Spaces:
Running
Running
geekyrakshit
commited on
Commit
·
785c044
1
Parent(s):
af688eb
add: limited eval table rendering in app
Browse files- application_pages/evaluation_app.py +67 -8
- guardrails_genie/utils.py +43 -0
application_pages/evaluation_app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import asyncio
|
|
|
|
|
2 |
from importlib import import_module
|
3 |
|
4 |
import pandas as pd
|
@@ -9,12 +11,11 @@ from dotenv import load_dotenv
|
|
9 |
from guardrails_genie.guardrails import GuardrailManager
|
10 |
from guardrails_genie.llm import OpenAIModel
|
11 |
from guardrails_genie.metrics import AccuracyMetric
|
12 |
-
|
13 |
-
load_dotenv()
|
14 |
-
weave.init(project_name="guardrails-genie")
|
15 |
|
16 |
|
17 |
def initialize_session_state():
|
|
|
18 |
if "uploaded_file" not in st.session_state:
|
19 |
st.session_state.uploaded_file = None
|
20 |
if "dataset_name" not in st.session_state:
|
@@ -35,6 +36,18 @@ def initialize_session_state():
|
|
35 |
st.session_state.evaluation_summary = None
|
36 |
if "guardrail_manager" not in st.session_state:
|
37 |
st.session_state.guardrail_manager = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
def initialize_guardrail():
|
@@ -107,6 +120,8 @@ if st.session_state.dataset_previewed:
|
|
107 |
|
108 |
if st.session_state.guardrail_names != []:
|
109 |
initialize_guardrail()
|
|
|
|
|
110 |
if st.session_state.guardrail_manager is not None:
|
111 |
if st.sidebar.button("Start Evaluation"):
|
112 |
st.session_state.start_evaluation = True
|
@@ -119,10 +134,54 @@ if st.session_state.dataset_previewed:
|
|
119 |
with st.expander("Evaluation Results", expanded=True):
|
120 |
evaluation_summary, call = asyncio.run(
|
121 |
evaluation.evaluate.call(
|
122 |
-
evaluation,
|
|
|
|
|
|
|
|
|
|
|
123 |
)
|
124 |
)
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import asyncio
|
2 |
+
import os
|
3 |
+
import time
|
4 |
from importlib import import_module
|
5 |
|
6 |
import pandas as pd
|
|
|
11 |
from guardrails_genie.guardrails import GuardrailManager
|
12 |
from guardrails_genie.llm import OpenAIModel
|
13 |
from guardrails_genie.metrics import AccuracyMetric
|
14 |
+
from guardrails_genie.utils import EvaluationCallManager
|
|
|
|
|
15 |
|
16 |
|
17 |
def initialize_session_state():
|
18 |
+
load_dotenv()
|
19 |
if "uploaded_file" not in st.session_state:
|
20 |
st.session_state.uploaded_file = None
|
21 |
if "dataset_name" not in st.session_state:
|
|
|
36 |
st.session_state.evaluation_summary = None
|
37 |
if "guardrail_manager" not in st.session_state:
|
38 |
st.session_state.guardrail_manager = None
|
39 |
+
if "evaluation_name" not in st.session_state:
|
40 |
+
st.session_state.evaluation_name = ""
|
41 |
+
if "show_result_table" not in st.session_state:
|
42 |
+
st.session_state.show_result_table = False
|
43 |
+
if "weave_client" not in st.session_state:
|
44 |
+
st.session_state.weave_client = weave.init(
|
45 |
+
project_name=os.getenv("WEAVE_PROJECT")
|
46 |
+
)
|
47 |
+
if "evaluation_call_manager" not in st.session_state:
|
48 |
+
st.session_state.evaluation_call_manager = None
|
49 |
+
if "call_id" not in st.session_state:
|
50 |
+
st.session_state.call_id = None
|
51 |
|
52 |
|
53 |
def initialize_guardrail():
|
|
|
120 |
|
121 |
if st.session_state.guardrail_names != []:
|
122 |
initialize_guardrail()
|
123 |
+
evaluation_name = st.sidebar.text_input("Evaluation name", value="")
|
124 |
+
st.session_state.evaluation_name = evaluation_name
|
125 |
if st.session_state.guardrail_manager is not None:
|
126 |
if st.sidebar.button("Start Evaluation"):
|
127 |
st.session_state.start_evaluation = True
|
|
|
134 |
with st.expander("Evaluation Results", expanded=True):
|
135 |
evaluation_summary, call = asyncio.run(
|
136 |
evaluation.evaluate.call(
|
137 |
+
evaluation,
|
138 |
+
st.session_state.guardrail_manager,
|
139 |
+
__weave={
|
140 |
+
"display_name": "Evaluation.evaluate:"
|
141 |
+
+ st.session_state.evaluation_name
|
142 |
+
},
|
143 |
)
|
144 |
)
|
145 |
+
x_axis = list(evaluation_summary["AccuracyMetric"].keys())
|
146 |
+
y_axis = [
|
147 |
+
evaluation_summary["AccuracyMetric"][x_axis_item]
|
148 |
+
for x_axis_item in x_axis
|
149 |
+
]
|
150 |
+
st.bar_chart(
|
151 |
+
pd.DataFrame({"Metric": x_axis, "Score": y_axis}),
|
152 |
+
x="Metric",
|
153 |
+
y="Score",
|
154 |
+
)
|
155 |
+
st.session_state.evaluation_summary = evaluation_summary
|
156 |
+
st.session_state.call_id = call.id
|
157 |
+
st.session_state.start_evaluation = False
|
158 |
+
|
159 |
+
if not st.session_state.start_evaluation:
|
160 |
+
time.sleep(5)
|
161 |
+
st.session_state.evaluation_call_manager = (
|
162 |
+
EvaluationCallManager(
|
163 |
+
entity="geekyrakshit",
|
164 |
+
project="guardrails-genie",
|
165 |
+
call_id=st.session_state.call_id,
|
166 |
+
)
|
167 |
+
)
|
168 |
+
for guardrail_name in st.session_state.guardrail_names:
|
169 |
+
st.session_state.evaluation_call_manager.call_list.append(
|
170 |
+
{
|
171 |
+
"guardrail_name": guardrail_name,
|
172 |
+
"calls": st.session_state.evaluation_call_manager.collect_guardrail_guard_calls_from_eval(
|
173 |
+
call=call
|
174 |
+
),
|
175 |
+
}
|
176 |
+
)
|
177 |
+
st.dataframe(
|
178 |
+
st.session_state.evaluation_call_manager.render_calls_to_streamlit()
|
179 |
+
)
|
180 |
+
if st.session_state.evaluation_call_manager.show_warning_in_app:
|
181 |
+
st.warning(
|
182 |
+
f"Only {st.session_state.evaluation_call_manager.max_count} calls can be shown in the app."
|
183 |
+
)
|
184 |
+
st.markdown(
|
185 |
+
f"Explore the entire evaluation trace table in [Weave]({call.ui_url})"
|
186 |
+
)
|
187 |
+
st.session_state.evaluation_call_manager = None
|
guardrails_genie/utils.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import os
|
2 |
|
|
|
3 |
import pymupdf4llm
|
4 |
import weave
|
|
|
5 |
from firerequests import FireRequests
|
6 |
|
7 |
|
@@ -11,3 +13,44 @@ def get_markdown_from_pdf_url(url: str) -> str:
|
|
11 |
markdown = pymupdf4llm.to_markdown("temp.pdf", show_progress=False)
|
12 |
os.remove("temp.pdf")
|
13 |
return markdown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
|
3 |
+
import pandas as pd
|
4 |
import pymupdf4llm
|
5 |
import weave
|
6 |
+
import weave.trace
|
7 |
from firerequests import FireRequests
|
8 |
|
9 |
|
|
|
13 |
markdown = pymupdf4llm.to_markdown("temp.pdf", show_progress=False)
|
14 |
os.remove("temp.pdf")
|
15 |
return markdown
|
16 |
+
|
17 |
+
|
18 |
+
class EvaluationCallManager:
|
19 |
+
def __init__(self, entity: str, project: str, call_id: str, max_count: int = 10):
|
20 |
+
self.base_call = weave.init(f"{entity}/{project}").get_call(call_id=call_id)
|
21 |
+
self.max_count = max_count
|
22 |
+
self.show_warning_in_app = False
|
23 |
+
self.call_list = []
|
24 |
+
|
25 |
+
def collect_guardrail_guard_calls_from_eval(self, call):
|
26 |
+
guard_calls, count = [], 0
|
27 |
+
for eval_predict_call in call.children():
|
28 |
+
if "Evaluation.summarize" in eval_predict_call._op_name:
|
29 |
+
break
|
30 |
+
required_call = eval_predict_call.children()[0].children()[0].children()[0]
|
31 |
+
guard_calls.append(
|
32 |
+
{
|
33 |
+
"input_prompt": str(required_call.inputs["prompt"]),
|
34 |
+
"outputs": dict(required_call.output),
|
35 |
+
}
|
36 |
+
)
|
37 |
+
count += 1
|
38 |
+
if count >= self.max_count:
|
39 |
+
self.show_warning_in_app = True
|
40 |
+
break
|
41 |
+
return guard_calls
|
42 |
+
|
43 |
+
def render_calls_to_streamlit(self):
|
44 |
+
dataframe = {
|
45 |
+
"input_prompt": [
|
46 |
+
call["input_prompt"] for call in self.call_list[0]["calls"]
|
47 |
+
]
|
48 |
+
}
|
49 |
+
for guardrail_call in self.call_list:
|
50 |
+
dataframe[guardrail_call["guardrail_name"] + ".safe"] = [
|
51 |
+
call["outputs"]["safe"] for call in guardrail_call["calls"]
|
52 |
+
]
|
53 |
+
dataframe[guardrail_call["guardrail_name"] + ".summary"] = [
|
54 |
+
call["outputs"]["summary"] for call in guardrail_call["calls"]
|
55 |
+
]
|
56 |
+
return pd.DataFrame(dataframe)
|