geekyrakshit commited on
Commit
2b2ab5b
·
1 Parent(s): a62b646

update: evaluation app

Browse files
application_pages/evaluation_app.py CHANGED
@@ -6,6 +6,7 @@ import streamlit as st
6
  import weave
7
  from dotenv import load_dotenv
8
 
 
9
  from guardrails_genie.llm import OpenAIModel
10
  from guardrails_genie.metrics import AccuracyMetric
11
 
@@ -18,37 +19,44 @@ def initialize_session_state():
18
  st.session_state.uploaded_file = None
19
  if "dataset_name" not in st.session_state:
20
  st.session_state.dataset_name = ""
21
- if "visualize_in_app" not in st.session_state:
22
- st.session_state.visualize_in_app = False
23
  if "dataset_ref" not in st.session_state:
24
  st.session_state.dataset_ref = None
25
  if "dataset_previewed" not in st.session_state:
26
  st.session_state.dataset_previewed = False
27
- if "guardrail_name" not in st.session_state:
28
- st.session_state.guardrail_name = ""
29
- if "guardrail" not in st.session_state:
30
- st.session_state.guardrail = None
31
  if "start_evaluation" not in st.session_state:
32
  st.session_state.start_evaluation = False
33
  if "evaluation_summary" not in st.session_state:
34
  st.session_state.evaluation_summary = None
 
 
35
 
36
 
37
  def initialize_guardrail():
38
- if st.session_state.guardrail_name == "PromptInjectionSurveyGuardrail":
39
- survey_guardrail_model = st.sidebar.selectbox(
40
- "Survey Guardrail LLM", ["", "gpt-4o-mini", "gpt-4o"]
41
- )
42
- if survey_guardrail_model:
43
- st.session_state.guardrail = getattr(
44
- import_module("guardrails_genie.guardrails"),
45
- st.session_state.guardrail_name,
46
- )(llm_model=OpenAIModel(model_name=survey_guardrail_model))
47
- else:
48
- st.session_state.guardrail = getattr(
49
- import_module("guardrails_genie.guardrails"),
50
- st.session_state.guardrail_name,
51
- )()
 
 
 
 
 
52
 
53
 
54
  initialize_session_state()
@@ -60,8 +68,8 @@ uploaded_file = st.sidebar.file_uploader(
60
  st.session_state.uploaded_file = uploaded_file
61
  dataset_name = st.sidebar.text_input("Evaluation dataset name", value="")
62
  st.session_state.dataset_name = dataset_name
63
- visualize_in_app = st.sidebar.toggle("Visualize in app", value=False)
64
- st.session_state.visualize_in_app = visualize_in_app
65
 
66
  if st.session_state.uploaded_file is not None and st.session_state.dataset_name != "":
67
  with st.expander("Evaluation Dataset Preview", expanded=True):
@@ -79,16 +87,15 @@ if st.session_state.uploaded_file is not None and st.session_state.dataset_name
79
  f"Dataset published to [**Weave**](https://wandb.ai/{entity}/{project}/weave/objects/{dataset_name}/versions/{digest})"
80
  )
81
 
82
- if visualize_in_app:
83
  st.dataframe(dataframe)
84
 
85
  st.session_state.dataset_previewed = True
86
 
87
  if st.session_state.dataset_previewed:
88
- guardrail_name = st.sidebar.selectbox(
89
- "Select Guardrail",
90
- options=[""]
91
- + [
92
  cls_name
93
  for cls_name, cls_obj in vars(
94
  import_module("guardrails_genie.guardrails")
@@ -96,11 +103,11 @@ if st.session_state.dataset_previewed:
96
  if isinstance(cls_obj, type) and cls_name != "GuardrailManager"
97
  ],
98
  )
99
- st.session_state.guardrail_name = guardrail_name
100
 
101
- if st.session_state.guardrail_name != "":
102
  initialize_guardrail()
103
- if st.session_state.guardrail is not None:
104
  if st.sidebar.button("Start Evaluation"):
105
  st.session_state.start_evaluation = True
106
  if st.session_state.start_evaluation:
@@ -110,9 +117,12 @@ if st.session_state.dataset_previewed:
110
  streamlit_mode=True,
111
  )
112
  with st.expander("Evaluation Results", expanded=True):
113
- evaluation_summary = asyncio.run(
114
- evaluation.evaluate(st.session_state.guardrail)
 
 
115
  )
 
116
  st.write(evaluation_summary)
117
  st.session_state.evaluation_summary = evaluation_summary
118
  st.session_state.start_evaluation = False
 
6
  import weave
7
  from dotenv import load_dotenv
8
 
9
+ from guardrails_genie.guardrails import GuardrailManager
10
  from guardrails_genie.llm import OpenAIModel
11
  from guardrails_genie.metrics import AccuracyMetric
12
 
 
19
  st.session_state.uploaded_file = None
20
  if "dataset_name" not in st.session_state:
21
  st.session_state.dataset_name = ""
22
+ if "preview_in_app" not in st.session_state:
23
+ st.session_state.preview_in_app = False
24
  if "dataset_ref" not in st.session_state:
25
  st.session_state.dataset_ref = None
26
  if "dataset_previewed" not in st.session_state:
27
  st.session_state.dataset_previewed = False
28
+ if "guardrail_names" not in st.session_state:
29
+ st.session_state.guardrail_names = []
30
+ if "guardrails" not in st.session_state:
31
+ st.session_state.guardrails = []
32
  if "start_evaluation" not in st.session_state:
33
  st.session_state.start_evaluation = False
34
  if "evaluation_summary" not in st.session_state:
35
  st.session_state.evaluation_summary = None
36
+ if "guardrail_manager" not in st.session_state:
37
+ st.session_state.guardrail_manager = None
38
 
39
 
40
  def initialize_guardrail():
41
+ guardrails = []
42
+ for guardrail_name in st.session_state.guardrail_names:
43
+ if guardrail_name == "PromptInjectionSurveyGuardrail":
44
+ survey_guardrail_model = st.sidebar.selectbox(
45
+ "Survey Guardrail LLM", ["", "gpt-4o-mini", "gpt-4o"]
46
+ )
47
+ if survey_guardrail_model:
48
+ guardrails.append(
49
+ getattr(
50
+ import_module("guardrails_genie.guardrails"),
51
+ guardrail_name,
52
+ )(llm_model=OpenAIModel(model_name=survey_guardrail_model))
53
+ )
54
+ else:
55
+ guardrails.append(
56
+ getattr(import_module("guardrails_genie.guardrails"), guardrail_name)()
57
+ )
58
+ st.session_state.guardrails = guardrails
59
+ st.session_state.guardrail_manager = GuardrailManager(guardrails=guardrails)
60
 
61
 
62
  initialize_session_state()
 
68
  st.session_state.uploaded_file = uploaded_file
69
  dataset_name = st.sidebar.text_input("Evaluation dataset name", value="")
70
  st.session_state.dataset_name = dataset_name
71
+ preview_in_app = st.sidebar.toggle("Preview in app", value=False)
72
+ st.session_state.preview_in_app = preview_in_app
73
 
74
  if st.session_state.uploaded_file is not None and st.session_state.dataset_name != "":
75
  with st.expander("Evaluation Dataset Preview", expanded=True):
 
87
  f"Dataset published to [**Weave**](https://wandb.ai/{entity}/{project}/weave/objects/{dataset_name}/versions/{digest})"
88
  )
89
 
90
+ if preview_in_app:
91
  st.dataframe(dataframe)
92
 
93
  st.session_state.dataset_previewed = True
94
 
95
  if st.session_state.dataset_previewed:
96
+ guardrail_names = st.sidebar.multiselect(
97
+ "Select Guardrails",
98
+ options=[
 
99
  cls_name
100
  for cls_name, cls_obj in vars(
101
  import_module("guardrails_genie.guardrails")
 
103
  if isinstance(cls_obj, type) and cls_name != "GuardrailManager"
104
  ],
105
  )
106
+ st.session_state.guardrail_names = guardrail_names
107
 
108
+ if st.session_state.guardrail_names != []:
109
  initialize_guardrail()
110
+ if st.session_state.guardrail_manager is not None:
111
  if st.sidebar.button("Start Evaluation"):
112
  st.session_state.start_evaluation = True
113
  if st.session_state.start_evaluation:
 
117
  streamlit_mode=True,
118
  )
119
  with st.expander("Evaluation Results", expanded=True):
120
+ evaluation_summary, call = asyncio.run(
121
+ evaluation.evaluate.call(
122
+ evaluation, st.session_state.guardrail_manager
123
+ )
124
  )
125
+ st.markdown(f"[Explore evaluation in Weave]({call.ui_url})")
126
  st.write(evaluation_summary)
127
  st.session_state.evaluation_summary = evaluation_summary
128
  st.session_state.start_evaluation = False
guardrails_genie/guardrails/injection/protectai_guardrail.py CHANGED
@@ -23,7 +23,7 @@ class PromptInjectionProtectAIGuardrail(Guardrail):
23
  max_length=512,
24
  device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
25
  )
26
-
27
  @weave.op()
28
  def classify(self, prompt: str):
29
  return self._classifier(prompt)
 
23
  max_length=512,
24
  device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
25
  )
26
+
27
  @weave.op()
28
  def classify(self, prompt: str):
29
  return self._classifier(prompt)
guardrails_genie/guardrails/manager.py CHANGED
@@ -1,20 +1,28 @@
1
  import weave
2
  from rich.progress import track
3
- from weave.flow.obj import Object as WeaveObject
4
 
5
  from .base import Guardrail
6
 
7
 
8
- class GuardrailManager(WeaveObject):
9
  guardrails: list[Guardrail]
10
 
11
  @weave.op()
12
- def guard(self, prompt: str, **kwargs) -> dict:
13
  alerts, safe = [], True
14
- for guardrail in track(self.guardrails, description="Running guardrails"):
 
 
 
 
 
15
  response = guardrail.guard(prompt, **kwargs)
16
  alerts.append(
17
  {"guardrail_name": guardrail.__class__.__name__, "response": response}
18
  )
19
  safe = safe and response["safe"]
20
  return {"safe": safe, "alerts": alerts}
 
 
 
 
 
1
  import weave
2
  from rich.progress import track
 
3
 
4
  from .base import Guardrail
5
 
6
 
7
+ class GuardrailManager(weave.Model):
8
  guardrails: list[Guardrail]
9
 
10
  @weave.op()
11
+ def guard(self, prompt: str, progress_bar: bool = True, **kwargs) -> dict:
12
  alerts, safe = [], True
13
+ iterable = (
14
+ track(self.guardrails, description="Running guardrails")
15
+ if progress_bar
16
+ else self.guardrails
17
+ )
18
+ for guardrail in iterable:
19
  response = guardrail.guard(prompt, **kwargs)
20
  alerts.append(
21
  {"guardrail_name": guardrail.__class__.__name__, "response": response}
22
  )
23
  safe = safe and response["safe"]
24
  return {"safe": safe, "alerts": alerts}
25
+
26
+ @weave.op()
27
+ def predict(self, prompt: str, **kwargs) -> dict:
28
+ return self.guard(prompt, progress_bar=False, **kwargs)
guardrails_genie/metrics.py CHANGED
@@ -17,11 +17,6 @@ class AccuracyMetric(weave.Scorer):
17
  count_true = list(valid_data).count(True)
18
  int_data = [int(x) for x in valid_data]
19
 
20
- sample_mean = np.mean(int_data) if int_data else 0
21
- sample_variance = np.var(int_data) if int_data else 0
22
- sample_error = np.sqrt(sample_variance / len(int_data)) if int_data else 0
23
-
24
- # Calculate precision, recall, and F1 score
25
  true_positives = count_true
26
  false_positives = len(valid_data) - count_true
27
  false_negatives = len(score_rows) - len(valid_data)
@@ -43,7 +38,7 @@ class AccuracyMetric(weave.Scorer):
43
  )
44
 
45
  return {
46
- "accuracy": float(sample_mean),
47
  "precision": precision,
48
  "recall": recall,
49
  "f1_score": f1_score,
 
17
  count_true = list(valid_data).count(True)
18
  int_data = [int(x) for x in valid_data]
19
 
 
 
 
 
 
20
  true_positives = count_true
21
  false_positives = len(valid_data) - count_true
22
  false_negatives = len(score_rows) - len(valid_data)
 
38
  )
39
 
40
  return {
41
+ "accuracy": float(np.mean(int_data) if int_data else 0),
42
  "precision": precision,
43
  "recall": recall,
44
  "f1_score": f1_score,