File size: 8,802 Bytes
3146d66
785c044
 
3146d66
 
98a3259
6780f80
a645df8
98a3259
 
 
2b2ab5b
3146d66
 
785c044
a645df8
98a3259
3146d66
785c044
3146d66
 
 
 
2b2ab5b
 
3146d66
 
 
 
2b2ab5b
 
 
 
3146d66
 
 
 
2b2ab5b
 
785c044
 
 
 
 
 
 
 
 
 
 
 
3146d66
 
 
2b2ab5b
 
 
 
 
 
 
 
 
 
 
 
 
c89e6e0
 
 
 
 
 
 
 
2b2ab5b
c89e6e0
 
 
 
 
 
 
2b2ab5b
 
3146d66
 
 
 
18b8750
 
 
 
 
 
 
2b2ab5b
 
98a3259
18b8750
3146d66
18b8750
98a3259
 
18b8750
 
98a3259
18b8750
 
 
 
 
 
 
98a3259
2b2ab5b
18b8750
3146d66
 
 
 
2b2ab5b
 
 
3146d66
 
 
 
 
 
 
2b2ab5b
3146d66
2b2ab5b
3146d66
785c044
 
2b2ab5b
3146d66
 
 
 
 
 
 
 
 
2b2ab5b
 
785c044
 
 
 
 
 
2b2ab5b
3146d66
785c044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6780f80
785c044
 
6780f80
 
 
785c044
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import asyncio
import os
import time
from importlib import import_module

import pandas as pd
import rich
import streamlit as st
import weave
from dotenv import load_dotenv

from guardrails_genie.guardrails import GuardrailManager
from guardrails_genie.llm import OpenAIModel
from guardrails_genie.metrics import AccuracyMetric
from guardrails_genie.utils import EvaluationCallManager


def initialize_session_state():
    load_dotenv()
    if "uploaded_file" not in st.session_state:
        st.session_state.uploaded_file = None
    if "dataset_name" not in st.session_state:
        st.session_state.dataset_name = ""
    if "preview_in_app" not in st.session_state:
        st.session_state.preview_in_app = False
    if "dataset_ref" not in st.session_state:
        st.session_state.dataset_ref = None
    if "dataset_previewed" not in st.session_state:
        st.session_state.dataset_previewed = False
    if "guardrail_names" not in st.session_state:
        st.session_state.guardrail_names = []
    if "guardrails" not in st.session_state:
        st.session_state.guardrails = []
    if "start_evaluation" not in st.session_state:
        st.session_state.start_evaluation = False
    if "evaluation_summary" not in st.session_state:
        st.session_state.evaluation_summary = None
    if "guardrail_manager" not in st.session_state:
        st.session_state.guardrail_manager = None
    if "evaluation_name" not in st.session_state:
        st.session_state.evaluation_name = ""
    if "show_result_table" not in st.session_state:
        st.session_state.show_result_table = False
    if "weave_client" not in st.session_state:
        st.session_state.weave_client = weave.init(
            project_name=os.getenv("WEAVE_PROJECT")
        )
    if "evaluation_call_manager" not in st.session_state:
        st.session_state.evaluation_call_manager = None
    if "call_id" not in st.session_state:
        st.session_state.call_id = None


def initialize_guardrail():
    guardrails = []
    for guardrail_name in st.session_state.guardrail_names:
        if guardrail_name == "PromptInjectionSurveyGuardrail":
            survey_guardrail_model = st.sidebar.selectbox(
                "Survey Guardrail LLM", ["", "gpt-4o-mini", "gpt-4o"]
            )
            if survey_guardrail_model:
                guardrails.append(
                    getattr(
                        import_module("guardrails_genie.guardrails"),
                        guardrail_name,
                    )(llm_model=OpenAIModel(model_name=survey_guardrail_model))
                )
        elif guardrail_name == "PromptInjectionClassifierGuardrail":
            classifier_model_name = st.sidebar.selectbox(
                "Classifier Guardrail Model",
                [
                    "",
                    "ProtectAI/deberta-v3-base-prompt-injection-v2",
                    "wandb://geekyrakshit/guardrails-genie/model-6rwqup9b:v3",
                ],
            )
            if classifier_model_name:
                st.session_state.guardrails.append(
                    getattr(
                        import_module("guardrails_genie.guardrails"),
                        guardrail_name,
                    )(model_name=classifier_model_name)
                )
    st.session_state.guardrails = guardrails
    st.session_state.guardrail_manager = GuardrailManager(guardrails=guardrails)


initialize_session_state()
st.title(":material/monitoring: Evaluation")

uploaded_file = st.sidebar.file_uploader(
    "Upload the evaluation dataset as a CSV file", type="csv"
)
st.session_state.uploaded_file = uploaded_file
dataset_name = st.sidebar.text_input("Evaluation dataset name", value="")
st.session_state.dataset_name = dataset_name
preview_in_app = st.sidebar.toggle("Preview in app", value=False)
st.session_state.preview_in_app = preview_in_app

if st.session_state.uploaded_file is not None and st.session_state.dataset_name != "":
    with st.expander("Evaluation Dataset Preview", expanded=True):
        dataframe = pd.read_csv(st.session_state.uploaded_file)
        data_list = dataframe.to_dict(orient="records")

        dataset = weave.Dataset(name=st.session_state.dataset_name, rows=data_list)
        st.session_state.dataset_ref = weave.publish(dataset)

        entity = st.session_state.dataset_ref.entity
        project = st.session_state.dataset_ref.project
        dataset_name = st.session_state.dataset_name
        digest = st.session_state.dataset_ref._digest
        st.markdown(
            f"Dataset published to [**Weave**](https://wandb.ai/{entity}/{project}/weave/objects/{dataset_name}/versions/{digest})"
        )

        if preview_in_app:
            st.dataframe(dataframe)

        st.session_state.dataset_previewed = True

if st.session_state.dataset_previewed:
    guardrail_names = st.sidebar.multiselect(
        "Select Guardrails",
        options=[
            cls_name
            for cls_name, cls_obj in vars(
                import_module("guardrails_genie.guardrails")
            ).items()
            if isinstance(cls_obj, type) and cls_name != "GuardrailManager"
        ],
    )
    st.session_state.guardrail_names = guardrail_names

    if st.session_state.guardrail_names != []:
        initialize_guardrail()
        evaluation_name = st.sidebar.text_input("Evaluation name", value="")
        st.session_state.evaluation_name = evaluation_name
        if st.session_state.guardrail_manager is not None:
            if st.sidebar.button("Start Evaluation"):
                st.session_state.start_evaluation = True
            if st.session_state.start_evaluation:
                evaluation = weave.Evaluation(
                    dataset=st.session_state.dataset_ref,
                    scorers=[AccuracyMetric()],
                    streamlit_mode=True,
                )
                with st.expander("Evaluation Results", expanded=True):
                    evaluation_summary, call = asyncio.run(
                        evaluation.evaluate.call(
                            evaluation,
                            st.session_state.guardrail_manager,
                            __weave={
                                "display_name": "Evaluation.evaluate:"
                                + st.session_state.evaluation_name
                            },
                        )
                    )
                    x_axis = list(evaluation_summary["AccuracyMetric"].keys())
                    y_axis = [
                        evaluation_summary["AccuracyMetric"][x_axis_item]
                        for x_axis_item in x_axis
                    ]
                    st.bar_chart(
                        pd.DataFrame({"Metric": x_axis, "Score": y_axis}),
                        x="Metric",
                        y="Score",
                    )
                    st.session_state.evaluation_summary = evaluation_summary
                    st.session_state.call_id = call.id
                    st.session_state.start_evaluation = False

                    if not st.session_state.start_evaluation:
                        time.sleep(5)
                        st.session_state.evaluation_call_manager = (
                            EvaluationCallManager(
                                entity="geekyrakshit",
                                project="guardrails-genie",
                                call_id=st.session_state.call_id,
                            )
                        )
                        for guardrail_name in st.session_state.guardrail_names:
                            st.session_state.evaluation_call_manager.call_list.append(
                                {
                                    "guardrail_name": guardrail_name,
                                    "calls": st.session_state.evaluation_call_manager.collect_guardrail_guard_calls_from_eval(),
                                }
                            )
                            rich.print(
                                st.session_state.evaluation_call_manager.call_list
                            )
                        st.dataframe(
                            st.session_state.evaluation_call_manager.render_calls_to_streamlit()
                        )
                        if st.session_state.evaluation_call_manager.show_warning_in_app:
                            st.warning(
                                f"Only {st.session_state.evaluation_call_manager.max_count} calls can be shown in the app."
                            )
                        st.markdown(
                            f"Explore the entire evaluation trace table in [Weave]({call.ui_url})"
                        )
                    st.session_state.evaluation_call_manager = None