File size: 27,564 Bytes
2b329b0 fe341fa 1e84a23 5e0b90d d5289b5 1e84a23 1445ab2 1e84a23 c67e722 1e84a23 78fd077 1e84a23 c03d590 1e84a23 394131c 8fa3724 1e84a23 bc1fd13 fe341fa 1e84a23 96a8446 1e84a23 c03d590 96a8446 1d1c056 1e84a23 c0d3f80 4949401 c0d3f80 4949401 1e84a23 509dd51 1e84a23 883924d 1e84a23 cbe39a1 c4addd7 cbe39a1 bf6f415 ebafd1e cbe39a1 1e84a23 d2e754b 333ccc5 1b1ab4c 509dd51 a5d5f92 509dd51 1e84a23 051e9e8 509dd51 b1cf25d d2e754b b1cf25d 3b7feea 1445ab2 b1cf25d aac33f8 1445ab2 b1cf25d 1445ab2 333ccc5 509dd51 051e9e8 1e84a23 e2b7bc0 2b329b0 e2b7bc0 2b329b0 333ccc5 2b329b0 333ccc5 1849916 333ccc5 e2b7bc0 333ccc5 e77c77f 099e6f5 4e62eb9 a557b7d 099e6f5 26c2e54 d2e754b 26c2e54 d2e754b 26c2e54 c5966ab 56c2c34 0f395b3 c5966ab 0f395b3 c54e394 c5966ab 41523e2 fe341fa 56c2c34 548a98a 56c2c34 78fd077 ffe9eb4 78fd077 56c2c34 78fd077 56c2c34 41523e2 37eaffe 45632b2 78fd077 45632b2 37eaffe 4d7bca7 45632b2 78fd077 54652fe 78fd077 1e84a23 4d3680c 1e84a23 d5289b5 0e341c5 6ab5895 dd03b20 6ab5895 1d1c056 dd03b20 6ab5895 1e84a23 4d3680c 1e84a23 4d3680c 1e84a23 96a8446 1e84a23 f542926 1e84a23 f542926 1e84a23 bdd88e1 d921214 bdd88e1 d4456e4 bdd88e1 1e84a23 b57f83d 1e84a23 ba18528 1e84a23 bb87276 1e84a23 5a7d79f 1e84a23 5a7d79f 1e84a23 5a7d79f 1e84a23 5a7d79f 1e84a23 5a7d79f 1e84a23 ba18528 bb87276 5a7d79f 1e84a23 bb87276 1e84a23 c09964c ec81c7b c09964c 1e84a23 260b172 68e6ab6 ff02ae0 1e84a23 4f44aaf 69be8e7 1e84a23 eb97b2e c09964c 95fa653 1e84a23 68e6ab6 1e84a23 eb97b2e ff02ae0 1e84a23 95fa653 1e84a23 66d73e4 1e84a23 bb87276 66d73e4 1e84a23 66d73e4 1e84a23 1fc9d42 948bcdd 1e84a23 69be8e7 1e84a23 69be8e7 1e84a23 69be8e7 1e84a23 66d73e4 394131c 4f44aaf 1e84a23 fe341fa 1e84a23 69be8e7 1e84a23 fab5085 0032af2 41bb70b fab5085 ec1d849 1e84a23 cce95e7 1e84a23 0032af2 fab5085 1e84a23 e32abb5 1e84a23 e32abb5 1e84a23 bc1fd13 1e84a23 e32abb5 1e84a23 e32abb5 023e378 64e6d19 e32abb5 f7bc685 e32abb5 f7e075f 1e84a23 c949fc8 1e84a23 c949fc8 c5c647e c4addd7 c949fc8 c5c647e c4addd7 c949fc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
# YOLOv5 general utils
import glob
import logging
import math
import os
import platform
import random
import re
import subprocess
import time
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
import cv2
import numpy as np
import pandas as pd
import torch
import torchvision
import yaml
from utils.google_utils import gsutil_getsize
from utils.metrics import fitness
from utils.torch_utils import init_torch_seeds
# Settings
torch.set_printoptions(linewidth=320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
pd.options.display.max_columns = 10
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
def set_logging(rank=-1, verbose=True):
logging.basicConfig(
format="%(message)s",
level=logging.INFO if (verbose and rank in [-1, 0]) else logging.WARN)
def init_seeds(seed=0):
# Initialize random number generator (RNG) seeds
random.seed(seed)
np.random.seed(seed)
init_torch_seeds(seed)
def get_latest_run(search_dir='.'):
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
return max(last_list, key=os.path.getctime) if last_list else ''
def isdocker():
# Is environment a Docker container
return Path('/workspace').exists() # or Path('/.dockerenv').exists()
def emojis(str=''):
# Return platform-dependent emoji-safe version of string
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
def file_size(file):
# Return file size in MB
return Path(file).stat().st_size / 1e6
def check_online():
# Check internet connectivity
import socket
try:
socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
return True
except OSError:
return False
def check_git_status():
# Recommend 'git pull' if code is out of date
print(colorstr('github: '), end='')
try:
assert Path('.git').exists(), 'skipping check (not a git repository)'
assert not isdocker(), 'skipping check (Docker image)'
assert check_online(), 'skipping check (offline)'
cmd = 'git fetch && git config --get remote.origin.url'
url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
if n > 0:
s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
f"Use 'git pull' to update or 'git clone {url}' to download latest."
else:
s = f'up to date with {url} ✅'
print(emojis(s)) # emoji-safe
except Exception as e:
print(e)
def check_requirements(requirements='requirements.txt', exclude=()):
# Check installed dependencies meet requirements (pass *.txt file or list of packages)
import pkg_resources as pkg
prefix = colorstr('red', 'bold', 'requirements:')
if isinstance(requirements, (str, Path)): # requirements.txt file
file = Path(requirements)
if not file.exists():
print(f"{prefix} {file.resolve()} not found, check failed.")
return
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
else: # list or tuple of packages
requirements = [x for x in requirements if x not in exclude]
n = 0 # number of packages updates
for r in requirements:
try:
pkg.require(r)
except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
n += 1
print(f"{prefix} {r} not found and is required by YOLOv5, attempting auto-update...")
print(subprocess.check_output(f"pip install '{r}'", shell=True).decode())
if n: # if packages updated
source = file.resolve() if 'file' in locals() else requirements
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
print(emojis(s)) # emoji-safe
def check_img_size(img_size, s=32):
# Verify img_size is a multiple of stride s
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
if new_size != img_size:
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
return new_size
def check_imshow():
# Check if environment supports image displays
try:
assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
cv2.imshow('test', np.zeros((1, 1, 3)))
cv2.waitKey(1)
cv2.destroyAllWindows()
cv2.waitKey(1)
return True
except Exception as e:
print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
return False
def check_file(file):
# Search for file if not found
if Path(file).is_file() or file == '':
return file
else:
files = glob.glob('./**/' + file, recursive=True) # find file
assert len(files), f'File Not Found: {file}' # assert file was found
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
return files[0] # return file
def check_dataset(dict):
# Download dataset if not found locally
val, s = dict.get('val'), dict.get('download')
if val and len(val):
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
if not all(x.exists() for x in val):
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
if s and len(s): # download script
if s.startswith('http') and s.endswith('.zip'): # URL
f = Path(s).name # filename
print(f'Downloading {s} ...')
torch.hub.download_url_to_file(s, f)
r = os.system(f'unzip -q {f} -d ../ && rm {f}') # unzip
elif s.startswith('bash '): # bash script
print(f'Running {s} ...')
r = os.system(s)
else: # python script
r = exec(s) # return None
print('Dataset autodownload %s\n' % ('success' if r in (0, None) else 'failure')) # print result
else:
raise Exception('Dataset not found.')
def download(url, dir='.', unzip=True, curl=False, threads=1):
# Multi-threaded file download and unzip function
def download_one(url, dir):
# Download 1 file
f = dir / Path(url).name # filename
if not f.exists():
print(f'Downloading {url} to {f}...')
if curl:
os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -") # curl download, retry and resume on fail
else:
torch.hub.download_url_to_file(url, f, progress=True) # torch download
if unzip and f.suffix in ('.zip', '.gz'):
print(f'Unzipping {f}...')
if f.suffix == '.zip':
os.system(f'unzip -qo {f} -d {dir} && rm {f}') # unzip -quiet -overwrite
elif f.suffix == '.gz':
os.system(f'tar xfz {f} --directory {f.parent} && rm {f}') # unzip
dir = Path(dir)
dir.mkdir(parents=True, exist_ok=True) # make directory
if threads > 1:
ThreadPool(threads).imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded
else:
for u in tuple(url) if isinstance(url, str) else url:
download_one(u, dir)
def make_divisible(x, divisor):
# Returns x evenly divisible by divisor
return math.ceil(x / divisor) * divisor
def clean_str(s):
# Cleans a string by replacing special characters with underscore _
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
def one_cycle(y1=0.0, y2=1.0, steps=100):
# lambda function for sinusoidal ramp from y1 to y2
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
def colorstr(*input):
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
colors = {'black': '\033[30m', # basic colors
'red': '\033[31m',
'green': '\033[32m',
'yellow': '\033[33m',
'blue': '\033[34m',
'magenta': '\033[35m',
'cyan': '\033[36m',
'white': '\033[37m',
'bright_black': '\033[90m', # bright colors
'bright_red': '\033[91m',
'bright_green': '\033[92m',
'bright_yellow': '\033[93m',
'bright_blue': '\033[94m',
'bright_magenta': '\033[95m',
'bright_cyan': '\033[96m',
'bright_white': '\033[97m',
'end': '\033[0m', # misc
'bold': '\033[1m',
'underline': '\033[4m'}
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
def labels_to_class_weights(labels, nc=80):
# Get class weights (inverse frequency) from training labels
if labels[0] is None: # no labels loaded
return torch.Tensor()
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
weights = np.bincount(classes, minlength=nc) # occurrences per class
# Prepend gridpoint count (for uCE training)
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
weights[weights == 0] = 1 # replace empty bins with 1
weights = 1 / weights # number of targets per class
weights /= weights.sum() # normalize
return torch.from_numpy(weights)
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
# Produces image weights based on class_weights and image contents
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
return image_weights
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
return x
def xyxy2xywh(x):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
y[:, 2] = x[:, 2] - x[:, 0] # width
y[:, 3] = x[:, 3] - x[:, 1] # height
return y
def xywh2xyxy(x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
return y
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
# Convert normalized segments into pixel segments, shape (n,2)
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = w * x[:, 0] + padw # top left x
y[:, 1] = h * x[:, 1] + padh # top left y
return y
def segment2box(segment, width=640, height=640):
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
x, y = segment.T # segment xy
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
x, y, = x[inside], y[inside]
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
def segments2boxes(segments):
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
boxes = []
for s in segments:
x, y = s.T # segment xy
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
return xyxy2xywh(np.array(boxes)) # cls, xywh
def resample_segments(segments, n=1000):
# Up-sample an (n,2) segment
for i, s in enumerate(segments):
x = np.linspace(0, len(s) - 1, n)
xp = np.arange(len(s))
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
return segments
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
coords[:, [0, 2]] -= pad[0] # x padding
coords[:, [1, 3]] -= pad[1] # y padding
coords[:, :4] /= gain
clip_coords(coords, img0_shape)
return coords
def clip_coords(boxes, img_shape):
# Clip bounding xyxy bounding boxes to image shape (height, width)
boxes[:, 0].clamp_(0, img_shape[1]) # x1
boxes[:, 1].clamp_(0, img_shape[0]) # y1
boxes[:, 2].clamp_(0, img_shape[1]) # x2
boxes[:, 3].clamp_(0, img_shape[0]) # y2
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.T
# Get the coordinates of bounding boxes
if x1y1x2y2: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else: # transform from xywh to xyxy
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
union = w1 * h1 + w2 * h2 - inter + eps
iou = inter / union
if GIoU or DIoU or CIoU:
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
if DIoU:
return iou - rho2 / c2 # DIoU
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU
else:
return iou # IoU
def box_iou(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""
def box_area(box):
# box = 4xn
return (box[2] - box[0]) * (box[3] - box[1])
area1 = box_area(box1.T)
area2 = box_area(box2.T)
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
def wh_iou(wh1, wh2):
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
wh1 = wh1[:, None] # [N,1,2]
wh2 = wh2[None] # [1,M,2]
inter = torch.min(wh1, wh2).prod(2) # [N,M]
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
labels=()):
"""Runs Non-Maximum Suppression (NMS) on inference results
Returns:
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
"""
nc = prediction.shape[2] - 5 # number of classes
xc = prediction[..., 4] > conf_thres # candidates
# Settings
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
max_det = 300 # maximum number of detections per image
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
time_limit = 10.0 # seconds to quit after
redundant = True # require redundant detections
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
merge = False # use merge-NMS
t = time.time()
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# Cat apriori labels if autolabelling
if labels and len(labels[xi]):
l = labels[xi]
v = torch.zeros((len(l), nc + 5), device=x.device)
v[:, :4] = l[:, 1:5] # box
v[:, 4] = 1.0 # conf
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
x = torch.cat((x, v), 0)
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
box = xywh2xyxy(x[:, :4])
# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
else: # best class only
conf, j = x[:, 5:].max(1, keepdim=True)
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
# Filter by class
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Apply finite constraint
# if not torch.isfinite(x).all():
# x = x[torch.isfinite(x).all(1)]
# Check shape
n = x.shape[0] # number of boxes
if not n: # no boxes
continue
elif n > max_nms: # excess boxes
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
if i.shape[0] > max_det: # limit detections
i = i[:max_det]
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
weights = iou * scores[None] # box weights
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
if redundant:
i = i[iou.sum(1) > 1] # require redundancy
output[xi] = x[i]
if (time.time() - t) > time_limit:
print(f'WARNING: NMS time limit {time_limit}s exceeded')
break # time limit exceeded
return output
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
# Strip optimizer from 'f' to finalize training, optionally save as 's'
x = torch.load(f, map_location=torch.device('cpu'))
if x.get('ema'):
x['model'] = x['ema'] # replace model with ema
for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
x[k] = None
x['epoch'] = -1
x['model'].half() # to FP16
for p in x['model'].parameters():
p.requires_grad = False
torch.save(x, s or f)
mb = os.path.getsize(s or f) / 1E6 # filesize
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
# Print mutation results to evolve.txt (for use with train.py --evolve)
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
if bucket:
url = 'gs://%s/evolve.txt' % bucket
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
with open('evolve.txt', 'a') as f: # append result
f.write(c + b + '\n')
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
x = x[np.argsort(-fitness(x))] # sort
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
# Save yaml
for i, k in enumerate(hyp.keys()):
hyp[k] = float(x[0, i + 7])
with open(yaml_file, 'w') as f:
results = tuple(x[0, :7])
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
yaml.safe_dump(hyp, f, sort_keys=False)
if bucket:
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
def apply_classifier(x, model, img, im0):
# Apply a second stage classifier to yolo outputs
im0 = [im0] if isinstance(im0, np.ndarray) else im0
for i, d in enumerate(x): # per image
if d is not None and len(d):
d = d.clone()
# Reshape and pad cutouts
b = xyxy2xywh(d[:, :4]) # boxes
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
d[:, :4] = xywh2xyxy(b).long()
# Rescale boxes from img_size to im0 size
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
# Classes
pred_cls1 = d[:, 5].long()
ims = []
for j, a in enumerate(d): # per item
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
im = cv2.resize(cutout, (224, 224)) # BGR
# cv2.imwrite('test%i.jpg' % j, cutout)
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
im /= 255.0 # 0 - 255 to 0.0 - 1.0
ims.append(im)
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
return x
def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False):
# Save an image crop as {file} with crop size multiplied by {gain} and padded by {pad} pixels
xyxy = torch.tensor(xyxy).view(-1, 4)
b = xyxy2xywh(xyxy) # boxes
if square:
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = xywh2xyxy(b).long()
clip_coords(xyxy, im.shape)
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2])]
cv2.imwrite(str(increment_path(file, mkdir=True).with_suffix('.jpg')), crop if BGR else crop[..., ::-1])
def increment_path(path, exist_ok=False, sep='', mkdir=False):
# Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
path = Path(path) # os-agnostic
if path.exists() and not exist_ok:
suffix = path.suffix
path = path.with_suffix('')
dirs = glob.glob(f"{path}{sep}*") # similar paths
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
i = [int(m.groups()[0]) for m in matches if m] # indices
n = max(i) + 1 if i else 2 # increment number
path = Path(f"{path}{sep}{n}{suffix}") # update path
dir = path if path.suffix == '' else path.parent # directory
if not dir.exists() and mkdir:
dir.mkdir(parents=True, exist_ok=True) # make directory
return path
|