File size: 4,961 Bytes
0af2865
 
 
 
897ce6f
0af2865
 
 
 
 
42c983e
 
4b442ac
 
0af2865
04ef67e
 
4b442ac
e201b51
 
4b442ac
0af2865
 
 
 
 
 
4b442ac
0af2865
 
 
 
897ce6f
4b442ac
 
897ce6f
4b442ac
0af2865
4b442ac
0af2865
 
 
 
4b442ac
72b87dc
4b442ac
0af2865
4b442ac
0af2865
 
 
e201b51
62f6e0d
 
 
 
 
 
 
 
4b442ac
0af2865
4b442ac
 
897ce6f
 
 
4b442ac
897ce6f
8e54579
8dc5b65
4b442ac
 
c9cf861
0af2865
 
 
 
4b442ac
0af2865
 
c9cf861
 
0af2865
 
 
 
 
 
 
 
c9cf861
 
 
 
 
 
 
 
4b442ac
897ce6f
e9813d0
897ce6f
e9813d0
 
 
0af2865
e9813d0
 
 
 
c9cf861
 
0af2865
e9813d0
 
897ce6f
e9813d0
 
0af2865
e9813d0
 
 
 
 
 
 
 
0af2865
e9813d0
 
0af2865
e9813d0
 
0af2865
e9813d0
c9cf861
cd053e7
4b442ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub, LlamaCpp
from huggingface_hub import snapshot_download, hf_hub_download

# from prompts import CONDENSE_QUESTION_PROMPT

repo_name = "IlyaGusev/saiga2_13b_gguf"
model_name = "model-q4_K.gguf"

snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)


def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()

    return text


def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(separator="\n",
                                          chunk_size=500,  # 1000
                                          chunk_overlap=30,  # 200
                                          length_function=len
                                          )
    chunks = text_splitter.split_text(text)

    return chunks


def get_vectorstore(text_chunks):
    # embeddings = OpenAIEmbeddings()
    embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
    # embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)

    return vectorstore


def get_conversation_chain(vectorstore, model_name):
    llm = LlamaCpp(model_path=model_name,
                   temperature=0.1,
                   top_k=30,
                   top_p=0.9,
                   streaming=True,
                   n_ctx=2048,
                   n_parts=1,
                   echo=True
                   )

    # llm = ChatOpenAI()
    
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
    
    conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm,
                                                               # condense_question_prompt=CONDENSE_QUESTION_PROMPT,
                                                               retriever=vectorstore.as_retriever(),
                                                               memory=memory,
                                                               return_source_documents=True
                                                               )

    return conversation_chain


def handle_userinput(user_question):
    response = st.session_state.conversation({'question': user_question})

    st.session_state.chat_history = response['chat_history']

    st.session_state.retrieved_text = response['source_documents'][0]

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)

    for i, message in enumerate(st.session_state.retrieved_text):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)


# main code
load_dotenv()

st.set_page_config(page_title="Chat with multiple PDFs",
                   page_icon=":books:")
st.write(css, unsafe_allow_html=True)

if "conversation" not in st.session_state:
    st.session_state.conversation = None
if "chat_history" not in st.session_state:
    st.session_state.chat_history = None
if "retrieved_text" not in st.session_state:
    st.session_state.retrieved_text = None

st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")

if user_question:
    handle_userinput(user_question)

with st.sidebar:
    st.subheader("Your documents")
    pdf_docs = st.file_uploader(
        "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
    if st.button("Process"):
        with st.spinner("Processing"):
            # get pdf text
            raw_text = get_pdf_text(pdf_docs)

            # get the text chunks
            text_chunks = get_text_chunks(raw_text)

            # create vector store
            vectorstore = get_vectorstore(text_chunks)

            # create conversation chain
            st.session_state.conversation = get_conversation_chain(vectorstore, model_name)
            st.text_area(retrieved_docs)