=True,
|
565 |
+
label="Make Up (dB)",
|
566 |
+
)
|
567 |
+
attack_time = gr.Slider(
|
568 |
+
minimum=0.1,
|
569 |
+
maximum=100,
|
570 |
+
value=coef2ms(comp.params.at, 44100).item(),
|
571 |
+
interactive=True,
|
572 |
+
label="Attack Time (ms)",
|
573 |
+
)
|
574 |
+
release_time = gr.Slider(
|
575 |
+
minimum=50,
|
576 |
+
maximum=1000,
|
577 |
+
value=coef2ms(comp.params.rt, 44100).item(),
|
578 |
+
interactive=True,
|
579 |
+
label="Release Time (ms)",
|
580 |
+
)
|
581 |
+
exp_ratio = gr.Slider(
|
582 |
+
minimum=0,
|
583 |
+
maximum=1,
|
584 |
+
value=comp.params.exp_ratio.item(),
|
585 |
+
interactive=True,
|
586 |
+
label="Exp. Ratio",
|
587 |
+
)
|
588 |
+
exp_th = gr.Slider(
|
589 |
+
minimum=-80,
|
590 |
+
maximum=0,
|
591 |
+
value=comp.params.exp_th.item(),
|
592 |
+
interactive=True,
|
593 |
+
label="Exp. Threshold (dB)",
|
594 |
+
)
|
595 |
+
with gr.Column():
|
596 |
+
comp_plot = gr.Plot(
|
597 |
+
plot_comp(), label="Compressor Curve", elem_id="comp-plot"
|
598 |
+
)
|
599 |
delay_plot = gr.Plot(
|
600 |
plot_delay(), label="Delay Frequency Response", elem_id="delay-plot"
|
601 |
)
|
|
|
639 |
):
|
640 |
s.input(
|
641 |
lambda *args, eq=eq, attr_name=attr_name: chain_functions( # chain_functions(
|
642 |
+
lambda args: (update_param(eq, attr_name, args[0]), args[1]),
|
643 |
lambda args: (fx2z(), args[1]),
|
644 |
lambda args: args[1],
|
645 |
lambda i: update_pc(i) + [model2json(), plot_eq()],
|
|
|
650 |
outputs=update_pc_outputs + [json_output, peq_plot],
|
651 |
)
|
652 |
|
653 |
+
for f, s, attr_name in zip(
|
654 |
+
[update_param] * 5 + [update_atrt] * 2,
|
655 |
+
[
|
656 |
+
cmp_th,
|
657 |
+
cmp_ratio,
|
658 |
+
make_up,
|
659 |
+
exp_ratio,
|
660 |
+
exp_th,
|
661 |
+
attack_time,
|
662 |
+
release_time,
|
663 |
+
],
|
664 |
+
["cmp_th", "cmp_ratio", "make_up", "exp_ratio", "exp_th", "at", "rt"],
|
665 |
+
):
|
666 |
+
s.input(
|
667 |
+
lambda *args, attr_name=attr_name, f=f: chain_functions(
|
668 |
+
lambda args: (f(comp, attr_name, args[0]), args[1]),
|
669 |
+
lambda args: (fx2z(), args[1]),
|
670 |
+
lambda args: args[1],
|
671 |
+
lambda i: update_pc(i) + [model2json(), plot_comp()],
|
672 |
+
)(args),
|
673 |
+
inputs=[s, extra_pc_dropdown],
|
674 |
+
outputs=update_pc_outputs + [json_output, comp_plot],
|
675 |
+
)
|
676 |
+
|
677 |
render_button.click(
|
678 |
# lambda *args: (
|
679 |
# lambda x: (
|
|
|
687 |
],
|
688 |
outputs=[
|
689 |
audio_output,
|
690 |
+
direct_output,
|
691 |
+
wet_output,
|
692 |
],
|
693 |
)
|
694 |
|
|
|
707 |
lp.params.Q.item(),
|
708 |
hp.params.freq.item(),
|
709 |
hp.params.Q.item(),
|
710 |
+
comp.params.cmp_th.item(),
|
711 |
+
comp.params.cmp_ratio.item(),
|
712 |
+
comp.params.make_up.item(),
|
713 |
+
comp.params.exp_th.item(),
|
714 |
+
comp.params.exp_ratio.item(),
|
715 |
+
coef2ms(comp.params.at, 44100).item(),
|
716 |
+
coef2ms(comp.params.rt, 44100).item(),
|
717 |
]
|
718 |
update_fx_outputs = [
|
719 |
pk1_freq,
|
|
|
730 |
lp_q,
|
731 |
hp_freq,
|
732 |
hp_q,
|
733 |
+
cmp_th,
|
734 |
+
cmp_ratio,
|
735 |
+
make_up,
|
736 |
+
exp_th,
|
737 |
+
exp_ratio,
|
738 |
+
attack_time,
|
739 |
+
release_time,
|
740 |
]
|
741 |
update_plots = lambda: [
|
742 |
plot_eq(),
|