Spaces:
Sleeping
Sleeping
File size: 14,597 Bytes
3f0e339 8ff3469 a79be4e 78aa2f1 8ff3469 a79be4e 8ff3469 cb53552 a79be4e 9e55565 a79be4e 8ff3469 20a28ab 8ff3469 a79be4e cb53552 8ff3469 a79be4e 8ff3469 9e55565 8ff3469 9e55565 a79be4e 8ff3469 a79be4e 8ff3469 a79be4e cb53552 a79be4e 8ff3469 a79be4e 8ff3469 9e55565 8ff3469 a79be4e 8ff3469 a79be4e 8ff3469 a79be4e 8ff3469 a79be4e 8ff3469 9b5b26a 8ff3469 cb53552 8ff3469 9b5b26a 8ff3469 cb53552 8ff3469 a79be4e 8ff3469 a79be4e 8ff3469 cb53552 8ff3469 cb53552 8ff3469 cb53552 8ff3469 cb53552 8ff3469 a79be4e 8ff3469 cb53552 8ff3469 a79be4e cb53552 a79be4e cb53552 a79be4e cb53552 a79be4e cb53552 a79be4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import os
import requests
import pandas as pd
import gradio as gr
import tempfile
import json
from pathlib import Path
from typing import Union, Optional
from smolagents import LiteLLMModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool
from smolagents.tools import Tool
# --- Function to Configure Google Credentials (ESSENTIAL) ---
def setup_google_credentials():
"""
Reads Google Cloud credential JSON content from an environment variable,
writes it to a temporary file, and sets the GOOGLE_APPLICATION_CREDENTIALS
environment variable to the path of that file.
This function should be called before any Google Cloud client library
(like the one used by LiteLLM for Vertex AI) is initialized.
Requires the service account key JSON content to be stored in an
environment variable named 'GOOGLE_APPLICATION_CREDENTIALS_JSON'.
Set this in your Hugging Face Space secrets.
"""
credentials_json_str = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS_JSON")
if not credentials_json_str:
print("ERROR: 'GOOGLE_APPLICATION_CREDENTIALS_JSON' secret not found in environment variables.")
print(" Please ensure you have set this secret in your Hugging Face Space settings.")
# Depending on requirements, you might want to raise an error here
# raise ValueError("Secret 'GOOGLE_APPLICATION_CREDENTIALS_JSON' not set.")
return False # Indicate failure
try:
# Create a secure temporary file to store the credentials
# delete=False ensures the file persists until the process exits or it's manually cleaned up.
# We need the file path to set the environment variable.
with tempfile.NamedTemporaryFile(mode='w', suffix=".json", delete=False, encoding='utf-8') as temp_f:
temp_f.write(credentials_json_str)
credentials_path = temp_f.name # Get the path to the temporary file
# Set the environment variable that Google client libraries expect
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = credentials_path
print(f"Google Application Credentials successfully set to temporary file: {credentials_path}")
return True # Indicate success
except json.JSONDecodeError:
print("ERROR: Failed to parse the content of 'GOOGLE_APPLICATION_CREDENTIALS_JSON'. Ensure it's valid JSON.")
return False
except OSError as e:
print(f"ERROR: Failed to write credentials to temporary file: {e}")
return False
except Exception as e:
print(f"ERROR: An unexpected error occurred during Google credential setup: {e}")
# You might want to re-raise the exception depending on your error handling strategy
# raise e
return False
# --- Call Credential Setup EARLY ---
# This needs to run before any code (like BasicAgent initialization) tries to use Google Cloud services.
print("Attempting to configure Google Cloud credentials...")
CREDENTIALS_CONFIGURED = setup_google_credentials()
if not CREDENTIALS_CONFIGURED:
print("WARNING: Google Cloud credentials setup failed. Agent initialization might fail.")
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
### Defining tools ###
class ExcelToTextTool(Tool):
"""Render an Excel worksheet as Markdown text."""
name = "excel_to_text"
description = (
"Read an Excel file and return a Markdown table of the requested sheet. "
"Accepts either the sheet name or the zero-based index."
)
inputs = {
"excel_path": {
"type": "string",
"description": "Path to the Excel file (.xlsx / .xls).",
},
"sheet_name": {
"type": "string",
"description": (
"Worksheet name or zero‑based index *as a string* (optional; default first sheet)."
),
"nullable": True,
},
}
output_type = "string"
def forward(
self,
excel_path: str,
sheet_name: Optional[str] = None,
) -> str:
"""Load *excel_path* and return the sheet as a Markdown table."""
path = Path(excel_path).expanduser().resolve()
if not path.exists():
return f"Error: Excel file not found at {path}"
try:
# Interpret sheet identifier
sheet: Union[str, int]
if sheet_name is None or sheet_name == "":
sheet = 0 # first sheet
else:
# If the user passed a numeric string (e.g. "1"), cast to int
sheet = int(sheet_name) if sheet_name.isdigit() else sheet_name
# Load worksheet
df = pd.read_excel(path, sheet_name=sheet)
# Render to Markdown, fallback to tabulate if needed
if hasattr(pd.DataFrame, "to_markdown"):
return df.to_markdown(index=False)
from tabulate import tabulate
return tabulate(df, headers="keys", tablefmt="github", showindex=False)
except Exception as exc: # broad catch keeps the agent chat‑friendly
return f"Error reading Excel file: {exc}"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
def __init__(self):
# Assuming you've set GOOGLE_API_KEY in secrets
google_api_key = os.environ.get("GOOGLE_API_KEY")
if not google_api_key:
raise ValueError("GOOGLE_API_KEY environment variable not set.")
# Check if the global credential setup was successful
if not CREDENTIALS_CONFIGURED:
raise ValueError("Google Cloud credentials could not be configured. Check startup logs and HF Secrets (ensure 'GOOGLE_APPLICATION_CREDENTIALS_JSON' is set correctly).")
self.agent = CodeAgent(
model=LiteLLMModel(model_id="gemini-2.0-flash"),
tools=[DuckDuckGoSearchTool(), WikipediaSearchTool(), ExcelToTextTool()],
add_base_tools=True,
additional_authorized_imports=['pandas','numpy','csv','subprocess']
)
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = self.agent.run(question)
print(f"Agent returning answer: {fixed_answer}")
return fixed_answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |