File size: 7,494 Bytes
8f8b054
 
 
 
cacf045
2a77201
 
8f8b054
 
 
 
 
 
 
 
 
 
2a77201
 
 
 
 
 
 
 
 
 
 
 
 
8f8b054
 
 
 
 
 
 
 
 
 
 
 
0176215
2587718
 
 
 
 
 
2a77201
0176215
 
cacf045
 
2a77201
 
 
0176215
2587718
 
 
 
 
 
0176215
2587718
 
 
 
 
 
4e62ce0
 
 
 
2587718
 
 
4e62ce0
 
0176215
4e62ce0
2587718
4e62ce0
 
 
ca32c10
2a77201
 
 
 
7e7ba0a
0176215
2a77201
 
 
 
8f8b054
 
 
 
cacf045
8f8b054
2a77201
8f8b054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cacf045
 
8f8b054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cacf045
8f8b054
 
 
 
 
 
 
 
 
 
 
 
2a77201
8f8b054
2a77201
 
 
8f8b054
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys

# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
GENERATED_PATH = os.path.join("images", "generated")

# Specific values for percentage and complexity
percentage_values = [10, 30, 50, 70, 100]
complexity_values = [16, 32]

# Custom class to capture print output
class PrintCapture(io.StringIO):
    def __init__(self):
        super().__init__()
        self.output = []

    def write(self, txt):
        self.output.append(txt)
        super().write(txt)

    def get_output(self):
        return ''.join(self.output)

# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx, complexity_idx):
    percentage = percentage_values[percentage_idx]
    complexity = complexity_values[complexity_idx]
    raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
    embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
    
    raw_image = Image.open(raw_image_path)
    embeddings_image = Image.open(embeddings_image_path)
    
    return raw_image, embeddings_image

import torch
import subprocess

# Function to load the pre-trained model from your cloned repository
def load_custom_model():
    from lwm_model import LWM  # Assuming the model is defined in lwm_model.py
    model = LWM()  # Modify this according to your model initialization
    model.eval()
    return model

# Function to process the uploaded .p file and perform inference using the custom model
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
    capture = PrintCapture()
    sys.stdout = capture  # Redirect print statements to capture

    try:
        model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
        model_repo_dir = "./LWM"

        if not os.path.exists(model_repo_dir):
            print(f"Cloning model repository from {model_repo_url}...")
            subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)

        if os.path.exists(model_repo_dir):
            os.chdir(model_repo_dir)
            print(f"Changed working directory to {os.getcwd()}")
        else:
            return f"Directory {model_repo_dir} does not exist."

        from lwm_model import LWM
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print(f"Loading the LWM model on {device}...")
        model = LWM.from_pretrained(device=device)

        from input_preprocess import tokenizer

        with open(uploaded_file.name, 'rb') as f:
            manual_data = pickle.load(f)

        preprocessed_chs = tokenizer(manual_data=manual_data)

        from inference import lwm_inference, create_raw_dataset
        output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
        output_raw = create_raw_dataset(preprocessed_chs, device)

        print(f"Output Embeddings Shape: {output_emb.shape}")
        print(f"Output Raw Shape: {output_raw.shape}")

        return output_emb, output_raw, capture.get_output()

    except Exception as e:
        return str(e), str(e), capture.get_output()

    finally:
        sys.stdout = sys.__stdout__  # Reset print statements

# Function to handle logic based on whether a file is uploaded or not
def los_nlos_classification(file, percentage_idx, complexity_idx):
    if file is not None:
        return process_p_file(file, percentage_idx, complexity_idx)
    else:
        return display_predefined_images(percentage_idx, complexity_idx), None

# Define the Gradio interface
with gr.Blocks(css="""
    .vertical-slider input[type=range] {
        writing-mode: bt-lr; /* IE */
        -webkit-appearance: slider-vertical; /* WebKit */
        width: 8px;
        height: 200px;
    }
    .slider-container {
        display: inline-block;
        margin-right: 50px;
        text-align: center;
    }
""") as demo:
    
    # Contact Section
    gr.Markdown(
        """
        ## Contact
        <div style="display: flex; align-items: center;">
            <a target="_blank" href="https://www.wi-lab.net"><img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;"></a>&nbsp;&nbsp;
            <a target="_blank" href="mailto:alikhani@asu.edu"><img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail " alt="Email"></a>&nbsp;&nbsp;
        </div>
        """
    )
    
    # Tabs for Beam Prediction and LoS/NLoS Classification
    with gr.Tab("Beam Prediction Task"):
        gr.Markdown("### Beam Prediction Task")
        
        with gr.Row():
            with gr.Column(elem_id="slider-container"):
                gr.Markdown("Percentage of Data for Training")
                percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
            with gr.Column(elem_id="slider-container"):
                gr.Markdown("Task Complexity")
                complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")

        with gr.Row():
            raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
            embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)

        percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
        complexity_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])

    with gr.Tab("LoS/NLoS Classification Task"):
        gr.Markdown("### LoS/NLoS Classification Task")
        
        file_input = gr.File(label="Upload .p File", file_types=[".p"])

        with gr.Row():
            with gr.Column(elem_id="slider-container"):
                gr.Markdown("Percentage of Data for Training")
                percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
            with gr.Column(elem_id="slider-container"):
                gr.Markdown("Task Complexity")
                complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")

        with gr.Row():
            raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
            embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
            output_textbox = gr.Textbox(label="Console Output", lines=10)

        file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
        percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
        complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])

# Launch the app
if __name__ == "__main__":
    demo.launch()