glenn-jocher commited on
Commit
ff02ae0
·
1 Parent(s): d187459

module updates

Browse files
Files changed (3) hide show
  1. models/common.py +10 -36
  2. models/yolo.py +1 -3
  3. utils/utils.py +5 -4
models/common.py CHANGED
@@ -6,11 +6,13 @@ import torch.nn.functional as F
6
  from utils.utils import *
7
 
8
 
9
- def DWConv(c1, c2, k=1, s=1, act=True): # depthwise convolution
 
10
  return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
11
 
12
 
13
- class Conv(nn.Module): # standard convolution
 
14
  def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
15
  super(Conv, self).__init__()
16
  self.conv = nn.Conv2d(c1, c2, k, s, k // 2, groups=g, bias=False)
@@ -25,6 +27,7 @@ class Conv(nn.Module): # standard convolution
25
 
26
 
27
  class Bottleneck(nn.Module):
 
28
  def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
29
  super(Bottleneck, self).__init__()
30
  c_ = int(c2 * e) # hidden channels
@@ -36,21 +39,8 @@ class Bottleneck(nn.Module):
36
  return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
37
 
38
 
39
- class BottleneckLight(nn.Module):
40
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
41
- super(BottleneckLight, self).__init__()
42
- c_ = int(c2 * e) # hidden channels
43
- self.cv1 = Conv(c1, c_, 1, 1)
44
- self.cv2 = nn.Conv2d(c_, c2, 3, 1, 3 // 2, groups=g, bias=False)
45
- self.bn = nn.BatchNorm2d(c2)
46
- self.act = nn.LeakyReLU(0.1, inplace=True)
47
- self.add = shortcut and c1 == c2
48
-
49
- def forward(self, x):
50
- return self.act(self.bn(x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))))
51
-
52
-
53
  class BottleneckCSP(nn.Module):
 
54
  def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
55
  super(BottleneckCSP, self).__init__()
56
  c_ = int(c2 * e) # hidden channels
@@ -68,25 +58,8 @@ class BottleneckCSP(nn.Module):
68
  return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
69
 
70
 
71
- class Narrow(nn.Module):
72
- def __init__(self, c1, c2, shortcut=True, g=1): # ch_in, ch_out, shortcut, groups
73
- super(Narrow, self).__init__()
74
- c_ = c2 // 2 # hidden channels
75
- self.cv1 = Conv(c1, c_, 1, 1)
76
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
77
- self.add = shortcut and c1 == c2
78
-
79
- def forward(self, x):
80
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
81
-
82
-
83
- class Origami(nn.Module): # 5-side layering
84
- def forward(self, x):
85
- y = F.pad(x, [1, 1, 1, 1])
86
- return torch.cat([x, y[..., :-2, 1:-1], y[..., 1:-1, :-2], y[..., 2:, 1:-1], y[..., 1:-1, 2:]], 1)
87
-
88
-
89
- class ConvPlus(nn.Module): # standard convolution
90
  def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): # ch_in, ch_out, kernel, stride, groups
91
  super(ConvPlus, self).__init__()
92
  self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias=bias)
@@ -96,7 +69,8 @@ class ConvPlus(nn.Module): # standard convolution
96
  return self.cv1(x) + self.cv2(x)
97
 
98
 
99
- class SPP(nn.Module): # Spatial pyramid pooling layer used in YOLOv3-SPP
 
100
  def __init__(self, c1, c2, k=(5, 9, 13)):
101
  super(SPP, self).__init__()
102
  c_ = c1 // 2 # hidden channels
 
6
  from utils.utils import *
7
 
8
 
9
+ def DWConv(c1, c2, k=1, s=1, act=True):
10
+ # Depthwise convolution
11
  return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
12
 
13
 
14
+ class Conv(nn.Module):
15
+ # Standard convolution
16
  def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
17
  super(Conv, self).__init__()
18
  self.conv = nn.Conv2d(c1, c2, k, s, k // 2, groups=g, bias=False)
 
27
 
28
 
29
  class Bottleneck(nn.Module):
30
+ # Standard bottleneck
31
  def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
32
  super(Bottleneck, self).__init__()
33
  c_ = int(c2 * e) # hidden channels
 
39
  return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
40
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  class BottleneckCSP(nn.Module):
43
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
44
  def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
45
  super(BottleneckCSP, self).__init__()
46
  c_ = int(c2 * e) # hidden channels
 
58
  return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
59
 
60
 
61
+ class ConvPlus(nn.Module):
62
+ # Plus-shaped convolution
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): # ch_in, ch_out, kernel, stride, groups
64
  super(ConvPlus, self).__init__()
65
  self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias=bias)
 
69
  return self.cv1(x) + self.cv2(x)
70
 
71
 
72
+ class SPP(nn.Module):
73
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
74
  def __init__(self, c1, c2, k=(5, 9, 13)):
75
  super(SPP, self).__init__()
76
  c_ = c1 // 2 # hidden channels
models/yolo.py CHANGED
@@ -176,9 +176,7 @@ def parse_model(md, ch): # model_dict, input_channels(3)
176
  elif m is nn.BatchNorm2d:
177
  args = [ch[f]]
178
  elif m is Concat:
179
- c2 = sum([ch[x] for x in f])
180
- elif m is Origami:
181
- c2 = ch[f] * 5
182
  elif m is Detect:
183
  f = f or list(reversed([(-1 if j == i else j - 1) for j, x in enumerate(ch) if x == no]))
184
  else:
 
176
  elif m is nn.BatchNorm2d:
177
  args = [ch[f]]
178
  elif m is Concat:
179
+ c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
 
 
180
  elif m is Detect:
181
  f = f or list(reversed([(-1 if j == i else j - 1) for j, x in enumerate(ch) if x == no]))
182
  else:
utils/utils.py CHANGED
@@ -468,6 +468,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, fast=False, c
468
  nx6 (x1, y1, x2, y2, conf, cls)
469
  """
470
  nc = prediction[0].shape[1] - 5 # number of classes
 
471
 
472
  # Settings
473
  min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
@@ -487,7 +488,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, fast=False, c
487
  for xi, x in enumerate(prediction): # image index, image inference
488
  # Apply constraints
489
  # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
490
- x = x[x[:, 4] > conf_thres] # confidence
491
 
492
  # If none remain process next image
493
  if not x.shape[0]:
@@ -1074,9 +1075,9 @@ def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_re
1074
  for i in range(5):
1075
  for j in [i, i + 5]:
1076
  y = results[j, x]
1077
- # ax[i].plot(x, y, marker='.', label=s[j])
1078
- y_smooth = butter_lowpass_filtfilt(y)
1079
- ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
1080
 
1081
  ax[i].set_title(t[i])
1082
  ax[i].legend()
 
468
  nx6 (x1, y1, x2, y2, conf, cls)
469
  """
470
  nc = prediction[0].shape[1] - 5 # number of classes
471
+ xc = prediction[..., 4] > conf_thres # candidates
472
 
473
  # Settings
474
  min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
 
488
  for xi, x in enumerate(prediction): # image index, image inference
489
  # Apply constraints
490
  # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
491
+ x = x[xc[xi]] # confidence
492
 
493
  # If none remain process next image
494
  if not x.shape[0]:
 
1075
  for i in range(5):
1076
  for j in [i, i + 5]:
1077
  y = results[j, x]
1078
+ ax[i].plot(x, y, marker='.', label=s[j])
1079
+ # y_smooth = butter_lowpass_filtfilt(y)
1080
+ # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
1081
 
1082
  ax[i].set_title(t[i])
1083
  ax[i].legend()