yooke commited on
Commit
8ff3469
·
verified ·
1 Parent(s): ce56907

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +188 -132
app.py CHANGED
@@ -1,141 +1,197 @@
1
- from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
2
- import datetime
3
- import requests
4
- import pytz
5
- import yaml
6
- from tools.final_answer import FinalAnswerTool
7
- import requests
8
- import json
9
- from datetime import datetime
10
- from typing import Optional
11
-
12
-
13
- from Gradio_UI import GradioUI
14
  import os
15
-
16
- HF_TOKEN = os.getenv("HF_TOKEN")
17
-
18
- # Below is an example of a tool that does nothing. Amaze us with your creativity !
19
- @tool
20
- def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
21
- #Keep this format for the description / args / args description but feel free to modify the tool
22
- """A tool that does nothing yet
23
- Args:
24
- arg1: the first argument
25
- arg2: the second argument
26
- """
27
- return "What magic will you build ?"
28
-
29
-
30
-
31
-
32
- @tool
33
- def query_weather(location: str, days: int = 1) -> str:
 
 
34
  """
35
- 查询指定地点的天气预报。
36
-
37
- Args:
38
- location: 要查询天气的地点名称,如 "北京"、"上海"。
39
- days: 要查询的天数,默认为 1 天(最多 5 天)。
40
-
41
- Returns:
42
- 包含天气预报信息的字符串。
43
  """
44
- if days < 1 or days > 5:
45
- return "查询天数必须在 1-5 之间。"
46
-
47
- base_url = "https://wttr.in/"
48
- params = {
49
- "format": "j1", # 返回 JSON 格式
50
- "lang": "zh-cn" # 使用中文
51
- }
52
-
53
- try:
54
- # 发送请求
55
- response = requests.get(f"{base_url}{location}", params=params)
56
- response.raise_for_status() # 检查 HTTP 状态码
57
-
58
- data = response.json()
59
-
60
- # 处理天气数据
61
- result = f"{location} 天气预报:\n\n"
62
- for i, day in enumerate(data["weather"]):
63
- if i >= days:
64
- break
65
-
66
- date = day["date"]
67
- result += f"【{date}】\n"
68
 
69
- # 添加当天的天气信息
70
- for period in day["hourly"]:
71
- time_str = f"{int(period['time'])//100:02d}:00"
72
- temp = period["tempC"]
73
- weather_desc = period["weatherDesc"][0]["value"]
74
- humidity = period["humidity"]
75
- wind_speed = period["windspeedKmph"]
76
- wind_dir = period["winddir16Point"]
77
 
78
- result += (
79
- f"- {time_str}: {weather_desc}, "
80
- f"温度 {temp}°C, 湿度 {humidity}%, "
81
- f"风速 {wind_speed}km/h, 风向 {wind_dir}\n"
82
- )
83
-
84
- result += "\n"
85
-
86
- return result
87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  except requests.exceptions.RequestException as e:
89
- return f"查询天气失败: {str(e)}"
90
-
91
-
92
-
93
- @tool
94
- def get_current_time_in_timezone(timezone: str) -> str:
95
- """A tool that fetches the current local time in a specified timezone.
96
- Args:
97
- timezone: A string representing a valid timezone (e.g., 'America/New_York').
98
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  try:
100
- # Create timezone object
101
- tz = pytz.timezone(timezone)
102
- # Get current time in that timezone
103
- local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
104
- return f"The current local time in {timezone} is: {local_time}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  except Exception as e:
106
- return f"Error fetching time for timezone '{timezone}': {str(e)}"
107
-
108
-
109
- final_answer = FinalAnswerTool()
110
-
111
- # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
112
- # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
113
-
114
- model = HfApiModel(
115
- max_tokens=2096,
116
- temperature=0.5,
117
- model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
118
- custom_role_conversions=None,
119
- )
120
-
121
-
122
- # Import tool from Hub
123
- image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
124
-
125
- with open("prompts.yaml", 'r') as stream:
126
- prompt_templates = yaml.safe_load(stream)
127
-
128
- agent = CodeAgent(
129
- model=model,
130
- tools=[final_answer,query_weather], ## add your tools here (don't remove final answer)
131
- max_steps=6,
132
- verbosity_level=1,
133
- grammar=None,
134
- planning_interval=None,
135
- name=None,
136
- description=None,
137
- prompt_templates=prompt_templates
138
- )
139
-
140
-
141
- GradioUI(agent).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+
7
+ # (Keep Constants as is)
8
+ # --- Constants ---
9
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
+
11
+ # --- Basic Agent Definition ---
12
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
+ class BasicAgent:
14
+ def __init__(self):
15
+ print("BasicAgent initialized.")
16
+ def __call__(self, question: str) -> str:
17
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
18
+ fixed_answer = "This is a default answer."
19
+ print(f"Agent returning fixed answer: {fixed_answer}")
20
+ return fixed_answer
21
+
22
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
24
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
25
+ and displays the results.
 
 
 
 
 
 
26
  """
27
+ # --- Determine HF Space Runtime URL and Repo URL ---
28
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
+ if profile:
31
+ username= f"{profile.username}"
32
+ print(f"User logged in: {username}")
33
+ else:
34
+ print("User not logged in.")
35
+ return "Please Login to Hugging Face with the button.", None
 
 
36
 
37
+ api_url = DEFAULT_API_URL
38
+ questions_url = f"{api_url}/questions"
39
+ submit_url = f"{api_url}/submit"
 
 
 
 
 
 
40
 
41
+ # 1. Instantiate Agent ( modify this part to create your agent)
42
+ try:
43
+ agent = BasicAgent()
44
+ except Exception as e:
45
+ print(f"Error instantiating agent: {e}")
46
+ return f"Error initializing agent: {e}", None
47
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
+ print(agent_code)
50
+
51
+ # 2. Fetch Questions
52
+ print(f"Fetching questions from: {questions_url}")
53
+ try:
54
+ response = requests.get(questions_url, timeout=15)
55
+ response.raise_for_status()
56
+ questions_data = response.json()
57
+ if not questions_data:
58
+ print("Fetched questions list is empty.")
59
+ return "Fetched questions list is empty or invalid format.", None
60
+ print(f"Fetched {len(questions_data)} questions.")
61
  except requests.exceptions.RequestException as e:
62
+ print(f"Error fetching questions: {e}")
63
+ return f"Error fetching questions: {e}", None
64
+ except requests.exceptions.JSONDecodeError as e:
65
+ print(f"Error decoding JSON response from questions endpoint: {e}")
66
+ print(f"Response text: {response.text[:500]}")
67
+ return f"Error decoding server response for questions: {e}", None
68
+ except Exception as e:
69
+ print(f"An unexpected error occurred fetching questions: {e}")
70
+ return f"An unexpected error occurred fetching questions: {e}", None
71
+
72
+ # 3. Run your Agent
73
+ results_log = []
74
+ answers_payload = []
75
+ print(f"Running agent on {len(questions_data)} questions...")
76
+ for item in questions_data:
77
+ task_id = item.get("task_id")
78
+ question_text = item.get("question")
79
+ if not task_id or question_text is None:
80
+ print(f"Skipping item with missing task_id or question: {item}")
81
+ continue
82
+ try:
83
+ submitted_answer = agent(question_text)
84
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
+ except Exception as e:
87
+ print(f"Error running agent on task {task_id}: {e}")
88
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
+
90
+ if not answers_payload:
91
+ print("Agent did not produce any answers to submit.")
92
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
+
94
+ # 4. Prepare Submission
95
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
+ print(status_update)
98
+
99
+ # 5. Submit
100
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
+ response = requests.post(submit_url, json=submission_data, timeout=60)
103
+ response.raise_for_status()
104
+ result_data = response.json()
105
+ final_status = (
106
+ f"Submission Successful!\n"
107
+ f"User: {result_data.get('username')}\n"
108
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
109
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
+ f"Message: {result_data.get('message', 'No message received.')}"
111
+ )
112
+ print("Submission successful.")
113
+ results_df = pd.DataFrame(results_log)
114
+ return final_status, results_df
115
+ except requests.exceptions.HTTPError as e:
116
+ error_detail = f"Server responded with status {e.response.status_code}."
117
+ try:
118
+ error_json = e.response.json()
119
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
+ except requests.exceptions.JSONDecodeError:
121
+ error_detail += f" Response: {e.response.text[:500]}"
122
+ status_message = f"Submission Failed: {error_detail}"
123
+ print(status_message)
124
+ results_df = pd.DataFrame(results_log)
125
+ return status_message, results_df
126
+ except requests.exceptions.Timeout:
127
+ status_message = "Submission Failed: The request timed out."
128
+ print(status_message)
129
+ results_df = pd.DataFrame(results_log)
130
+ return status_message, results_df
131
+ except requests.exceptions.RequestException as e:
132
+ status_message = f"Submission Failed: Network error - {e}"
133
+ print(status_message)
134
+ results_df = pd.DataFrame(results_log)
135
+ return status_message, results_df
136
  except Exception as e:
137
+ status_message = f"An unexpected error occurred during submission: {e}"
138
+ print(status_message)
139
+ results_df = pd.DataFrame(results_log)
140
+ return status_message, results_df
141
+
142
+
143
+ # --- Build Gradio Interface using Blocks ---
144
+ with gr.Blocks() as demo:
145
+ gr.Markdown("# Basic Agent Evaluation Runner")
146
+ gr.Markdown(
147
+ """
148
+ **Instructions:**
149
+
150
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
+
154
+ ---
155
+ **Disclaimers:**
156
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
+ """
159
+ )
160
+
161
+ gr.LoginButton()
162
+
163
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
164
+
165
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
+ # Removed max_rows=10 from DataFrame constructor
167
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
+
169
+ run_button.click(
170
+ fn=run_and_submit_all,
171
+ outputs=[status_output, results_table]
172
+ )
173
+
174
+ if __name__ == "__main__":
175
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
176
+ # Check for SPACE_HOST and SPACE_ID at startup for information
177
+ space_host_startup = os.getenv("SPACE_HOST")
178
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
+
180
+ if space_host_startup:
181
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
182
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
+ else:
184
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
+
186
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
187
+ print(f"✅ SPACE_ID found: {space_id_startup}")
188
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
+ else:
191
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
+
193
+ print("-"*(60 + len(" App Starting ")) + "\n")
194
+
195
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
196
+ demo.launch(debug=True, share=False)
197
+