Add verbose option to pytorch hub models (#2926)
Browse files* Add verbose and update print to logging
* Fix positonal param
* Revert auto formatting changes
* Update hubconf.py
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
- hubconf.py +28 -25
- models/yolo.py +11 -11
- utils/general.py +2 -2
hubconf.py
CHANGED
@@ -16,10 +16,9 @@ from utils.torch_utils import select_device
|
|
16 |
|
17 |
dependencies = ['torch', 'yaml']
|
18 |
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop'))
|
19 |
-
set_logging()
|
20 |
|
21 |
|
22 |
-
def create(name, pretrained, channels, classes, autoshape):
|
23 |
"""Creates a specified YOLOv5 model
|
24 |
|
25 |
Arguments:
|
@@ -32,6 +31,8 @@ def create(name, pretrained, channels, classes, autoshape):
|
|
32 |
pytorch model
|
33 |
"""
|
34 |
try:
|
|
|
|
|
35 |
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
|
36 |
model = Model(cfg, channels, classes)
|
37 |
if pretrained:
|
@@ -55,7 +56,7 @@ def create(name, pretrained, channels, classes, autoshape):
|
|
55 |
raise Exception(s) from e
|
56 |
|
57 |
|
58 |
-
def custom(path_or_model='path/to/model.pt', autoshape=True):
|
59 |
"""YOLOv5-custom model https://github.com/ultralytics/yolov5
|
60 |
|
61 |
Arguments (3 options):
|
@@ -66,6 +67,8 @@ def custom(path_or_model='path/to/model.pt', autoshape=True):
|
|
66 |
Returns:
|
67 |
pytorch model
|
68 |
"""
|
|
|
|
|
69 |
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
|
70 |
if isinstance(model, dict):
|
71 |
model = model['ema' if model.get('ema') else 'model'] # load model
|
@@ -79,49 +82,49 @@ def custom(path_or_model='path/to/model.pt', autoshape=True):
|
|
79 |
return hub_model.to(device)
|
80 |
|
81 |
|
82 |
-
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True):
|
83 |
# YOLOv5-small model https://github.com/ultralytics/yolov5
|
84 |
-
return create('yolov5s', pretrained, channels, classes, autoshape)
|
85 |
|
86 |
|
87 |
-
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True):
|
88 |
# YOLOv5-medium model https://github.com/ultralytics/yolov5
|
89 |
-
return create('yolov5m', pretrained, channels, classes, autoshape)
|
90 |
|
91 |
|
92 |
-
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True):
|
93 |
# YOLOv5-large model https://github.com/ultralytics/yolov5
|
94 |
-
return create('yolov5l', pretrained, channels, classes, autoshape)
|
95 |
|
96 |
|
97 |
-
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True):
|
98 |
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
|
99 |
-
return create('yolov5x', pretrained, channels, classes, autoshape)
|
100 |
|
101 |
|
102 |
-
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True):
|
103 |
-
# YOLOv5-small model https://github.com/ultralytics/yolov5
|
104 |
-
return create('yolov5s6', pretrained, channels, classes, autoshape)
|
105 |
|
106 |
|
107 |
-
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True):
|
108 |
-
# YOLOv5-medium model https://github.com/ultralytics/yolov5
|
109 |
-
return create('yolov5m6', pretrained, channels, classes, autoshape)
|
110 |
|
111 |
|
112 |
-
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True):
|
113 |
-
# YOLOv5-large model https://github.com/ultralytics/yolov5
|
114 |
-
return create('yolov5l6', pretrained, channels, classes, autoshape)
|
115 |
|
116 |
|
117 |
-
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True):
|
118 |
-
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
|
119 |
-
return create('yolov5x6', pretrained, channels, classes, autoshape)
|
120 |
|
121 |
|
122 |
if __name__ == '__main__':
|
123 |
-
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained
|
124 |
-
# model = custom(path_or_model='path/to/model.pt') # custom
|
125 |
|
126 |
# Verify inference
|
127 |
import cv2
|
|
|
16 |
|
17 |
dependencies = ['torch', 'yaml']
|
18 |
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop'))
|
|
|
19 |
|
20 |
|
21 |
+
def create(name, pretrained, channels, classes, autoshape, verbose):
|
22 |
"""Creates a specified YOLOv5 model
|
23 |
|
24 |
Arguments:
|
|
|
31 |
pytorch model
|
32 |
"""
|
33 |
try:
|
34 |
+
set_logging(verbose=verbose)
|
35 |
+
|
36 |
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
|
37 |
model = Model(cfg, channels, classes)
|
38 |
if pretrained:
|
|
|
56 |
raise Exception(s) from e
|
57 |
|
58 |
|
59 |
+
def custom(path_or_model='path/to/model.pt', autoshape=True, verbose=True):
|
60 |
"""YOLOv5-custom model https://github.com/ultralytics/yolov5
|
61 |
|
62 |
Arguments (3 options):
|
|
|
67 |
Returns:
|
68 |
pytorch model
|
69 |
"""
|
70 |
+
set_logging(verbose=verbose)
|
71 |
+
|
72 |
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
|
73 |
if isinstance(model, dict):
|
74 |
model = model['ema' if model.get('ema') else 'model'] # load model
|
|
|
82 |
return hub_model.to(device)
|
83 |
|
84 |
|
85 |
+
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
|
86 |
# YOLOv5-small model https://github.com/ultralytics/yolov5
|
87 |
+
return create('yolov5s', pretrained, channels, classes, autoshape, verbose)
|
88 |
|
89 |
|
90 |
+
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
|
91 |
# YOLOv5-medium model https://github.com/ultralytics/yolov5
|
92 |
+
return create('yolov5m', pretrained, channels, classes, autoshape, verbose)
|
93 |
|
94 |
|
95 |
+
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
|
96 |
# YOLOv5-large model https://github.com/ultralytics/yolov5
|
97 |
+
return create('yolov5l', pretrained, channels, classes, autoshape, verbose)
|
98 |
|
99 |
|
100 |
+
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
|
101 |
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
|
102 |
+
return create('yolov5x', pretrained, channels, classes, autoshape, verbose)
|
103 |
|
104 |
|
105 |
+
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
|
106 |
+
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
|
107 |
+
return create('yolov5s6', pretrained, channels, classes, autoshape, verbose)
|
108 |
|
109 |
|
110 |
+
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
|
111 |
+
# YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
|
112 |
+
return create('yolov5m6', pretrained, channels, classes, autoshape, verbose)
|
113 |
|
114 |
|
115 |
+
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
|
116 |
+
# YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
|
117 |
+
return create('yolov5l6', pretrained, channels, classes, autoshape, verbose)
|
118 |
|
119 |
|
120 |
+
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
|
121 |
+
# YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
|
122 |
+
return create('yolov5x6', pretrained, channels, classes, autoshape, verbose)
|
123 |
|
124 |
|
125 |
if __name__ == '__main__':
|
126 |
+
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
|
127 |
+
# model = custom(path_or_model='path/to/model.pt') # custom
|
128 |
|
129 |
# Verify inference
|
130 |
import cv2
|
models/yolo.py
CHANGED
@@ -84,7 +84,7 @@ class Model(nn.Module):
|
|
84 |
self.yaml['anchors'] = round(anchors) # override yaml value
|
85 |
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
86 |
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
87 |
-
#
|
88 |
|
89 |
# Build strides, anchors
|
90 |
m = self.model[-1] # Detect()
|
@@ -95,7 +95,7 @@ class Model(nn.Module):
|
|
95 |
check_anchor_order(m)
|
96 |
self.stride = m.stride
|
97 |
self._initialize_biases() # only run once
|
98 |
-
#
|
99 |
|
100 |
# Init weights, biases
|
101 |
initialize_weights(self)
|
@@ -134,13 +134,13 @@ class Model(nn.Module):
|
|
134 |
for _ in range(10):
|
135 |
_ = m(x)
|
136 |
dt.append((time_synchronized() - t) * 100)
|
137 |
-
|
138 |
|
139 |
x = m(x) # run
|
140 |
y.append(x if m.i in self.save else None) # save output
|
141 |
|
142 |
if profile:
|
143 |
-
|
144 |
return x
|
145 |
|
146 |
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
@@ -157,15 +157,15 @@ class Model(nn.Module):
|
|
157 |
m = self.model[-1] # Detect() module
|
158 |
for mi in m.m: # from
|
159 |
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
160 |
-
|
161 |
|
162 |
# def _print_weights(self):
|
163 |
# for m in self.model.modules():
|
164 |
# if type(m) is Bottleneck:
|
165 |
-
#
|
166 |
|
167 |
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
168 |
-
|
169 |
for m in self.model.modules():
|
170 |
if type(m) is Conv and hasattr(m, 'bn'):
|
171 |
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
@@ -177,19 +177,19 @@ class Model(nn.Module):
|
|
177 |
def nms(self, mode=True): # add or remove NMS module
|
178 |
present = type(self.model[-1]) is NMS # last layer is NMS
|
179 |
if mode and not present:
|
180 |
-
|
181 |
m = NMS() # module
|
182 |
m.f = -1 # from
|
183 |
m.i = self.model[-1].i + 1 # index
|
184 |
self.model.add_module(name='%s' % m.i, module=m) # add
|
185 |
self.eval()
|
186 |
elif not mode and present:
|
187 |
-
|
188 |
self.model = self.model[:-1] # remove
|
189 |
return self
|
190 |
|
191 |
def autoshape(self): # add autoShape module
|
192 |
-
|
193 |
m = autoShape(self) # wrap model
|
194 |
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
|
195 |
return m
|
@@ -272,6 +272,6 @@ if __name__ == '__main__':
|
|
272 |
# Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
|
273 |
# from torch.utils.tensorboard import SummaryWriter
|
274 |
# tb_writer = SummaryWriter('.')
|
275 |
-
#
|
276 |
# tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph
|
277 |
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
|
|
|
84 |
self.yaml['anchors'] = round(anchors) # override yaml value
|
85 |
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
86 |
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
87 |
+
# logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
|
88 |
|
89 |
# Build strides, anchors
|
90 |
m = self.model[-1] # Detect()
|
|
|
95 |
check_anchor_order(m)
|
96 |
self.stride = m.stride
|
97 |
self._initialize_biases() # only run once
|
98 |
+
# logger.info('Strides: %s' % m.stride.tolist())
|
99 |
|
100 |
# Init weights, biases
|
101 |
initialize_weights(self)
|
|
|
134 |
for _ in range(10):
|
135 |
_ = m(x)
|
136 |
dt.append((time_synchronized() - t) * 100)
|
137 |
+
logger.info('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
|
138 |
|
139 |
x = m(x) # run
|
140 |
y.append(x if m.i in self.save else None) # save output
|
141 |
|
142 |
if profile:
|
143 |
+
logger.info('%.1fms total' % sum(dt))
|
144 |
return x
|
145 |
|
146 |
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
|
|
157 |
m = self.model[-1] # Detect() module
|
158 |
for mi in m.m: # from
|
159 |
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
160 |
+
logger.info(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
161 |
|
162 |
# def _print_weights(self):
|
163 |
# for m in self.model.modules():
|
164 |
# if type(m) is Bottleneck:
|
165 |
+
# logger.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
166 |
|
167 |
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
168 |
+
logger.info('Fusing layers... ')
|
169 |
for m in self.model.modules():
|
170 |
if type(m) is Conv and hasattr(m, 'bn'):
|
171 |
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
|
|
177 |
def nms(self, mode=True): # add or remove NMS module
|
178 |
present = type(self.model[-1]) is NMS # last layer is NMS
|
179 |
if mode and not present:
|
180 |
+
logger.info('Adding NMS... ')
|
181 |
m = NMS() # module
|
182 |
m.f = -1 # from
|
183 |
m.i = self.model[-1].i + 1 # index
|
184 |
self.model.add_module(name='%s' % m.i, module=m) # add
|
185 |
self.eval()
|
186 |
elif not mode and present:
|
187 |
+
logger.info('Removing NMS... ')
|
188 |
self.model = self.model[:-1] # remove
|
189 |
return self
|
190 |
|
191 |
def autoshape(self): # add autoShape module
|
192 |
+
logger.info('Adding autoShape... ')
|
193 |
m = autoShape(self) # wrap model
|
194 |
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
|
195 |
return m
|
|
|
272 |
# Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
|
273 |
# from torch.utils.tensorboard import SummaryWriter
|
274 |
# tb_writer = SummaryWriter('.')
|
275 |
+
# logger.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
|
276 |
# tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph
|
277 |
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
|
utils/general.py
CHANGED
@@ -32,10 +32,10 @@ cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with Py
|
|
32 |
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
|
33 |
|
34 |
|
35 |
-
def set_logging(rank=-1):
|
36 |
logging.basicConfig(
|
37 |
format="%(message)s",
|
38 |
-
level=logging.INFO if rank in [-1, 0] else logging.WARN)
|
39 |
|
40 |
|
41 |
def init_seeds(seed=0):
|
|
|
32 |
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
|
33 |
|
34 |
|
35 |
+
def set_logging(rank=-1, verbose=True):
|
36 |
logging.basicConfig(
|
37 |
format="%(message)s",
|
38 |
+
level=logging.INFO if (verbose and rank in [-1, 0]) else logging.WARN)
|
39 |
|
40 |
|
41 |
def init_seeds(seed=0):
|