Spaces:
Running
Running
Commit
·
a1b4214
1
Parent(s):
466b233
feat: refactor global effect handling, enable user session states
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from hydra.utils import instantiate
|
|
| 9 |
from soxr import resample
|
| 10 |
from functools import partial
|
| 11 |
from torchcomp import coef2ms, ms2coef
|
|
|
|
| 12 |
|
| 13 |
from modules.utils import chain_functions, vec2statedict, get_chunks
|
| 14 |
from modules.fx import clip_delay_eq_Q
|
|
@@ -50,8 +51,8 @@ with open(CONFIG_PATH) as fp:
|
|
| 50 |
fx_config = yaml.safe_load(fp)["model"]
|
| 51 |
|
| 52 |
# Global effect
|
| 53 |
-
|
| 54 |
-
|
| 55 |
|
| 56 |
pca_params = np.load(PCA_PARAM_FILE)
|
| 57 |
mean = pca_params["mean"]
|
|
@@ -64,7 +65,7 @@ U = torch.from_numpy(U).float()
|
|
| 64 |
mean = torch.from_numpy(mean).float()
|
| 65 |
feature_mask = torch.from_numpy(np.load(MASK_PATH))
|
| 66 |
# Global latent variable
|
| 67 |
-
z = torch.zeros_like(mean)
|
| 68 |
|
| 69 |
with open(INFO_PATH) as f:
|
| 70 |
info = json.load(f)
|
|
@@ -91,35 +92,40 @@ vec2dict = partial(
|
|
| 91 |
)
|
| 92 |
),
|
| 93 |
)
|
| 94 |
-
|
| 95 |
|
| 96 |
|
| 97 |
meter = pyln.Meter(44100)
|
| 98 |
|
| 99 |
|
| 100 |
@torch.no_grad()
|
| 101 |
-
def
|
| 102 |
# close all figures to avoid too many open figures
|
| 103 |
plt.close("all")
|
| 104 |
x = U @ z + mean
|
| 105 |
-
# print(z)
|
| 106 |
-
fx.load_state_dict(vec2dict(x), strict=False)
|
| 107 |
-
fx.apply(partial(clip_delay_eq_Q, Q=0.707))
|
| 108 |
-
return
|
| 109 |
|
| 110 |
|
| 111 |
@torch.no_grad()
|
| 112 |
-
def
|
| 113 |
plt.close("all")
|
| 114 |
state_dict = fx.state_dict()
|
| 115 |
flattened = torch.cat([state_dict[k].flatten() for k in param_keys])
|
| 116 |
x = flattened[feature_mask]
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
|
| 121 |
@torch.no_grad()
|
| 122 |
-
def inference(audio):
|
| 123 |
sr, y = audio
|
| 124 |
if sr != 44100:
|
| 125 |
y = resample(y, sr, 44100)
|
|
@@ -163,7 +169,7 @@ def get_important_pcs(n=10, **kwargs):
|
|
| 163 |
return sliders
|
| 164 |
|
| 165 |
|
| 166 |
-
def model2json():
|
| 167 |
fx_names = ["PK1", "PK2", "LS", "HS", "LP", "HP", "DRC"]
|
| 168 |
results = {k: v.toJSON() for k, v in zip(fx_names, fx)} | {
|
| 169 |
"Panner": fx[7].pan.toJSON()
|
|
@@ -190,7 +196,7 @@ def model2json():
|
|
| 190 |
|
| 191 |
|
| 192 |
@torch.no_grad()
|
| 193 |
-
def plot_eq():
|
| 194 |
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
|
| 195 |
w, eq_log_mags = get_log_mags_from_eq(fx[:6])
|
| 196 |
ax.plot(w, sum(eq_log_mags), color="black", linestyle="-")
|
|
@@ -207,14 +213,14 @@ def plot_eq():
|
|
| 207 |
|
| 208 |
|
| 209 |
@torch.no_grad()
|
| 210 |
-
def plot_comp():
|
| 211 |
fig, ax = plt.subplots(figsize=(6, 5), constrained_layout=True)
|
| 212 |
comp = fx[6]
|
| 213 |
-
cmp_th =
|
| 214 |
-
exp_th =
|
| 215 |
-
cmp_ratio =
|
| 216 |
-
exp_ratio =
|
| 217 |
-
make_up =
|
| 218 |
# print(cmp_ratio, cmp_th, exp_ratio, exp_th, make_up)
|
| 219 |
|
| 220 |
comp_in = np.linspace(-80, 0, 100)
|
|
@@ -242,16 +248,16 @@ def plot_comp():
|
|
| 242 |
|
| 243 |
|
| 244 |
@torch.no_grad()
|
| 245 |
-
def plot_delay():
|
| 246 |
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
|
| 247 |
delay = fx[7].effects[0]
|
| 248 |
-
w, eq_log_mags = get_log_mags_from_eq([
|
| 249 |
-
log_gain =
|
| 250 |
-
d =
|
| 251 |
log_mag = sum(eq_log_mags)
|
| 252 |
ax.plot(w, log_mag + log_gain, color="black", linestyle="-")
|
| 253 |
|
| 254 |
-
log_feedback =
|
| 255 |
for i in range(1, 10):
|
| 256 |
feedback_log_mag = log_mag * (i + 1) + log_feedback * i + log_gain
|
| 257 |
ax.plot(
|
|
@@ -272,7 +278,7 @@ def plot_delay():
|
|
| 272 |
|
| 273 |
|
| 274 |
@torch.no_grad()
|
| 275 |
-
def plot_reverb():
|
| 276 |
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
|
| 277 |
fdn = fx[7].effects[1]
|
| 278 |
w, eq_log_mags = get_log_mags_from_eq(fdn.eq)
|
|
@@ -292,7 +298,7 @@ def plot_reverb():
|
|
| 292 |
|
| 293 |
|
| 294 |
@torch.no_grad()
|
| 295 |
-
def plot_t60():
|
| 296 |
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
|
| 297 |
fdn = fx[7].effects[1]
|
| 298 |
gamma = fdn.params.gamma.squeeze().numpy()
|
|
@@ -311,19 +317,39 @@ def plot_t60():
|
|
| 311 |
|
| 312 |
@torch.no_grad()
|
| 313 |
def update_param(m, attr_name, value):
|
| 314 |
-
match type(getattr(m
|
| 315 |
case torch.nn.Parameter:
|
| 316 |
-
getattr(m
|
| 317 |
case _:
|
| 318 |
-
setattr(m
|
| 319 |
|
| 320 |
|
| 321 |
@torch.no_grad()
|
| 322 |
def update_atrt(comp, attr_name, value):
|
| 323 |
-
setattr(comp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
|
| 326 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
gr.Markdown(
|
| 328 |
title_md,
|
| 329 |
elem_id="title",
|
|
@@ -352,12 +378,6 @@ with gr.Blocks() as demo:
|
|
| 352 |
render_button = gr.Button(
|
| 353 |
"Run", elem_id="render-button", variant="primary"
|
| 354 |
)
|
| 355 |
-
# random_rest_checkbox = gr.Checkbox(
|
| 356 |
-
# label=f"Randomise PCs > {NUMBER_OF_PCS} (default to zeros)",
|
| 357 |
-
# value=False,
|
| 358 |
-
# elem_id="randomise-checkbox",
|
| 359 |
-
# )
|
| 360 |
-
# sliders = get_important_pcs(NUMBER_OF_PCS, value=0)
|
| 361 |
with gr.Row():
|
| 362 |
s1 = gr.Slider(
|
| 363 |
minimum=SLIDER_MIN,
|
|
@@ -417,7 +437,7 @@ with gr.Blocks() as demo:
|
|
| 417 |
)
|
| 418 |
|
| 419 |
_ = gr.Markdown("## Parametric EQ")
|
| 420 |
-
peq_plot = gr.Plot(plot_eq(), label="PEQ Frequency Response", elem_id="peq-plot")
|
| 421 |
with gr.Row():
|
| 422 |
with gr.Column(min_width=160):
|
| 423 |
_ = gr.Markdown("High Pass")
|
|
@@ -425,14 +445,14 @@ with gr.Blocks() as demo:
|
|
| 425 |
hp_freq = gr.Slider(
|
| 426 |
minimum=16,
|
| 427 |
maximum=5300,
|
| 428 |
-
value=
|
| 429 |
interactive=True,
|
| 430 |
label="Frequency (Hz)",
|
| 431 |
)
|
| 432 |
hp_q = gr.Slider(
|
| 433 |
minimum=0.5,
|
| 434 |
maximum=10,
|
| 435 |
-
value=
|
| 436 |
interactive=True,
|
| 437 |
label="Q",
|
| 438 |
)
|
|
@@ -443,14 +463,14 @@ with gr.Blocks() as demo:
|
|
| 443 |
ls_freq = gr.Slider(
|
| 444 |
minimum=30,
|
| 445 |
maximum=200,
|
| 446 |
-
value=
|
| 447 |
interactive=True,
|
| 448 |
label="Frequency (Hz)",
|
| 449 |
)
|
| 450 |
ls_gain = gr.Slider(
|
| 451 |
minimum=-12,
|
| 452 |
maximum=12,
|
| 453 |
-
value=
|
| 454 |
interactive=True,
|
| 455 |
label="Gain (dB)",
|
| 456 |
)
|
|
@@ -461,21 +481,21 @@ with gr.Blocks() as demo:
|
|
| 461 |
pk1_freq = gr.Slider(
|
| 462 |
minimum=33,
|
| 463 |
maximum=5400,
|
| 464 |
-
value=
|
| 465 |
interactive=True,
|
| 466 |
label="Frequency (Hz)",
|
| 467 |
)
|
| 468 |
pk1_gain = gr.Slider(
|
| 469 |
minimum=-12,
|
| 470 |
maximum=12,
|
| 471 |
-
value=
|
| 472 |
interactive=True,
|
| 473 |
label="Gain (dB)",
|
| 474 |
)
|
| 475 |
pk1_q = gr.Slider(
|
| 476 |
minimum=0.2,
|
| 477 |
maximum=20,
|
| 478 |
-
value=
|
| 479 |
interactive=True,
|
| 480 |
label="Q",
|
| 481 |
)
|
|
@@ -485,21 +505,21 @@ with gr.Blocks() as demo:
|
|
| 485 |
pk2_freq = gr.Slider(
|
| 486 |
minimum=200,
|
| 487 |
maximum=17500,
|
| 488 |
-
value=
|
| 489 |
interactive=True,
|
| 490 |
label="Frequency (Hz)",
|
| 491 |
)
|
| 492 |
pk2_gain = gr.Slider(
|
| 493 |
minimum=-12,
|
| 494 |
maximum=12,
|
| 495 |
-
value=
|
| 496 |
interactive=True,
|
| 497 |
label="Gain (dB)",
|
| 498 |
)
|
| 499 |
pk2_q = gr.Slider(
|
| 500 |
minimum=0.2,
|
| 501 |
maximum=20,
|
| 502 |
-
value=
|
| 503 |
interactive=True,
|
| 504 |
label="Q",
|
| 505 |
)
|
|
@@ -510,14 +530,14 @@ with gr.Blocks() as demo:
|
|
| 510 |
hs_freq = gr.Slider(
|
| 511 |
minimum=750,
|
| 512 |
maximum=8300,
|
| 513 |
-
value=
|
| 514 |
interactive=True,
|
| 515 |
label="Frequency (Hz)",
|
| 516 |
)
|
| 517 |
hs_gain = gr.Slider(
|
| 518 |
minimum=-12,
|
| 519 |
maximum=12,
|
| 520 |
-
value=
|
| 521 |
interactive=True,
|
| 522 |
label="Gain (dB)",
|
| 523 |
)
|
|
@@ -527,14 +547,14 @@ with gr.Blocks() as demo:
|
|
| 527 |
lp_freq = gr.Slider(
|
| 528 |
minimum=200,
|
| 529 |
maximum=18000,
|
| 530 |
-
value=
|
| 531 |
interactive=True,
|
| 532 |
label="Frequency (Hz)",
|
| 533 |
)
|
| 534 |
lp_q = gr.Slider(
|
| 535 |
minimum=0.5,
|
| 536 |
maximum=10,
|
| 537 |
-
value=
|
| 538 |
interactive=True,
|
| 539 |
label="Q",
|
| 540 |
)
|
|
@@ -546,55 +566,55 @@ with gr.Blocks() as demo:
|
|
| 546 |
cmp_th = gr.Slider(
|
| 547 |
minimum=-60,
|
| 548 |
maximum=0,
|
| 549 |
-
value=
|
| 550 |
interactive=True,
|
| 551 |
-
label="
|
| 552 |
)
|
| 553 |
cmp_ratio = gr.Slider(
|
| 554 |
minimum=1,
|
| 555 |
maximum=20,
|
| 556 |
-
value=
|
| 557 |
interactive=True,
|
| 558 |
-
label="
|
| 559 |
)
|
| 560 |
make_up = gr.Slider(
|
| 561 |
minimum=-12,
|
| 562 |
maximum=12,
|
| 563 |
-
value=
|
| 564 |
interactive=True,
|
| 565 |
label="Make Up (dB)",
|
| 566 |
)
|
| 567 |
attack_time = gr.Slider(
|
| 568 |
minimum=0.1,
|
| 569 |
maximum=100,
|
| 570 |
-
value=coef2ms(
|
| 571 |
interactive=True,
|
| 572 |
label="Attack Time (ms)",
|
| 573 |
)
|
| 574 |
release_time = gr.Slider(
|
| 575 |
minimum=50,
|
| 576 |
maximum=1000,
|
| 577 |
-
value=coef2ms(
|
| 578 |
interactive=True,
|
| 579 |
label="Release Time (ms)",
|
| 580 |
)
|
| 581 |
exp_ratio = gr.Slider(
|
| 582 |
minimum=0,
|
| 583 |
maximum=1,
|
| 584 |
-
value=
|
| 585 |
interactive=True,
|
| 586 |
label="Exp. Ratio",
|
| 587 |
)
|
| 588 |
exp_th = gr.Slider(
|
| 589 |
minimum=-80,
|
| 590 |
maximum=0,
|
| 591 |
-
value=
|
| 592 |
interactive=True,
|
| 593 |
label="Exp. Threshold (dB)",
|
| 594 |
)
|
| 595 |
with gr.Column():
|
| 596 |
comp_plot = gr.Plot(
|
| 597 |
-
plot_comp(), label="Compressor Curve", elem_id="comp-plot"
|
| 598 |
)
|
| 599 |
|
| 600 |
_ = gr.Markdown("## Ping-Pong Delay")
|
|
@@ -604,160 +624,215 @@ with gr.Blocks() as demo:
|
|
| 604 |
delay_time = gr.Slider(
|
| 605 |
minimum=100,
|
| 606 |
maximum=1000,
|
| 607 |
-
value=
|
| 608 |
interactive=True,
|
| 609 |
label="Delay Time (ms)",
|
| 610 |
)
|
| 611 |
feedback = gr.Slider(
|
| 612 |
minimum=0,
|
| 613 |
maximum=1,
|
| 614 |
-
value=
|
| 615 |
interactive=True,
|
| 616 |
label="Feedback",
|
| 617 |
)
|
| 618 |
delay_gain = gr.Slider(
|
| 619 |
minimum=-80,
|
| 620 |
maximum=0,
|
| 621 |
-
value=
|
| 622 |
interactive=True,
|
| 623 |
label="Gain (dB)",
|
| 624 |
)
|
| 625 |
odd_pan = gr.Slider(
|
| 626 |
minimum=-100,
|
| 627 |
maximum=100,
|
| 628 |
-
value=
|
| 629 |
interactive=True,
|
| 630 |
label="Odd Delay Pan",
|
| 631 |
)
|
| 632 |
even_pan = gr.Slider(
|
| 633 |
minimum=-100,
|
| 634 |
maximum=100,
|
| 635 |
-
value=
|
| 636 |
interactive=True,
|
| 637 |
label="Even Delay Pan",
|
| 638 |
)
|
| 639 |
delay_lp_freq = gr.Slider(
|
| 640 |
minimum=200,
|
| 641 |
maximum=16000,
|
| 642 |
-
value=
|
| 643 |
interactive=True,
|
| 644 |
label="Low Pass Frequency (Hz)",
|
| 645 |
)
|
| 646 |
with gr.Column():
|
| 647 |
delay_plot = gr.Plot(
|
| 648 |
-
plot_delay(), label="Delay Frequency Response", elem_id="delay-plot"
|
| 649 |
)
|
| 650 |
|
| 651 |
with gr.Row():
|
| 652 |
reverb_plot = gr.Plot(
|
| 653 |
-
plot_reverb(),
|
| 654 |
label="Reverb Tone Correction PEQ",
|
| 655 |
elem_id="reverb-plot",
|
| 656 |
min_width=160,
|
| 657 |
)
|
| 658 |
t60_plot = gr.Plot(
|
| 659 |
-
plot_t60(), label="Reverb T60", elem_id="t60-plot", min_width=160
|
| 660 |
)
|
| 661 |
|
| 662 |
with gr.Row():
|
| 663 |
json_output = gr.JSON(
|
| 664 |
-
model2json(), label="Effect Settings", max_height=800, open=True
|
| 665 |
)
|
| 666 |
|
| 667 |
-
update_pc = lambda i: z[:NUMBER_OF_PCS].tolist() + [z[i - 1].item()]
|
| 668 |
update_pc_outputs = sliders + [extra_slider]
|
| 669 |
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 695 |
s.input(
|
| 696 |
-
lambda *args,
|
| 697 |
-
lambda args: (
|
| 698 |
-
lambda args: (
|
| 699 |
-
|
| 700 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 701 |
)(
|
| 702 |
args
|
| 703 |
),
|
| 704 |
-
inputs=[s, extra_pc_dropdown],
|
| 705 |
-
outputs=
|
| 706 |
)
|
| 707 |
|
| 708 |
-
for f, s, attr_name in zip(
|
| 709 |
-
[update_param] * 5 + [update_atrt] * 2,
|
| 710 |
-
[
|
| 711 |
-
cmp_th,
|
| 712 |
-
cmp_ratio,
|
| 713 |
-
make_up,
|
| 714 |
-
exp_ratio,
|
| 715 |
-
exp_th,
|
| 716 |
-
attack_time,
|
| 717 |
-
release_time,
|
| 718 |
-
],
|
| 719 |
-
["cmp_th", "cmp_ratio", "make_up", "exp_ratio", "exp_th", "at", "rt"],
|
| 720 |
-
):
|
| 721 |
s.input(
|
| 722 |
lambda *args, attr_name=attr_name, f=f: chain_functions(
|
| 723 |
-
lambda args: (
|
| 724 |
-
lambda args: (
|
| 725 |
-
|
| 726 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 727 |
)(args),
|
| 728 |
-
inputs=[s, extra_pc_dropdown],
|
| 729 |
-
outputs=
|
| 730 |
)
|
| 731 |
|
| 732 |
-
for
|
| 733 |
-
|
| 734 |
-
[update_param] * 3
|
| 735 |
-
+ [
|
| 736 |
-
lambda m, a, v: update_param(m, a, 10 ** (v / 20)),
|
| 737 |
-
lambda m, a, v: update_param(m, a, (v + 100) / 200),
|
| 738 |
-
lambda m, a, v: update_param(m, a, (v + 100) / 200),
|
| 739 |
-
],
|
| 740 |
-
[delay_time, feedback, delay_lp_freq, delay_gain, odd_pan, even_pan],
|
| 741 |
-
["delay", "feedback", "freq", "gain", "pan", "pan"],
|
| 742 |
-
[True] * 4 + [False] * 2,
|
| 743 |
):
|
| 744 |
s.input(
|
| 745 |
-
lambda *args, f=f,
|
| 746 |
-
lambda args: (
|
| 747 |
-
lambda args: (
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 753 |
),
|
| 754 |
)(
|
| 755 |
args
|
| 756 |
),
|
| 757 |
-
inputs=[s, extra_pc_dropdown],
|
| 758 |
-
outputs=
|
| 759 |
+ [json_output]
|
| 760 |
-
+ ([delay_plot] if update_plot else [])
|
|
|
|
| 761 |
)
|
| 762 |
|
| 763 |
render_button.click(
|
|
@@ -767,10 +842,17 @@ with gr.Blocks() as demo:
|
|
| 767 |
# model2json(),
|
| 768 |
# )
|
| 769 |
# )(inference(*args)),
|
| 770 |
-
inference,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 771 |
inputs=[
|
| 772 |
audio_input,
|
| 773 |
-
|
|
|
|
|
|
|
| 774 |
outputs=[
|
| 775 |
audio_output,
|
| 776 |
direct_output,
|
|
@@ -778,34 +860,34 @@ with gr.Blocks() as demo:
|
|
| 778 |
],
|
| 779 |
)
|
| 780 |
|
| 781 |
-
update_fx = lambda: [
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
coef2ms(
|
| 802 |
-
coef2ms(
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
]
|
| 810 |
update_fx_outputs = [
|
| 811 |
pk1_freq,
|
|
@@ -836,12 +918,12 @@ with gr.Blocks() as demo:
|
|
| 836 |
odd_pan,
|
| 837 |
even_pan,
|
| 838 |
]
|
| 839 |
-
update_plots = lambda: [
|
| 840 |
-
plot_eq(),
|
| 841 |
-
plot_comp(),
|
| 842 |
-
plot_delay(),
|
| 843 |
-
plot_reverb(),
|
| 844 |
-
plot_t60(),
|
| 845 |
]
|
| 846 |
update_plots_outputs = [
|
| 847 |
peq_plot,
|
|
@@ -851,56 +933,61 @@ with gr.Blocks() as demo:
|
|
| 851 |
t60_plot,
|
| 852 |
]
|
| 853 |
|
| 854 |
-
update_all = lambda i: update_pc(i) + update_fx() + update_plots()
|
| 855 |
update_all_outputs = update_pc_outputs + update_fx_outputs + update_plots_outputs
|
| 856 |
|
| 857 |
random_button.click(
|
| 858 |
chain_functions(
|
| 859 |
-
lambda i: (
|
| 860 |
-
lambda args: (
|
| 861 |
-
lambda args: args[
|
| 862 |
-
update_all,
|
| 863 |
),
|
| 864 |
inputs=extra_pc_dropdown,
|
| 865 |
-
outputs=update_all_outputs,
|
| 866 |
)
|
| 867 |
reset_button.click(
|
| 868 |
# lambda: (lambda _: [0 for _ in range(NUMBER_OF_PCS + 1)])(z.zero_()),
|
| 869 |
lambda: chain_functions(
|
| 870 |
-
lambda _:
|
| 871 |
-
lambda
|
| 872 |
-
lambda
|
| 873 |
)(None),
|
| 874 |
-
outputs=update_all_outputs,
|
| 875 |
)
|
| 876 |
|
| 877 |
-
def update_z(s, i):
|
| 878 |
z[i] = s
|
| 879 |
-
return
|
| 880 |
|
| 881 |
for i, slider in enumerate(sliders):
|
| 882 |
slider.input(
|
| 883 |
-
chain_functions(
|
| 884 |
-
|
| 885 |
-
lambda
|
| 886 |
-
lambda
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
|
|
|
|
|
|
|
|
|
| 890 |
)
|
| 891 |
extra_slider.input(
|
| 892 |
lambda *xs: chain_functions(
|
| 893 |
-
lambda args: update_z(args[0], args[1]
|
| 894 |
-
lambda
|
| 895 |
-
lambda
|
|
|
|
|
|
|
|
|
|
| 896 |
)(xs),
|
| 897 |
-
inputs=[extra_slider, extra_pc_dropdown],
|
| 898 |
-
outputs=update_fx_outputs + update_plots_outputs + [json_output],
|
| 899 |
)
|
| 900 |
|
| 901 |
extra_pc_dropdown.input(
|
| 902 |
-
lambda i: z[i - 1].item(),
|
| 903 |
-
inputs=extra_pc_dropdown,
|
| 904 |
outputs=extra_slider,
|
| 905 |
)
|
| 906 |
|
|
|
|
| 9 |
from soxr import resample
|
| 10 |
from functools import partial
|
| 11 |
from torchcomp import coef2ms, ms2coef
|
| 12 |
+
from copy import deepcopy
|
| 13 |
|
| 14 |
from modules.utils import chain_functions, vec2statedict, get_chunks
|
| 15 |
from modules.fx import clip_delay_eq_Q
|
|
|
|
| 51 |
fx_config = yaml.safe_load(fp)["model"]
|
| 52 |
|
| 53 |
# Global effect
|
| 54 |
+
global_fx = instantiate(fx_config)
|
| 55 |
+
global_fx.eval()
|
| 56 |
|
| 57 |
pca_params = np.load(PCA_PARAM_FILE)
|
| 58 |
mean = pca_params["mean"]
|
|
|
|
| 65 |
mean = torch.from_numpy(mean).float()
|
| 66 |
feature_mask = torch.from_numpy(np.load(MASK_PATH))
|
| 67 |
# Global latent variable
|
| 68 |
+
# z = torch.zeros_like(mean)
|
| 69 |
|
| 70 |
with open(INFO_PATH) as f:
|
| 71 |
info = json.load(f)
|
|
|
|
| 92 |
)
|
| 93 |
),
|
| 94 |
)
|
| 95 |
+
global_fx.load_state_dict(vec2dict(mean), strict=False)
|
| 96 |
|
| 97 |
|
| 98 |
meter = pyln.Meter(44100)
|
| 99 |
|
| 100 |
|
| 101 |
@torch.no_grad()
|
| 102 |
+
def z2x(z):
|
| 103 |
# close all figures to avoid too many open figures
|
| 104 |
plt.close("all")
|
| 105 |
x = U @ z + mean
|
| 106 |
+
# # print(z)
|
| 107 |
+
# fx.load_state_dict(vec2dict(x), strict=False)
|
| 108 |
+
# fx.apply(partial(clip_delay_eq_Q, Q=0.707))
|
| 109 |
+
return x
|
| 110 |
|
| 111 |
|
| 112 |
@torch.no_grad()
|
| 113 |
+
def fx2x(fx):
|
| 114 |
plt.close("all")
|
| 115 |
state_dict = fx.state_dict()
|
| 116 |
flattened = torch.cat([state_dict[k].flatten() for k in param_keys])
|
| 117 |
x = flattened[feature_mask]
|
| 118 |
+
return x
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
@torch.no_grad()
|
| 122 |
+
def x2z(x):
|
| 123 |
+
z = U.T @ (x - mean)
|
| 124 |
+
return z
|
| 125 |
|
| 126 |
|
| 127 |
@torch.no_grad()
|
| 128 |
+
def inference(audio, fx):
|
| 129 |
sr, y = audio
|
| 130 |
if sr != 44100:
|
| 131 |
y = resample(y, sr, 44100)
|
|
|
|
| 169 |
return sliders
|
| 170 |
|
| 171 |
|
| 172 |
+
def model2json(fx):
|
| 173 |
fx_names = ["PK1", "PK2", "LS", "HS", "LP", "HP", "DRC"]
|
| 174 |
results = {k: v.toJSON() for k, v in zip(fx_names, fx)} | {
|
| 175 |
"Panner": fx[7].pan.toJSON()
|
|
|
|
| 196 |
|
| 197 |
|
| 198 |
@torch.no_grad()
|
| 199 |
+
def plot_eq(fx):
|
| 200 |
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
|
| 201 |
w, eq_log_mags = get_log_mags_from_eq(fx[:6])
|
| 202 |
ax.plot(w, sum(eq_log_mags), color="black", linestyle="-")
|
|
|
|
| 213 |
|
| 214 |
|
| 215 |
@torch.no_grad()
|
| 216 |
+
def plot_comp(fx):
|
| 217 |
fig, ax = plt.subplots(figsize=(6, 5), constrained_layout=True)
|
| 218 |
comp = fx[6]
|
| 219 |
+
cmp_th = fx[6].params.cmp_th.item()
|
| 220 |
+
exp_th = fx[6].params.exp_th.item()
|
| 221 |
+
cmp_ratio = fx[6].params.cmp_ratio.item()
|
| 222 |
+
exp_ratio = fx[6].params.exp_ratio.item()
|
| 223 |
+
make_up = fx[6].params.make_up.item()
|
| 224 |
# print(cmp_ratio, cmp_th, exp_ratio, exp_th, make_up)
|
| 225 |
|
| 226 |
comp_in = np.linspace(-80, 0, 100)
|
|
|
|
| 248 |
|
| 249 |
|
| 250 |
@torch.no_grad()
|
| 251 |
+
def plot_delay(fx):
|
| 252 |
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
|
| 253 |
delay = fx[7].effects[0]
|
| 254 |
+
w, eq_log_mags = get_log_mags_from_eq([fx[7].effects[0].eq])
|
| 255 |
+
log_gain = fx[7].effects[0].params.gain.log10().item() * 20
|
| 256 |
+
d = fx[7].effects[0].params.delay.item() / 1000
|
| 257 |
log_mag = sum(eq_log_mags)
|
| 258 |
ax.plot(w, log_mag + log_gain, color="black", linestyle="-")
|
| 259 |
|
| 260 |
+
log_feedback = fx[7].effects[0].params.feedback.log10().item() * 20
|
| 261 |
for i in range(1, 10):
|
| 262 |
feedback_log_mag = log_mag * (i + 1) + log_feedback * i + log_gain
|
| 263 |
ax.plot(
|
|
|
|
| 278 |
|
| 279 |
|
| 280 |
@torch.no_grad()
|
| 281 |
+
def plot_reverb(fx):
|
| 282 |
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
|
| 283 |
fdn = fx[7].effects[1]
|
| 284 |
w, eq_log_mags = get_log_mags_from_eq(fdn.eq)
|
|
|
|
| 298 |
|
| 299 |
|
| 300 |
@torch.no_grad()
|
| 301 |
+
def plot_t60(fx):
|
| 302 |
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
|
| 303 |
fdn = fx[7].effects[1]
|
| 304 |
gamma = fdn.params.gamma.squeeze().numpy()
|
|
|
|
| 317 |
|
| 318 |
@torch.no_grad()
|
| 319 |
def update_param(m, attr_name, value):
|
| 320 |
+
match type(getattr(m, attr_name)):
|
| 321 |
case torch.nn.Parameter:
|
| 322 |
+
getattr(m, attr_name).data.copy_(value)
|
| 323 |
case _:
|
| 324 |
+
setattr(m, attr_name, torch.tensor(value))
|
| 325 |
|
| 326 |
|
| 327 |
@torch.no_grad()
|
| 328 |
def update_atrt(comp, attr_name, value):
|
| 329 |
+
setattr(comp, attr_name, ms2coef(torch.tensor(value), 44100))
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def vec2fx(x):
|
| 333 |
+
fx = deepcopy(global_fx)
|
| 334 |
+
fx.load_state_dict(vec2dict(x), strict=False)
|
| 335 |
+
fx.apply(partial(clip_delay_eq_Q, Q=0.707))
|
| 336 |
+
return fx
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
get_last_attribute = lambda m, attr_name: (
|
| 340 |
+
(m, attr_name)
|
| 341 |
+
if "." not in attr_name
|
| 342 |
+
else (lambda x, *remain: get_last_attribute(getattr(m, x), ".".join(remain)))(
|
| 343 |
+
*attr_name.split(".")
|
| 344 |
+
)
|
| 345 |
+
)
|
| 346 |
|
| 347 |
|
| 348 |
with gr.Blocks() as demo:
|
| 349 |
+
z = gr.State(torch.zeros_like(mean))
|
| 350 |
+
fx_params = gr.State(mean)
|
| 351 |
+
fx = vec2fx(fx_params.value)
|
| 352 |
+
|
| 353 |
gr.Markdown(
|
| 354 |
title_md,
|
| 355 |
elem_id="title",
|
|
|
|
| 378 |
render_button = gr.Button(
|
| 379 |
"Run", elem_id="render-button", variant="primary"
|
| 380 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
with gr.Row():
|
| 382 |
s1 = gr.Slider(
|
| 383 |
minimum=SLIDER_MIN,
|
|
|
|
| 437 |
)
|
| 438 |
|
| 439 |
_ = gr.Markdown("## Parametric EQ")
|
| 440 |
+
peq_plot = gr.Plot(plot_eq(fx), label="PEQ Frequency Response", elem_id="peq-plot")
|
| 441 |
with gr.Row():
|
| 442 |
with gr.Column(min_width=160):
|
| 443 |
_ = gr.Markdown("High Pass")
|
|
|
|
| 445 |
hp_freq = gr.Slider(
|
| 446 |
minimum=16,
|
| 447 |
maximum=5300,
|
| 448 |
+
value=fx[5].params.freq.item(),
|
| 449 |
interactive=True,
|
| 450 |
label="Frequency (Hz)",
|
| 451 |
)
|
| 452 |
hp_q = gr.Slider(
|
| 453 |
minimum=0.5,
|
| 454 |
maximum=10,
|
| 455 |
+
value=fx[5].params.Q.item(),
|
| 456 |
interactive=True,
|
| 457 |
label="Q",
|
| 458 |
)
|
|
|
|
| 463 |
ls_freq = gr.Slider(
|
| 464 |
minimum=30,
|
| 465 |
maximum=200,
|
| 466 |
+
value=fx[2].params.freq.item(),
|
| 467 |
interactive=True,
|
| 468 |
label="Frequency (Hz)",
|
| 469 |
)
|
| 470 |
ls_gain = gr.Slider(
|
| 471 |
minimum=-12,
|
| 472 |
maximum=12,
|
| 473 |
+
value=fx[2].params.gain.item(),
|
| 474 |
interactive=True,
|
| 475 |
label="Gain (dB)",
|
| 476 |
)
|
|
|
|
| 481 |
pk1_freq = gr.Slider(
|
| 482 |
minimum=33,
|
| 483 |
maximum=5400,
|
| 484 |
+
value=fx[0].params.freq.item(),
|
| 485 |
interactive=True,
|
| 486 |
label="Frequency (Hz)",
|
| 487 |
)
|
| 488 |
pk1_gain = gr.Slider(
|
| 489 |
minimum=-12,
|
| 490 |
maximum=12,
|
| 491 |
+
value=fx[0].params.gain.item(),
|
| 492 |
interactive=True,
|
| 493 |
label="Gain (dB)",
|
| 494 |
)
|
| 495 |
pk1_q = gr.Slider(
|
| 496 |
minimum=0.2,
|
| 497 |
maximum=20,
|
| 498 |
+
value=fx[0].params.Q.item(),
|
| 499 |
interactive=True,
|
| 500 |
label="Q",
|
| 501 |
)
|
|
|
|
| 505 |
pk2_freq = gr.Slider(
|
| 506 |
minimum=200,
|
| 507 |
maximum=17500,
|
| 508 |
+
value=fx[1].params.freq.item(),
|
| 509 |
interactive=True,
|
| 510 |
label="Frequency (Hz)",
|
| 511 |
)
|
| 512 |
pk2_gain = gr.Slider(
|
| 513 |
minimum=-12,
|
| 514 |
maximum=12,
|
| 515 |
+
value=fx[1].params.gain.item(),
|
| 516 |
interactive=True,
|
| 517 |
label="Gain (dB)",
|
| 518 |
)
|
| 519 |
pk2_q = gr.Slider(
|
| 520 |
minimum=0.2,
|
| 521 |
maximum=20,
|
| 522 |
+
value=fx[1].params.Q.item(),
|
| 523 |
interactive=True,
|
| 524 |
label="Q",
|
| 525 |
)
|
|
|
|
| 530 |
hs_freq = gr.Slider(
|
| 531 |
minimum=750,
|
| 532 |
maximum=8300,
|
| 533 |
+
value=fx[3].params.freq.item(),
|
| 534 |
interactive=True,
|
| 535 |
label="Frequency (Hz)",
|
| 536 |
)
|
| 537 |
hs_gain = gr.Slider(
|
| 538 |
minimum=-12,
|
| 539 |
maximum=12,
|
| 540 |
+
value=fx[3].params.gain.item(),
|
| 541 |
interactive=True,
|
| 542 |
label="Gain (dB)",
|
| 543 |
)
|
|
|
|
| 547 |
lp_freq = gr.Slider(
|
| 548 |
minimum=200,
|
| 549 |
maximum=18000,
|
| 550 |
+
value=fx[4].params.freq.item(),
|
| 551 |
interactive=True,
|
| 552 |
label="Frequency (Hz)",
|
| 553 |
)
|
| 554 |
lp_q = gr.Slider(
|
| 555 |
minimum=0.5,
|
| 556 |
maximum=10,
|
| 557 |
+
value=fx[4].params.Q.item(),
|
| 558 |
interactive=True,
|
| 559 |
label="Q",
|
| 560 |
)
|
|
|
|
| 566 |
cmp_th = gr.Slider(
|
| 567 |
minimum=-60,
|
| 568 |
maximum=0,
|
| 569 |
+
value=fx[6].params.cmp_th.item(),
|
| 570 |
interactive=True,
|
| 571 |
+
label="fx[6]. Threshold (dB)",
|
| 572 |
)
|
| 573 |
cmp_ratio = gr.Slider(
|
| 574 |
minimum=1,
|
| 575 |
maximum=20,
|
| 576 |
+
value=fx[6].params.cmp_ratio.item(),
|
| 577 |
interactive=True,
|
| 578 |
+
label="fx[6]. Ratio",
|
| 579 |
)
|
| 580 |
make_up = gr.Slider(
|
| 581 |
minimum=-12,
|
| 582 |
maximum=12,
|
| 583 |
+
value=fx[6].params.make_up.item(),
|
| 584 |
interactive=True,
|
| 585 |
label="Make Up (dB)",
|
| 586 |
)
|
| 587 |
attack_time = gr.Slider(
|
| 588 |
minimum=0.1,
|
| 589 |
maximum=100,
|
| 590 |
+
value=coef2ms(fx[6].params.at, 44100).item(),
|
| 591 |
interactive=True,
|
| 592 |
label="Attack Time (ms)",
|
| 593 |
)
|
| 594 |
release_time = gr.Slider(
|
| 595 |
minimum=50,
|
| 596 |
maximum=1000,
|
| 597 |
+
value=coef2ms(fx[6].params.rt, 44100).item(),
|
| 598 |
interactive=True,
|
| 599 |
label="Release Time (ms)",
|
| 600 |
)
|
| 601 |
exp_ratio = gr.Slider(
|
| 602 |
minimum=0,
|
| 603 |
maximum=1,
|
| 604 |
+
value=fx[6].params.exp_ratio.item(),
|
| 605 |
interactive=True,
|
| 606 |
label="Exp. Ratio",
|
| 607 |
)
|
| 608 |
exp_th = gr.Slider(
|
| 609 |
minimum=-80,
|
| 610 |
maximum=0,
|
| 611 |
+
value=fx[6].params.exp_th.item(),
|
| 612 |
interactive=True,
|
| 613 |
label="Exp. Threshold (dB)",
|
| 614 |
)
|
| 615 |
with gr.Column():
|
| 616 |
comp_plot = gr.Plot(
|
| 617 |
+
plot_comp(fx), label="Compressor Curve", elem_id="comp-plot"
|
| 618 |
)
|
| 619 |
|
| 620 |
_ = gr.Markdown("## Ping-Pong Delay")
|
|
|
|
| 624 |
delay_time = gr.Slider(
|
| 625 |
minimum=100,
|
| 626 |
maximum=1000,
|
| 627 |
+
value=fx[7].effects[0].params.delay.item(),
|
| 628 |
interactive=True,
|
| 629 |
label="Delay Time (ms)",
|
| 630 |
)
|
| 631 |
feedback = gr.Slider(
|
| 632 |
minimum=0,
|
| 633 |
maximum=1,
|
| 634 |
+
value=fx[7].effects[0].params.feedback.item(),
|
| 635 |
interactive=True,
|
| 636 |
label="Feedback",
|
| 637 |
)
|
| 638 |
delay_gain = gr.Slider(
|
| 639 |
minimum=-80,
|
| 640 |
maximum=0,
|
| 641 |
+
value=fx[7].effects[0].params.gain.log10().item() * 20,
|
| 642 |
interactive=True,
|
| 643 |
label="Gain (dB)",
|
| 644 |
)
|
| 645 |
odd_pan = gr.Slider(
|
| 646 |
minimum=-100,
|
| 647 |
maximum=100,
|
| 648 |
+
value=fx[7].effects[0].odd_pan.params.pan.item() * 200 - 100,
|
| 649 |
interactive=True,
|
| 650 |
label="Odd Delay Pan",
|
| 651 |
)
|
| 652 |
even_pan = gr.Slider(
|
| 653 |
minimum=-100,
|
| 654 |
maximum=100,
|
| 655 |
+
value=fx[7].effects[0].even_pan.params.pan.item() * 200 - 100,
|
| 656 |
interactive=True,
|
| 657 |
label="Even Delay Pan",
|
| 658 |
)
|
| 659 |
delay_lp_freq = gr.Slider(
|
| 660 |
minimum=200,
|
| 661 |
maximum=16000,
|
| 662 |
+
value=fx[7].effects[0].eq.params.freq.item(),
|
| 663 |
interactive=True,
|
| 664 |
label="Low Pass Frequency (Hz)",
|
| 665 |
)
|
| 666 |
with gr.Column():
|
| 667 |
delay_plot = gr.Plot(
|
| 668 |
+
plot_delay(fx), label="Delay Frequency Response", elem_id="delay-plot"
|
| 669 |
)
|
| 670 |
|
| 671 |
with gr.Row():
|
| 672 |
reverb_plot = gr.Plot(
|
| 673 |
+
plot_reverb(fx),
|
| 674 |
label="Reverb Tone Correction PEQ",
|
| 675 |
elem_id="reverb-plot",
|
| 676 |
min_width=160,
|
| 677 |
)
|
| 678 |
t60_plot = gr.Plot(
|
| 679 |
+
plot_t60(fx), label="Reverb T60", elem_id="t60-plot", min_width=160
|
| 680 |
)
|
| 681 |
|
| 682 |
with gr.Row():
|
| 683 |
json_output = gr.JSON(
|
| 684 |
+
model2json(fx), label="Effect Settings", max_height=800, open=True
|
| 685 |
)
|
| 686 |
|
| 687 |
+
update_pc = lambda z, i: z[:NUMBER_OF_PCS].tolist() + [z[i - 1].item()]
|
| 688 |
update_pc_outputs = sliders + [extra_slider]
|
| 689 |
|
| 690 |
+
peq_sliders = [
|
| 691 |
+
pk1_freq,
|
| 692 |
+
pk1_gain,
|
| 693 |
+
pk1_q,
|
| 694 |
+
pk2_freq,
|
| 695 |
+
pk2_gain,
|
| 696 |
+
pk2_q,
|
| 697 |
+
ls_freq,
|
| 698 |
+
ls_gain,
|
| 699 |
+
hs_freq,
|
| 700 |
+
hs_gain,
|
| 701 |
+
lp_freq,
|
| 702 |
+
lp_q,
|
| 703 |
+
hp_freq,
|
| 704 |
+
hp_q,
|
| 705 |
+
]
|
| 706 |
+
peq_attr_names = (
|
| 707 |
+
["freq", "gain", "Q"] * 2 + ["freq", "gain"] * 2 + ["freq", "Q"] * 2
|
| 708 |
+
)
|
| 709 |
+
peq_indices = [0] * 3 + [1] * 3 + [2] * 2 + [3] * 2 + [4] * 2 + [5] * 2
|
| 710 |
+
|
| 711 |
+
cmp_sliders = [
|
| 712 |
+
cmp_th,
|
| 713 |
+
cmp_ratio,
|
| 714 |
+
make_up,
|
| 715 |
+
exp_ratio,
|
| 716 |
+
exp_th,
|
| 717 |
+
attack_time,
|
| 718 |
+
release_time,
|
| 719 |
+
]
|
| 720 |
+
cmp_update_funcs = [update_param] * 5 + [update_atrt] * 2
|
| 721 |
+
cmp_attr_names = [
|
| 722 |
+
"cmp_th",
|
| 723 |
+
"cmp_ratio",
|
| 724 |
+
"make_up",
|
| 725 |
+
"exp_ratio",
|
| 726 |
+
"exp_th",
|
| 727 |
+
"at",
|
| 728 |
+
"rt",
|
| 729 |
+
]
|
| 730 |
+
|
| 731 |
+
delay_sliders = [delay_time, feedback, delay_lp_freq, delay_gain, odd_pan, even_pan]
|
| 732 |
+
delay_update_funcs = [update_param] * 3 + [
|
| 733 |
+
lambda m, a, v: update_param(m, a, 10 ** (v / 20)),
|
| 734 |
+
lambda m, a, v: update_param(m, a, (v + 100) / 200),
|
| 735 |
+
lambda m, a, v: update_param(m, a, (v + 100) / 200),
|
| 736 |
+
]
|
| 737 |
+
delay_attr_names = [
|
| 738 |
+
"params.delay",
|
| 739 |
+
"params.feedback",
|
| 740 |
+
"eq.params.freq",
|
| 741 |
+
"params.gain",
|
| 742 |
+
"odd_pan.params.pan",
|
| 743 |
+
"even_pan.params.pan",
|
| 744 |
+
]
|
| 745 |
+
delay_update_plot_flag = [True] * 4 + [False] * 2
|
| 746 |
+
|
| 747 |
+
all_effect_sliders = peq_sliders + cmp_sliders + delay_sliders
|
| 748 |
+
split_sizes = [len(peq_sliders), len(cmp_sliders), len(delay_sliders)]
|
| 749 |
+
|
| 750 |
+
def assign_fx_params(fx, *args):
|
| 751 |
+
peq_sliders, cmp_sliders, delay_sliders = (
|
| 752 |
+
args[: split_sizes[0]],
|
| 753 |
+
args[split_sizes[0] : sum(split_sizes[:2])],
|
| 754 |
+
args[sum(split_sizes[:2]) :],
|
| 755 |
+
)
|
| 756 |
+
for idx, s, attr_name in zip(peq_indices, peq_sliders, peq_attr_names):
|
| 757 |
+
update_param(fx[idx].params, attr_name, s)
|
| 758 |
+
|
| 759 |
+
for f, s, attr_name in zip(cmp_update_funcs, cmp_sliders, cmp_attr_names):
|
| 760 |
+
f(fx[6].params, attr_name, s)
|
| 761 |
+
|
| 762 |
+
for f, s, attr_name in zip(delay_update_funcs, delay_sliders, delay_attr_names):
|
| 763 |
+
m, name = get_last_attribute(fx[7].effects[0], attr_name)
|
| 764 |
+
f(m, name, s)
|
| 765 |
+
|
| 766 |
+
return fx
|
| 767 |
+
|
| 768 |
+
for idx, s, attr_name in zip(peq_indices, peq_sliders, peq_attr_names):
|
| 769 |
s.input(
|
| 770 |
+
lambda *args, idx=idx, attr_name=attr_name: chain_functions( # chain_functions(
|
| 771 |
+
lambda args: (assign_fx_params(vec2fx(args[0]), *args[3:]), *args[1:3]),
|
| 772 |
+
lambda args: (
|
| 773 |
+
update_param(args[0][idx].params, attr_name, args[1]),
|
| 774 |
+
args[0],
|
| 775 |
+
args[2],
|
| 776 |
+
),
|
| 777 |
+
lambda args: (fx2x(args[1]), *args[1:]),
|
| 778 |
+
lambda args: [x2z(args[0]), *args],
|
| 779 |
+
lambda args: args[:2]
|
| 780 |
+
+ [model2json(args[2]), plot_eq(args[2])]
|
| 781 |
+
+ update_pc(args[0], args[3]),
|
| 782 |
)(
|
| 783 |
args
|
| 784 |
),
|
| 785 |
+
inputs=[fx_params, s, extra_pc_dropdown] + all_effect_sliders,
|
| 786 |
+
outputs=[z, fx_params, json_output, peq_plot] + update_pc_outputs,
|
| 787 |
)
|
| 788 |
|
| 789 |
+
for f, s, attr_name in zip(cmp_update_funcs, cmp_sliders, cmp_attr_names):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 790 |
s.input(
|
| 791 |
lambda *args, attr_name=attr_name, f=f: chain_functions(
|
| 792 |
+
lambda args: (assign_fx_params(vec2fx(args[0]), *args[3:]), *args[1:3]),
|
| 793 |
+
lambda args: (
|
| 794 |
+
f(args[0][6].params, attr_name, args[1]),
|
| 795 |
+
args[0],
|
| 796 |
+
args[2],
|
| 797 |
+
),
|
| 798 |
+
lambda args: (fx2x(args[1]), *args[1:]),
|
| 799 |
+
lambda args: [x2z(args[0]), *args],
|
| 800 |
+
lambda args: args[:2]
|
| 801 |
+
+ [model2json(args[2]), plot_comp(args[2])]
|
| 802 |
+
+ update_pc(args[0], args[3]),
|
| 803 |
)(args),
|
| 804 |
+
inputs=[fx_params, s, extra_pc_dropdown] + all_effect_sliders,
|
| 805 |
+
outputs=[z, fx_params, json_output, comp_plot] + update_pc_outputs,
|
| 806 |
)
|
| 807 |
|
| 808 |
+
for f, s, attr_name, update_plot in zip(
|
| 809 |
+
delay_update_funcs, delay_sliders, delay_attr_names, delay_update_plot_flag
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 810 |
):
|
| 811 |
s.input(
|
| 812 |
+
lambda *args, f=f, attr_name=attr_name, update_plot=update_plot: chain_functions(
|
| 813 |
+
lambda args: (assign_fx_params(vec2fx(args[0]), *args[3:]), *args[1:3]),
|
| 814 |
+
lambda args: (
|
| 815 |
+
# f(args[0][7].effects[0], attr_name, args[1]),
|
| 816 |
+
f(*get_last_attribute(args[0][7].effects[0], attr_name), args[1]),
|
| 817 |
+
args[0],
|
| 818 |
+
args[2],
|
| 819 |
+
),
|
| 820 |
+
lambda args: (fx2x(args[1]), *args[1:]),
|
| 821 |
+
lambda args: [x2z(args[0]), *args],
|
| 822 |
+
lambda args: (
|
| 823 |
+
args[:2]
|
| 824 |
+
+ [model2json(args[2])]
|
| 825 |
+
+ ([plot_delay(args[2])] if update_plot else [])
|
| 826 |
+
+ update_pc(args[0], args[3])
|
| 827 |
),
|
| 828 |
)(
|
| 829 |
args
|
| 830 |
),
|
| 831 |
+
inputs=[fx_params, s, extra_pc_dropdown] + all_effect_sliders,
|
| 832 |
+
outputs=[z, fx_params]
|
| 833 |
+ [json_output]
|
| 834 |
+
+ ([delay_plot] if update_plot else [])
|
| 835 |
+
+ update_pc_outputs,
|
| 836 |
)
|
| 837 |
|
| 838 |
render_button.click(
|
|
|
|
| 842 |
# model2json(),
|
| 843 |
# )
|
| 844 |
# )(inference(*args)),
|
| 845 |
+
# inference,
|
| 846 |
+
# lambda audio, x: inference(audio, vec2fx(x)),
|
| 847 |
+
lambda audio, *args: chain_functions(
|
| 848 |
+
lambda args: assign_fx_params(vec2fx(args[0]), *args[1:]),
|
| 849 |
+
partial(inference, audio),
|
| 850 |
+
)(args),
|
| 851 |
inputs=[
|
| 852 |
audio_input,
|
| 853 |
+
fx_params,
|
| 854 |
+
]
|
| 855 |
+
+ all_effect_sliders,
|
| 856 |
outputs=[
|
| 857 |
audio_output,
|
| 858 |
direct_output,
|
|
|
|
| 860 |
],
|
| 861 |
)
|
| 862 |
|
| 863 |
+
update_fx = lambda fx: [
|
| 864 |
+
fx[0].params.freq.item(),
|
| 865 |
+
fx[0].params.gain.item(),
|
| 866 |
+
fx[0].params.Q.item(),
|
| 867 |
+
fx[1].params.freq.item(),
|
| 868 |
+
fx[1].params.gain.item(),
|
| 869 |
+
fx[1].params.Q.item(),
|
| 870 |
+
fx[2].params.freq.item(),
|
| 871 |
+
fx[2].params.gain.item(),
|
| 872 |
+
fx[3].params.freq.item(),
|
| 873 |
+
fx[3].params.gain.item(),
|
| 874 |
+
fx[4].params.freq.item(),
|
| 875 |
+
fx[4].params.Q.item(),
|
| 876 |
+
fx[5].params.freq.item(),
|
| 877 |
+
fx[5].params.Q.item(),
|
| 878 |
+
fx[6].params.cmp_th.item(),
|
| 879 |
+
fx[6].params.cmp_ratio.item(),
|
| 880 |
+
fx[6].params.make_up.item(),
|
| 881 |
+
fx[6].params.exp_th.item(),
|
| 882 |
+
fx[6].params.exp_ratio.item(),
|
| 883 |
+
coef2ms(fx[6].params.at, 44100).item(),
|
| 884 |
+
coef2ms(fx[6].params.rt, 44100).item(),
|
| 885 |
+
fx[7].effects[0].params.delay.item(),
|
| 886 |
+
fx[7].effects[0].params.feedback.item(),
|
| 887 |
+
fx[7].effects[0].params.gain.log10().item() * 20,
|
| 888 |
+
fx[7].effects[0].eq.params.freq.item(),
|
| 889 |
+
fx[7].effects[0].odd_pan.params.pan.item() * 200 - 100,
|
| 890 |
+
fx[7].effects[0].even_pan.params.pan.item() * 200 - 100,
|
| 891 |
]
|
| 892 |
update_fx_outputs = [
|
| 893 |
pk1_freq,
|
|
|
|
| 918 |
odd_pan,
|
| 919 |
even_pan,
|
| 920 |
]
|
| 921 |
+
update_plots = lambda fx: [
|
| 922 |
+
plot_eq(fx),
|
| 923 |
+
plot_comp(fx),
|
| 924 |
+
plot_delay(fx),
|
| 925 |
+
plot_reverb(fx),
|
| 926 |
+
plot_t60(fx),
|
| 927 |
]
|
| 928 |
update_plots_outputs = [
|
| 929 |
peq_plot,
|
|
|
|
| 933 |
t60_plot,
|
| 934 |
]
|
| 935 |
|
| 936 |
+
update_all = lambda z, fx, i: update_pc(z, i) + update_fx(fx) + update_plots(fx)
|
| 937 |
update_all_outputs = update_pc_outputs + update_fx_outputs + update_plots_outputs
|
| 938 |
|
| 939 |
random_button.click(
|
| 940 |
chain_functions(
|
| 941 |
+
lambda i: (torch.randn_like(mean).clip(SLIDER_MIN, SLIDER_MAX), i),
|
| 942 |
+
lambda args: (args[0], vec2fx(z2x(args[0])), args[1]),
|
| 943 |
+
lambda args: update_all(*args) + [args[0]],
|
|
|
|
| 944 |
),
|
| 945 |
inputs=extra_pc_dropdown,
|
| 946 |
+
outputs=update_all_outputs + [z],
|
| 947 |
)
|
| 948 |
reset_button.click(
|
| 949 |
# lambda: (lambda _: [0 for _ in range(NUMBER_OF_PCS + 1)])(z.zero_()),
|
| 950 |
lambda: chain_functions(
|
| 951 |
+
lambda _: torch.zeros_like(mean),
|
| 952 |
+
lambda z: (z, vec2fx(z2x(z))),
|
| 953 |
+
lambda args: update_all(args[0], args[1], NUMBER_OF_PCS) + [args[0]],
|
| 954 |
)(None),
|
| 955 |
+
outputs=update_all_outputs + [z],
|
| 956 |
)
|
| 957 |
|
| 958 |
+
def update_z(z, s, i):
|
| 959 |
z[i] = s
|
| 960 |
+
return z
|
| 961 |
|
| 962 |
for i, slider in enumerate(sliders):
|
| 963 |
slider.input(
|
| 964 |
+
lambda *args, i=i: chain_functions(
|
| 965 |
+
lambda args: update_z(args[0], args[1], i),
|
| 966 |
+
lambda z: (z, vec2fx(z2x(z))),
|
| 967 |
+
lambda args: [args[0]]
|
| 968 |
+
+ update_fx(args[1])
|
| 969 |
+
+ update_plots(args[1])
|
| 970 |
+
+ [model2json(args[1])],
|
| 971 |
+
)(args),
|
| 972 |
+
inputs=[z, slider],
|
| 973 |
+
outputs=[z] + update_fx_outputs + update_plots_outputs + [json_output],
|
| 974 |
)
|
| 975 |
extra_slider.input(
|
| 976 |
lambda *xs: chain_functions(
|
| 977 |
+
lambda args: update_z(args[0], args[1], args[2]),
|
| 978 |
+
lambda z: (z, vec2fx(z2x(z))),
|
| 979 |
+
lambda args: [args[0]]
|
| 980 |
+
+ update_fx(args[1])
|
| 981 |
+
+ update_plots(args[1])
|
| 982 |
+
+ [model2json(args[1])],
|
| 983 |
)(xs),
|
| 984 |
+
inputs=[z, extra_slider, extra_pc_dropdown],
|
| 985 |
+
outputs=[z] + update_fx_outputs + update_plots_outputs + [json_output],
|
| 986 |
)
|
| 987 |
|
| 988 |
extra_pc_dropdown.input(
|
| 989 |
+
lambda z, i: z[i - 1].item(),
|
| 990 |
+
inputs=[z, extra_pc_dropdown],
|
| 991 |
outputs=extra_slider,
|
| 992 |
)
|
| 993 |
|