Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,171 @@
|
|
| 1 |
-
|
| 2 |
import os
|
| 3 |
-
import gradio as gr
|
| 4 |
import requests
|
| 5 |
-
import inspect
|
| 6 |
import pandas as pd
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
load_dotenv()
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
# --- Constants ---
|
| 14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 15 |
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
"""
|
| 19 |
-
Fetches all questions, runs the
|
| 20 |
and displays the results.
|
| 21 |
"""
|
| 22 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 23 |
-
space_id = os.getenv("SPACE_ID")
|
| 24 |
|
| 25 |
if profile:
|
| 26 |
-
username
|
| 27 |
print(f"User logged in: {username}")
|
| 28 |
else:
|
| 29 |
print("User not logged in.")
|
|
@@ -33,17 +175,15 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 33 |
questions_url = f"{api_url}/questions"
|
| 34 |
submit_url = f"{api_url}/submit"
|
| 35 |
|
| 36 |
-
# 1. Instantiate Agent
|
| 37 |
try:
|
| 38 |
-
|
| 39 |
-
agent_graph = build_graph()
|
| 40 |
-
print("LangGraph agent initialized.")
|
| 41 |
except Exception as e:
|
| 42 |
-
print(f"Error instantiating agent
|
| 43 |
-
return f"Error initializing agent
|
| 44 |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 45 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 46 |
-
print(
|
| 47 |
|
| 48 |
# 2. Fetch Questions
|
| 49 |
print(f"Fetching questions from: {questions_url}")
|
|
@@ -52,16 +192,16 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 52 |
response.raise_for_status()
|
| 53 |
questions_data = response.json()
|
| 54 |
if not questions_data:
|
| 55 |
-
|
| 56 |
-
|
| 57 |
print(f"Fetched {len(questions_data)} questions.")
|
| 58 |
except requests.exceptions.RequestException as e:
|
| 59 |
print(f"Error fetching questions: {e}")
|
| 60 |
return f"Error fetching questions: {e}", None
|
| 61 |
except requests.exceptions.JSONDecodeError as e:
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
except Exception as e:
|
| 66 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 67 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
@@ -70,60 +210,25 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 70 |
results_log = []
|
| 71 |
answers_payload = []
|
| 72 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 73 |
-
|
| 74 |
-
# Removed the problematic print statement from here
|
| 75 |
-
|
| 76 |
for item in questions_data:
|
| 77 |
task_id = item.get("task_id")
|
| 78 |
question_text = item.get("question")
|
| 79 |
-
|
| 80 |
if not task_id or question_text is None:
|
| 81 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 82 |
continue
|
| 83 |
-
|
| 84 |
-
# Moved the print statement inside the loop, after task_id and question_text are assigned
|
| 85 |
-
print(f"--- Starting processing Task ID: {task_id}, Question: {question_text[:100]}...")
|
| 86 |
-
|
| 87 |
try:
|
| 88 |
-
|
| 89 |
-
result_state = agent_graph.invoke({"messages": [HumanMessage(content=question_text)]})
|
| 90 |
-
|
| 91 |
-
# Extract the final answer from the last message
|
| 92 |
-
submitted_answer = "Error: Agent did not provide a response." # Default in case extraction fails
|
| 93 |
-
|
| 94 |
-
if result_state and "messages" in result_state and result_state["messages"]:
|
| 95 |
-
last_message = result_state["messages"][-1]
|
| 96 |
-
# The final content is typically in the content attribute of the last message
|
| 97 |
-
if hasattr(last_message, 'content') and last_message.content:
|
| 98 |
-
submitted_answer = last_message.content
|
| 99 |
-
# else: Handle cases where the last message might be a tool message etc.,
|
| 100 |
-
# for simplicity, we just use the default error message if content is missing.
|
| 101 |
-
|
| 102 |
-
# Ensure submitted_answer is a string
|
| 103 |
-
if not isinstance(submitted_answer, str):
|
| 104 |
-
submitted_answer = str(submitted_answer)
|
| 105 |
-
|
| 106 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 107 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 108 |
-
|
| 109 |
-
# Moved this print statement inside the loop as well
|
| 110 |
-
print(f"--- Finished processing Task ID: {task_id}")
|
| 111 |
-
# Moved this print statement inside the loop as well
|
| 112 |
-
print(f"--- Extracted answer for Task ID: {task_id}: {submitted_answer[:100]}...")
|
| 113 |
-
|
| 114 |
-
|
| 115 |
except Exception as e:
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
# Note: If an error occurs, the 'Finished' and 'Extracted answer' prints for this specific task won't happen,
|
| 119 |
-
# which is reasonable behavior.
|
| 120 |
|
| 121 |
if not answers_payload:
|
| 122 |
print("Agent did not produce any answers to submit.")
|
| 123 |
-
# Even if no answers, show the log of errors
|
| 124 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 125 |
|
| 126 |
-
# 4. Prepare Submission
|
| 127 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 128 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 129 |
print(status_update)
|
|
@@ -174,15 +279,14 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 174 |
|
| 175 |
# --- Build Gradio Interface using Blocks ---
|
| 176 |
with gr.Blocks() as demo:
|
| 177 |
-
gr.Markdown("#
|
| 178 |
gr.Markdown(
|
| 179 |
"""
|
| 180 |
**Instructions:**
|
| 181 |
|
| 182 |
-
1. Please clone this space, then modify the code
|
| 183 |
-
2.
|
| 184 |
-
3.
|
| 185 |
-
4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 186 |
|
| 187 |
---
|
| 188 |
**Disclaimers:**
|
|
@@ -196,6 +300,7 @@ with gr.Blocks() as demo:
|
|
| 196 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 197 |
|
| 198 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
|
| 199 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 200 |
|
| 201 |
run_button.click(
|
|
@@ -204,10 +309,10 @@ with gr.Blocks() as demo:
|
|
| 204 |
)
|
| 205 |
|
| 206 |
if __name__ == "__main__":
|
| 207 |
-
print("\n" + "-"
|
| 208 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 209 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 210 |
-
space_id_startup = os.getenv("SPACE_ID")
|
| 211 |
|
| 212 |
if space_host_startup:
|
| 213 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
@@ -215,14 +320,14 @@ if __name__ == "__main__":
|
|
| 215 |
else:
|
| 216 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 217 |
|
| 218 |
-
if space_id_startup:
|
| 219 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 220 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 221 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 222 |
else:
|
| 223 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 224 |
|
| 225 |
-
print("-"
|
| 226 |
|
| 227 |
-
print("Launching Gradio Interface for
|
| 228 |
-
demo.launch(debug=True, share=False
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import requests
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import tempfile
|
| 6 |
+
import json
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from typing import Union, Optional
|
| 9 |
+
from smolagents import LiteLLMModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool
|
| 10 |
+
from smolagents.tools import Tool
|
| 11 |
|
|
|
|
| 12 |
|
| 13 |
+
# --- Function to Configure Google Credentials (ESSENTIAL) ---
|
| 14 |
+
def setup_google_credentials():
|
| 15 |
+
"""
|
| 16 |
+
Reads Google Cloud credential JSON content from an environment variable,
|
| 17 |
+
writes it to a temporary file, and sets the GOOGLE_APPLICATION_CREDENTIALS
|
| 18 |
+
environment variable to the path of that file.
|
| 19 |
+
|
| 20 |
+
This function should be called before any Google Cloud client library
|
| 21 |
+
(like the one used by LiteLLM for Vertex AI) is initialized.
|
| 22 |
+
|
| 23 |
+
Requires the service account key JSON content to be stored in an
|
| 24 |
+
environment variable named 'GOOGLE_APPLICATION_CREDENTIALS_JSON'.
|
| 25 |
+
Set this in your Hugging Face Space secrets.
|
| 26 |
+
"""
|
| 27 |
+
credentials_json_str = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS_JSON")
|
| 28 |
+
if not credentials_json_str:
|
| 29 |
+
print("ERROR: 'GOOGLE_APPLICATION_CREDENTIALS_JSON' secret not found in environment variables.")
|
| 30 |
+
print(" Please ensure you have set this secret in your Hugging Face Space settings.")
|
| 31 |
+
# Depending on requirements, you might want to raise an error here
|
| 32 |
+
# raise ValueError("Secret 'GOOGLE_APPLICATION_CREDENTIALS_JSON' not set.")
|
| 33 |
+
return False # Indicate failure
|
| 34 |
+
|
| 35 |
+
try:
|
| 36 |
+
# Create a secure temporary file to store the credentials
|
| 37 |
+
# delete=False ensures the file persists until the process exits or it's manually cleaned up.
|
| 38 |
+
# We need the file path to set the environment variable.
|
| 39 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix=".json", delete=False, encoding='utf-8') as temp_f:
|
| 40 |
+
temp_f.write(credentials_json_str)
|
| 41 |
+
credentials_path = temp_f.name # Get the path to the temporary file
|
| 42 |
+
|
| 43 |
+
# Set the environment variable that Google client libraries expect
|
| 44 |
+
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = credentials_path
|
| 45 |
+
print(f"Google Application Credentials successfully set to temporary file: {credentials_path}")
|
| 46 |
+
return True # Indicate success
|
| 47 |
+
except json.JSONDecodeError:
|
| 48 |
+
print("ERROR: Failed to parse the content of 'GOOGLE_APPLICATION_CREDENTIALS_JSON'. Ensure it's valid JSON.")
|
| 49 |
+
return False
|
| 50 |
+
except OSError as e:
|
| 51 |
+
print(f"ERROR: Failed to write credentials to temporary file: {e}")
|
| 52 |
+
return False
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"ERROR: An unexpected error occurred during Google credential setup: {e}")
|
| 55 |
+
# You might want to re-raise the exception depending on your error handling strategy
|
| 56 |
+
# raise e
|
| 57 |
+
return False
|
| 58 |
+
|
| 59 |
+
# --- Call Credential Setup EARLY ---
|
| 60 |
+
# This needs to run before any code (like BasicAgent initialization) tries to use Google Cloud services.
|
| 61 |
+
print("Attempting to configure Google Cloud credentials...")
|
| 62 |
+
CREDENTIALS_CONFIGURED = setup_google_credentials()
|
| 63 |
+
if not CREDENTIALS_CONFIGURED:
|
| 64 |
+
print("WARNING: Google Cloud credentials setup failed. Agent initialization might fail.")
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# (Keep Constants as is)
|
| 68 |
# --- Constants ---
|
| 69 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 70 |
|
| 71 |
|
| 72 |
+
### Defining tools ###
|
| 73 |
+
|
| 74 |
+
class ExcelToTextTool(Tool):
|
| 75 |
+
"""Render an Excel worksheet as Markdown text."""
|
| 76 |
+
|
| 77 |
+
name = "excel_to_text"
|
| 78 |
+
description = (
|
| 79 |
+
"Read an Excel file and return a Markdown table of the requested sheet. "
|
| 80 |
+
"Accepts either the sheet name or the zero-based index."
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
inputs = {
|
| 84 |
+
"excel_path": {
|
| 85 |
+
"type": "string",
|
| 86 |
+
"description": "Path to the Excel file (.xlsx / .xls).",
|
| 87 |
+
},
|
| 88 |
+
"sheet_name": {
|
| 89 |
+
"type": "string",
|
| 90 |
+
"description": (
|
| 91 |
+
"Worksheet name or zero‑based index *as a string* (optional; default first sheet)."
|
| 92 |
+
),
|
| 93 |
+
"nullable": True,
|
| 94 |
+
},
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
output_type = "string"
|
| 98 |
+
|
| 99 |
+
def forward(
|
| 100 |
+
self,
|
| 101 |
+
excel_path: str,
|
| 102 |
+
sheet_name: Optional[str] = None,
|
| 103 |
+
) -> str:
|
| 104 |
+
"""Load *excel_path* and return the sheet as a Markdown table."""
|
| 105 |
+
|
| 106 |
+
path = Path(excel_path).expanduser().resolve()
|
| 107 |
+
if not path.exists():
|
| 108 |
+
return f"Error: Excel file not found at {path}"
|
| 109 |
+
|
| 110 |
+
try:
|
| 111 |
+
# Interpret sheet identifier
|
| 112 |
+
sheet: Union[str, int]
|
| 113 |
+
if sheet_name is None or sheet_name == "":
|
| 114 |
+
sheet = 0 # first sheet
|
| 115 |
+
else:
|
| 116 |
+
# If the user passed a numeric string (e.g. "1"), cast to int
|
| 117 |
+
sheet = int(sheet_name) if sheet_name.isdigit() else sheet_name
|
| 118 |
+
|
| 119 |
+
# Load worksheet
|
| 120 |
+
df = pd.read_excel(path, sheet_name=sheet)
|
| 121 |
+
|
| 122 |
+
# Render to Markdown, fallback to tabulate if needed
|
| 123 |
+
if hasattr(pd.DataFrame, "to_markdown"):
|
| 124 |
+
return df.to_markdown(index=False)
|
| 125 |
+
from tabulate import tabulate
|
| 126 |
+
|
| 127 |
+
return tabulate(df, headers="keys", tablefmt="github", showindex=False)
|
| 128 |
+
|
| 129 |
+
except Exception as exc: # broad catch keeps the agent chat‑friendly
|
| 130 |
+
return f"Error reading Excel file: {exc}"
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# --- Basic Agent Definition ---
|
| 134 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 135 |
+
class BasicAgent:
|
| 136 |
+
def __init__(self):
|
| 137 |
+
# Assuming you've set GOOGLE_API_KEY in secrets
|
| 138 |
+
google_api_key = os.environ.get("GOOGLE_API_KEY")
|
| 139 |
+
if not google_api_key:
|
| 140 |
+
raise ValueError("GOOGLE_API_KEY environment variable not set.")
|
| 141 |
+
|
| 142 |
+
# Check if the global credential setup was successful
|
| 143 |
+
if not CREDENTIALS_CONFIGURED:
|
| 144 |
+
raise ValueError("Google Cloud credentials could not be configured. Check startup logs and HF Secrets (ensure 'GOOGLE_APPLICATION_CREDENTIALS_JSON' is set correctly).")
|
| 145 |
+
self.agent = CodeAgent(
|
| 146 |
+
model=LiteLLMModel(model_id="gemini-2.0-flash"),
|
| 147 |
+
tools=[DuckDuckGoSearchTool(), WikipediaSearchTool(), ExcelToTextTool()],
|
| 148 |
+
add_base_tools=True,
|
| 149 |
+
additional_authorized_imports=['pandas','numpy','csv','subprocess']
|
| 150 |
+
)
|
| 151 |
+
print("BasicAgent initialized.")
|
| 152 |
+
|
| 153 |
+
def __call__(self, question: str) -> str:
|
| 154 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 155 |
+
fixed_answer = self.agent.run(question)
|
| 156 |
+
print(f"Agent returning answer: {fixed_answer}")
|
| 157 |
+
return fixed_answer
|
| 158 |
+
|
| 159 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 160 |
"""
|
| 161 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 162 |
and displays the results.
|
| 163 |
"""
|
| 164 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 165 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 166 |
|
| 167 |
if profile:
|
| 168 |
+
username= f"{profile.username}"
|
| 169 |
print(f"User logged in: {username}")
|
| 170 |
else:
|
| 171 |
print("User not logged in.")
|
|
|
|
| 175 |
questions_url = f"{api_url}/questions"
|
| 176 |
submit_url = f"{api_url}/submit"
|
| 177 |
|
| 178 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 179 |
try:
|
| 180 |
+
agent = BasicAgent()
|
|
|
|
|
|
|
| 181 |
except Exception as e:
|
| 182 |
+
print(f"Error instantiating agent: {e}")
|
| 183 |
+
return f"Error initializing agent: {e}", None
|
| 184 |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 185 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 186 |
+
print(agent_code)
|
| 187 |
|
| 188 |
# 2. Fetch Questions
|
| 189 |
print(f"Fetching questions from: {questions_url}")
|
|
|
|
| 192 |
response.raise_for_status()
|
| 193 |
questions_data = response.json()
|
| 194 |
if not questions_data:
|
| 195 |
+
print("Fetched questions list is empty.")
|
| 196 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 197 |
print(f"Fetched {len(questions_data)} questions.")
|
| 198 |
except requests.exceptions.RequestException as e:
|
| 199 |
print(f"Error fetching questions: {e}")
|
| 200 |
return f"Error fetching questions: {e}", None
|
| 201 |
except requests.exceptions.JSONDecodeError as e:
|
| 202 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 203 |
+
print(f"Response text: {response.text[:500]}")
|
| 204 |
+
return f"Error decoding server response for questions: {e}", None
|
| 205 |
except Exception as e:
|
| 206 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 207 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
|
| 210 |
results_log = []
|
| 211 |
answers_payload = []
|
| 212 |
print(f"Running agent on {len(questions_data)} questions...")
|
|
|
|
|
|
|
|
|
|
| 213 |
for item in questions_data:
|
| 214 |
task_id = item.get("task_id")
|
| 215 |
question_text = item.get("question")
|
|
|
|
| 216 |
if not task_id or question_text is None:
|
| 217 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 218 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
try:
|
| 220 |
+
submitted_answer = agent(question_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 222 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
except Exception as e:
|
| 224 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 225 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
| 226 |
|
| 227 |
if not answers_payload:
|
| 228 |
print("Agent did not produce any answers to submit.")
|
|
|
|
| 229 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 230 |
|
| 231 |
+
# 4. Prepare Submission
|
| 232 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 233 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 234 |
print(status_update)
|
|
|
|
| 279 |
|
| 280 |
# --- Build Gradio Interface using Blocks ---
|
| 281 |
with gr.Blocks() as demo:
|
| 282 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 283 |
gr.Markdown(
|
| 284 |
"""
|
| 285 |
**Instructions:**
|
| 286 |
|
| 287 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 288 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 289 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
| 290 |
|
| 291 |
---
|
| 292 |
**Disclaimers:**
|
|
|
|
| 300 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 301 |
|
| 302 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 303 |
+
# Removed max_rows=10 from DataFrame constructor
|
| 304 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 305 |
|
| 306 |
run_button.click(
|
|
|
|
| 309 |
)
|
| 310 |
|
| 311 |
if __name__ == "__main__":
|
| 312 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 313 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 314 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 315 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 316 |
|
| 317 |
if space_host_startup:
|
| 318 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
|
| 320 |
else:
|
| 321 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 322 |
|
| 323 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 324 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 325 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 326 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 327 |
else:
|
| 328 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 329 |
|
| 330 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 331 |
|
| 332 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 333 |
+
demo.launch(debug=True, share=False)
|