File size: 8,981 Bytes
8f8b054
 
 
 
cacf045
2a77201
 
340b448
 
 
8f8b054
 
 
 
 
 
 
 
 
 
2a77201
 
 
 
 
 
 
 
 
 
 
 
 
8f8b054
 
 
 
 
 
 
 
 
 
 
 
2587718
 
 
 
2a77201
0176215
 
cacf045
 
2a77201
 
058904f
0176215
2587718
 
 
aa5e7da
2587718
 
 
aa5e7da
 
2587718
 
 
aa5e7da
2587718
aa5e7da
 
2587718
aa5e7da
058904f
 
aa5e7da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e62ce0
2587718
aa5e7da
 
 
 
 
 
2587718
aa5e7da
4e62ce0
 
0176215
aa5e7da
4e62ce0
2587718
aa5e7da
4e62ce0
 
 
ca32c10
2a77201
 
 
aa5e7da
2a77201
7e7ba0a
0176215
aa5e7da
2a77201
 
 
aa5e7da
8f8b054
 
 
 
cacf045
8f8b054
2a77201
8f8b054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cacf045
 
8f8b054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cacf045
8f8b054
 
 
 
 
 
 
 
 
 
 
 
2a77201
8f8b054
2a77201
 
 
8f8b054
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import torch
import subprocess

# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
GENERATED_PATH = os.path.join("images", "generated")

# Specific values for percentage and complexity
percentage_values = [10, 30, 50, 70, 100]
complexity_values = [16, 32]

# Custom class to capture print output
class PrintCapture(io.StringIO):
    def __init__(self):
        super().__init__()
        self.output = []

    def write(self, txt):
        self.output.append(txt)
        super().write(txt)

    def get_output(self):
        return ''.join(self.output)

# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx, complexity_idx):
    percentage = percentage_values[percentage_idx]
    complexity = complexity_values[complexity_idx]
    raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
    embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
    
    raw_image = Image.open(raw_image_path)
    embeddings_image = Image.open(embeddings_image_path)
    
    return raw_image, embeddings_image

# Function to load the pre-trained model from your cloned repository
def load_custom_model():
    from lwm_model import LWM  # Assuming the model is defined in lwm_model.py
    model = LWM()  # Modify this according to your model initialization
    model.eval()
    return model

# Function to process the uploaded .p file and perform inference using the custom model
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
    capture = PrintCapture()
    sys.stdout = capture  # Redirect print statements to capture

    try:
        model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
        model_repo_dir = "./LWM"

        # Step 1: Clone the model repository if not already cloned
        if not os.path.exists(model_repo_dir):
            print(f"Cloning model repository from {model_repo_url}...")
            subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
        
        # Debugging: Check if the directory exists and print contents
        if os.path.exists(model_repo_dir):
            os.chdir(model_repo_dir)
            print(f"Changed working directory to {os.getcwd()}")
            print(f"Directory content: {os.listdir(os.getcwd())}")  # Debugging: Check repo content
        else:
            print(f"Directory {model_repo_dir} does not exist.")
            return

        # Step 2: Add the cloned repo to sys.path for imports
        if model_repo_dir not in sys.path:
            sys.path.append(model_repo_dir)
        
        # Debugging: Print sys.path to ensure the cloned repo is in the path
        print(f"sys.path: {sys.path}")

        # Step 3: Dynamically import the model after cloning
        try:
            from lwm_model import LWM  # Custom model in the cloned repo
            print("Successfully imported LWM model.")
        except ImportError as e:
            print(f"Error importing LWM model: {e}")
            print("Make sure lwm_model.py exists in the cloned repository.")
            return

        # Step 4: Check if GPU is available and set the device
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print(f"Using device: {device}")

        # Load the model from the cloned repository
        model = LWM.from_pretrained(device=device)

        # Step 5: Import the tokenizer
        try:
            from input_preprocess import tokenizer
        except ImportError as e:
            print(f"Error importing tokenizer: {e}")
            return

        # Step 6: Load the uploaded .p file (wireless channel matrix)
        with open(uploaded_file.name, 'rb') as f:
            manual_data = pickle.load(f)

        # Step 7: Tokenize the data if needed (or perform any necessary preprocessing)
        preprocessed_chs = tokenizer(manual_data=manual_data)

        # Step 8: Perform inference using the model
        from inference import lwm_inference, create_raw_dataset
        output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
        output_raw = create_raw_dataset(preprocessed_chs, device)

        print(f"Output Embeddings Shape: {output_emb.shape}")
        print(f"Output Raw Shape: {output_raw.shape}")

        # Return the embeddings, raw output, and captured output
        return output_emb, output_raw, capture.get_output()

    except Exception as e:
        # Handle exceptions and return the captured output
        return str(e), str(e), capture.get_output()

    finally:
        sys.stdout = sys.__stdout__  # Reset stdout

# Function to handle logic based on whether a file is uploaded or not
def los_nlos_classification(file, percentage_idx, complexity_idx):
    if file is not None:
        return process_p_file(file, percentage_idx, complexity_idx)
    else:
        return display_predefined_images(percentage_idx, complexity_idx), None

# Define the Gradio interface
with gr.Blocks(css="""
    .vertical-slider input[type=range] {
        writing-mode: bt-lr; /* IE */
        -webkit-appearance: slider-vertical; /* WebKit */
        width: 8px;
        height: 200px;
    }
    .slider-container {
        display: inline-block;
        margin-right: 50px;
        text-align: center;
    }
""") as demo:
    
    # Contact Section
    gr.Markdown(
        """
        ## Contact
        <div style="display: flex; align-items: center;">
            <a target="_blank" href="https://www.wi-lab.net"><img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;"></a>&nbsp;&nbsp;
            <a target="_blank" href="mailto:alikhani@asu.edu"><img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail " alt="Email"></a>&nbsp;&nbsp;
        </div>
        """
    )
    
    # Tabs for Beam Prediction and LoS/NLoS Classification
    with gr.Tab("Beam Prediction Task"):
        gr.Markdown("### Beam Prediction Task")
        
        with gr.Row():
            with gr.Column(elem_id="slider-container"):
                gr.Markdown("Percentage of Data for Training")
                percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
            with gr.Column(elem_id="slider-container"):
                gr.Markdown("Task Complexity")
                complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")

        with gr.Row():
            raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
            embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)

        percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
        complexity_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])

    with gr.Tab("LoS/NLoS Classification Task"):
        gr.Markdown("### LoS/NLoS Classification Task")
        
        file_input = gr.File(label="Upload .p File", file_types=[".p"])

        with gr.Row():
            with gr.Column(elem_id="slider-container"):
                gr.Markdown("Percentage of Data for Training")
                percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
            with gr.Column(elem_id="slider-container"):
                gr.Markdown("Task Complexity")
                complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")

        with gr.Row():
            raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
            embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
            output_textbox = gr.Textbox(label="Console Output", lines=10)

        file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
        percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
        complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])

# Launch the app
if __name__ == "__main__":
    demo.launch()