File size: 16,640 Bytes
720aaa6
1f69d12
 
720aaa6
1f69d12
 
1e84a23
 
d5b6416
1f69d12
d5b6416
b6ed110
1e84a23
d5b6416
 
 
 
 
1f69d12
 
 
d5b6416
 
e77c77f
dd03b20
0a3ff71
0f2057e
f7d8562
efe60b5
f7d8562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e84a23
 
61ea23c
1f69d12
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d8562
720aaa6
1f69d12
 
 
 
 
 
 
efe60b5
1f69d12
 
1e84a23
e8cf24b
 
 
 
 
a9553c0
1e84a23
4821d07
a9553c0
c4addd7
1e84a23
 
e8cf24b
e27ca0d
a9553c0
1e84a23
e670a33
72d0614
 
1e84a23
f79d747
 
 
 
 
e670a33
5948f20
e670a33
0afbb8d
1e84a23
1119949
 
fa29125
1e84a23
 
 
 
 
e8cf24b
2a835c7
 
a9553c0
958ab92
f419721
1e84a23
 
0a3ff71
96fcde4
f7d8562
f3c3d2c
5948f20
1e84a23
f7d8562
260b172
f7d8562
a1c8406
260b172
 
1e84a23
260b172
f7d8562
5948f20
1e84a23
61ea23c
 
f7d8562
61ea23c
 
 
 
 
 
 
 
f7d8562
61ea23c
f7d8562
1e84a23
 
c09964c
1e84a23
 
 
f7d8562
1e84a23
 
f542926
1e84a23
 
 
 
225845e
3665c0f
 
225845e
f7d8562
225845e
f7d8562
1e84a23
f7d8562
 
 
 
0a3ff71
f7d8562
 
 
 
 
 
 
 
 
 
efe60b5
1e84a23
 
9c91aea
720aaa6
b6ed110
720aaa6
c09964c
ca290dc
1e84a23
 
aa08b2b
4250f84
f639e14
1e84a23
 
 
 
 
 
f3c3d2c
1e84a23
 
 
046c37e
1e84a23
ba9ab66
1e84a23
 
5948f20
1e84a23
5948f20
 
1e84a23
b6ed110
 
 
efe60b5
b6ed110
1e84a23
b40852d
d3dad42
03281f8
9b0f6e3
f7d8562
9b0f6e3
d3dad42
1e84a23
6bd9218
ef0b5c9
1e84a23
 
 
9b0f6e3
 
 
 
 
 
 
 
 
07a82f4
791dadb
1e84a23
 
71dd276
19e2482
95fa653
 
1e84a23
 
 
 
 
 
bfb2276
720aaa6
4695ca8
e8cf24b
4695ca8
a9553c0
4695ca8
 
f419721
1e84a23
 
 
 
b8c2da4
86f4247
19c8b2c
f7d8562
720aaa6
c4addd7
 
c6b51f4
1e84a23
1ce686e
a9553c0
c5966ab
bfb2276
 
 
 
fad27c0
720aaa6
ef0b5c9
1e84a23
f419721
1f69d12
19c8b2c
be9edff
5948f20
1f69d12
 
be9edff
1e84a23
720aaa6
be9edff
5948f20
be9edff
1e84a23
 
be9edff
1f69d12
 
1e84a23
 
d187459
be9edff
bfb2276
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
"""Validate a trained YOLOv5 model accuracy on a custom dataset

Usage:
    $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
"""

import argparse
import json
import os
import sys
from pathlib import Path
from threading import Thread

import numpy as np
import torch
import yaml
from tqdm import tqdm

FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[0].as_posix())  # add yolov5/ to path

from models.experimental import attempt_load
from utils.datasets import create_dataloader
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
    box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
from utils.metrics import ap_per_class, ConfusionMatrix
from utils.plots import plot_images, output_to_target, plot_study_txt
from utils.torch_utils import select_device, time_sync
from utils.loggers import Loggers


def save_one_txt(predn, save_conf, shape, file):
    # Save one txt result
    gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
    for *xyxy, conf, cls in predn.tolist():
        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
        with open(file, 'a') as f:
            f.write(('%g ' * len(line)).rstrip() % line + '\n')


def save_one_json(predn, jdict, path, class_map):
    # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
    image_id = int(path.stem) if path.stem.isnumeric() else path.stem
    box = xyxy2xywh(predn[:, :4])  # xywh
    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
    for p, b in zip(predn.tolist(), box.tolist()):
        jdict.append({'image_id': image_id,
                      'category_id': class_map[int(p[5])],
                      'bbox': [round(x, 3) for x in b],
                      'score': round(p[4], 5)})


def process_batch(predictions, labels, iouv):
    # Evaluate 1 batch of predictions
    correct = torch.zeros(predictions.shape[0], len(iouv), dtype=torch.bool, device=iouv.device)
    detected = []  # label indices
    tcls, pcls = labels[:, 0], predictions[:, 5]
    nl = labels.shape[0]  # number of labels
    for cls in torch.unique(tcls):
        ti = (cls == tcls).nonzero().view(-1)  # label indices
        pi = (cls == pcls).nonzero().view(-1)  # prediction indices
        if pi.shape[0]:  # find detections
            ious, i = box_iou(predictions[pi, 0:4], labels[ti, 1:5]).max(1)  # best ious, indices
            detected_set = set()
            for j in (ious > iouv[0]).nonzero():
                d = ti[i[j]]  # detected label
                if d.item() not in detected_set:
                    detected_set.add(d.item())
                    detected.append(d)  # append detections
                    correct[pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                    if len(detected) == nl:  # all labels already located in image
                        break
    return correct


@torch.no_grad()
def run(data,
        weights=None,  # model.pt path(s)
        batch_size=32,  # batch size
        imgsz=640,  # inference size (pixels)
        conf_thres=0.001,  # confidence threshold
        iou_thres=0.6,  # NMS IoU threshold
        task='val',  # train, val, test, speed or study
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        single_cls=False,  # treat as single-class dataset
        augment=False,  # augmented inference
        verbose=False,  # verbose output
        save_txt=False,  # save results to *.txt
        save_hybrid=False,  # save label+prediction hybrid results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_json=False,  # save a COCO-JSON results file
        project='runs/val',  # save to project/name
        name='exp',  # save to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        half=True,  # use FP16 half-precision inference
        model=None,
        dataloader=None,
        save_dir=Path(''),
        plots=True,
        loggers=Loggers(),
        compute_loss=None,
        ):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        device = select_device(device, batch_size=batch_size)

        # Directories
        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        gs = max(int(model.stride.max()), 32)  # grid size (max stride)
        imgsz = check_img_size(imgsz, s=gs)  # check image size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

        # Data
        with open(data) as f:
            data = yaml.safe_load(f)
        check_dataset(data)  # check

    # Half
    half &= device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Configure
    model.eval()
    is_coco = type(data['val']) is str and data['val'].endswith('coco/val2017.txt')  # COCO dataset
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector for mAP@0.5:0.95
    niou = iouv.numel()

    # Dataloader
    if not training:
        if device.type != 'cpu':
            model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
        task = task if task in ('train', 'val', 'test') else 'val'  # path to train/val/test images
        dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=True,
                                       prefix=colorstr(f'{task}: '))[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
    s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
    p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
        t_ = time_sync()
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width
        t = time_sync()
        t0 += t - t_

        # Run model
        out, train_out = model(img, augment=augment)  # inference and training outputs
        t1 += time_sync() - t

        # Compute loss
        if compute_loss:
            loss += compute_loss([x.float() for x in train_out], targets)[1][:3]  # box, obj, cls

        # Run NMS
        targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device)  # to pixels
        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
        t = time_sync()
        out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
        t2 += time_sync() - t

        # Statistics per image
        for si, pred in enumerate(out):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path, shape = Path(paths[si]), shapes[si][0]
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            if single_cls:
                pred[:, 5] = 0
            predn = pred.clone()
            scale_coords(img[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred

            # Evaluate
            if nl:
                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
                scale_coords(img[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
                correct = process_batch(predn, labelsn, iouv)
                if plots:
                    confusion_matrix.process_batch(predn, labelsn)
            else:
                correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))  # (correct, conf, pcls, tcls)

            # Save/log
            if save_txt:
                save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
            if save_json:
                save_one_json(predn, jdict, path, class_map)  # append to COCO-JSON dictionary
            loggers.on_val_batch_end(pred, predn, path, names, img[si])

        # Plot images
        if plots and batch_i < 3:
            f = save_dir / f'val_batch{batch_i}_labels.jpg'  # labels
            Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
            f = save_dir / f'val_batch{batch_i}_pred.jpg'  # predictions
            Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
        ap50, ap = ap[:, 0], ap.mean(1)  # AP@0.5, AP@0.5:0.95
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t0, t1, t2))  # speeds per image
    if not training:
        shape = (batch_size, 3, imgsz, imgsz)
        print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        loggers.on_val_end()

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
        anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json')  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        print(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            check_requirements(['pycocotools'])
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:2]  # update results (mAP@0.5:0.95, mAP@0.5)
        except Exception as e:
            print(f'pycocotools unable to run: {e}')

    # Return results
    model.float()  # for training
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t


def parse_opt():
    parser = argparse.ArgumentParser(prog='val.py')
    parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
    parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
    parser.add_argument('--batch-size', type=int, default=32, help='batch size')
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
    parser.add_argument('--task', default='val', help='train, val, test, speed or study')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
    parser.add_argument('--project', default='runs/val', help='save to project/name')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    opt = parser.parse_args()
    opt.save_json |= opt.data.endswith('coco.yaml')
    opt.save_txt |= opt.save_hybrid
    opt.data = check_file(opt.data)  # check file
    return opt


def main(opt):
    set_logging()
    print(colorstr('val: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
    check_requirements(exclude=('tensorboard', 'thop'))

    if opt.task in ('train', 'val', 'test'):  # run normally
        run(**vars(opt))

    elif opt.task == 'speed':  # speed benchmarks
        for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
            run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
                save_json=False, plots=False)

    elif opt.task == 'study':  # run over a range of settings and save/plot
        # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
        x = list(range(256, 1536 + 128, 128))  # x axis (image sizes)
        for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
            f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt'  # filename to save to
            y = []  # y axis
            for i in x:  # img-size
                print(f'\nRunning {f} point {i}...')
                r, _, t = run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
                              iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False)
                y.append(r + t)  # results and times
            np.savetxt(f, y, fmt='%10.4g')  # save
        os.system('zip -r study.zip study_*.txt')
        plot_study_txt(x=x)  # plot


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)