glenn-jocher
commited on
Commit
·
b40852d
1
Parent(s):
6c01a5b
update test.py
Browse files
test.py
CHANGED
@@ -126,13 +126,13 @@ def test(data,
|
|
126 |
# Append to pycocotools JSON dictionary
|
127 |
if save_json:
|
128 |
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
129 |
-
image_id =
|
130 |
box = pred[:, :4].clone() # xyxy
|
131 |
scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
|
132 |
box = xyxy2xywh(box) # xywh
|
133 |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
134 |
for p, b in zip(pred.tolist(), box.tolist()):
|
135 |
-
jdict.append({'image_id': image_id,
|
136 |
'category_id': coco91class[int(p[5])],
|
137 |
'bbox': [round(x, 3) for x in b],
|
138 |
'score': round(p[4], 5)})
|
@@ -200,8 +200,7 @@ def test(data,
|
|
200 |
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
|
201 |
|
202 |
# Save JSON
|
203 |
-
if save_json and
|
204 |
-
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
|
205 |
f = 'detections_val2017_%s_results.json' % \
|
206 |
(weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename
|
207 |
print('\nCOCO mAP with pycocotools... saving %s...' % f)
|
@@ -212,6 +211,7 @@ def test(data,
|
|
212 |
from pycocotools.coco import COCO
|
213 |
from pycocotools.cocoeval import COCOeval
|
214 |
|
|
|
215 |
cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
|
216 |
cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
|
217 |
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
|
@@ -221,8 +221,7 @@ def test(data,
|
|
221 |
cocoEval.summarize()
|
222 |
map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
223 |
except:
|
224 |
-
print('
|
225 |
-
'See https://github.com/cocodataset/cocoapi/issues/356')
|
226 |
|
227 |
# Return results
|
228 |
model.float() # for training
|
|
|
126 |
# Append to pycocotools JSON dictionary
|
127 |
if save_json:
|
128 |
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
129 |
+
image_id = Path(paths[si]).stem
|
130 |
box = pred[:, :4].clone() # xyxy
|
131 |
scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
|
132 |
box = xyxy2xywh(box) # xywh
|
133 |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
134 |
for p, b in zip(pred.tolist(), box.tolist()):
|
135 |
+
jdict.append({'image_id': int(image_id) if image_id.isnumeric() else image_id,
|
136 |
'category_id': coco91class[int(p[5])],
|
137 |
'bbox': [round(x, 3) for x in b],
|
138 |
'score': round(p[4], 5)})
|
|
|
200 |
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
|
201 |
|
202 |
# Save JSON
|
203 |
+
if save_json and len(jdict):
|
|
|
204 |
f = 'detections_val2017_%s_results.json' % \
|
205 |
(weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename
|
206 |
print('\nCOCO mAP with pycocotools... saving %s...' % f)
|
|
|
211 |
from pycocotools.coco import COCO
|
212 |
from pycocotools.cocoeval import COCOeval
|
213 |
|
214 |
+
imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]
|
215 |
cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
|
216 |
cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
|
217 |
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
|
|
|
221 |
cocoEval.summarize()
|
222 |
map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
223 |
except:
|
224 |
+
print('pycocotools not evaluated')
|
|
|
225 |
|
226 |
# Return results
|
227 |
model.float() # for training
|