Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
|
|
2 |
from dotenv import load_dotenv
|
3 |
from PyPDF2 import PdfReader
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
-
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
6 |
from langchain.vectorstores import FAISS
|
7 |
from langchain.chat_models import ChatOpenAI
|
8 |
from langchain.memory import ConversationBufferMemory
|
@@ -11,56 +11,63 @@ from htmlTemplates import css, bot_template, user_template
|
|
11 |
from langchain.llms import HuggingFaceHub, LlamaCpp
|
12 |
from huggingface_hub import snapshot_download, hf_hub_download
|
13 |
|
14 |
-
|
15 |
repo_name = "IlyaGusev/saiga2_7b_gguf"
|
16 |
model_name = "model-q2_K.gguf"
|
17 |
|
18 |
snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)
|
19 |
|
20 |
def get_pdf_text(pdf_docs):
|
|
|
21 |
text = ""
|
22 |
for pdf in pdf_docs:
|
23 |
pdf_reader = PdfReader(pdf)
|
24 |
for page in pdf_reader.pages:
|
25 |
text += page.extract_text()
|
|
|
26 |
return text
|
27 |
|
28 |
|
29 |
def get_text_chunks(text):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
chunks = text_splitter.split_text(text)
|
|
|
37 |
return chunks
|
38 |
|
39 |
|
40 |
def get_vectorstore(text_chunks):
|
41 |
-
|
42 |
-
#
|
|
|
|
|
43 |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
|
|
44 |
return vectorstore
|
45 |
|
46 |
|
47 |
def get_conversation_chain(vectorstore, model_name):
|
48 |
|
49 |
-
llm = LlamaCpp(model_path=model_name, n_ctx=2048)
|
50 |
#llm = ChatOpenAI()
|
51 |
|
52 |
-
memory = ConversationBufferMemory(
|
53 |
-
|
54 |
-
conversation_chain = ConversationalRetrievalChain.from_llm(
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
return conversation_chain
|
60 |
|
61 |
|
62 |
def handle_userinput(user_question):
|
|
|
63 |
response = st.session_state.conversation({'question': user_question})
|
|
|
64 |
st.session_state.chat_history = response['chat_history']
|
65 |
|
66 |
for i, message in enumerate(st.session_state.chat_history):
|
@@ -71,8 +78,9 @@ def handle_userinput(user_question):
|
|
71 |
st.write(bot_template.replace(
|
72 |
"{{MSG}}", message.content), unsafe_allow_html=True)
|
73 |
|
74 |
-
|
75 |
load_dotenv()
|
|
|
76 |
st.set_page_config(page_title="Chat with multiple PDFs",
|
77 |
page_icon=":books:")
|
78 |
st.write(css, unsafe_allow_html=True)
|
@@ -84,6 +92,7 @@ if "chat_history" not in st.session_state:
|
|
84 |
|
85 |
st.header("Chat with multiple PDFs :books:")
|
86 |
user_question = st.text_input("Ask a question about your documents:")
|
|
|
87 |
if user_question:
|
88 |
handle_userinput(user_question)
|
89 |
|
@@ -103,8 +112,4 @@ with st.sidebar:
|
|
103 |
vectorstore = get_vectorstore(text_chunks)
|
104 |
|
105 |
# create conversation chain
|
106 |
-
st.session_state.conversation = get_conversation_chain(
|
107 |
-
vectorstore, model_name)
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
2 |
from dotenv import load_dotenv
|
3 |
from PyPDF2 import PdfReader
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
|
6 |
from langchain.vectorstores import FAISS
|
7 |
from langchain.chat_models import ChatOpenAI
|
8 |
from langchain.memory import ConversationBufferMemory
|
|
|
11 |
from langchain.llms import HuggingFaceHub, LlamaCpp
|
12 |
from huggingface_hub import snapshot_download, hf_hub_download
|
13 |
|
|
|
14 |
repo_name = "IlyaGusev/saiga2_7b_gguf"
|
15 |
model_name = "model-q2_K.gguf"
|
16 |
|
17 |
snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)
|
18 |
|
19 |
def get_pdf_text(pdf_docs):
|
20 |
+
|
21 |
text = ""
|
22 |
for pdf in pdf_docs:
|
23 |
pdf_reader = PdfReader(pdf)
|
24 |
for page in pdf_reader.pages:
|
25 |
text += page.extract_text()
|
26 |
+
|
27 |
return text
|
28 |
|
29 |
|
30 |
def get_text_chunks(text):
|
31 |
+
|
32 |
+
text_splitter = CharacterTextSplitter(separator="\n",
|
33 |
+
chunk_size=1000,
|
34 |
+
chunk_overlap=200,
|
35 |
+
length_function=len
|
36 |
+
)
|
37 |
chunks = text_splitter.split_text(text)
|
38 |
+
|
39 |
return chunks
|
40 |
|
41 |
|
42 |
def get_vectorstore(text_chunks):
|
43 |
+
|
44 |
+
#embeddings = OpenAIEmbeddings()
|
45 |
+
#embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
46 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
47 |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
48 |
+
|
49 |
return vectorstore
|
50 |
|
51 |
|
52 |
def get_conversation_chain(vectorstore, model_name):
|
53 |
|
54 |
+
llm = LlamaCpp(model_path=model_name, n_ctx=2048, n_parts=1)
|
55 |
#llm = ChatOpenAI()
|
56 |
|
57 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
58 |
+
|
59 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm,
|
60 |
+
retriever=vectorstore.as_retriever(),
|
61 |
+
memory=memory
|
62 |
+
)
|
63 |
+
|
64 |
return conversation_chain
|
65 |
|
66 |
|
67 |
def handle_userinput(user_question):
|
68 |
+
|
69 |
response = st.session_state.conversation({'question': user_question})
|
70 |
+
|
71 |
st.session_state.chat_history = response['chat_history']
|
72 |
|
73 |
for i, message in enumerate(st.session_state.chat_history):
|
|
|
78 |
st.write(bot_template.replace(
|
79 |
"{{MSG}}", message.content), unsafe_allow_html=True)
|
80 |
|
81 |
+
# main code
|
82 |
load_dotenv()
|
83 |
+
|
84 |
st.set_page_config(page_title="Chat with multiple PDFs",
|
85 |
page_icon=":books:")
|
86 |
st.write(css, unsafe_allow_html=True)
|
|
|
92 |
|
93 |
st.header("Chat with multiple PDFs :books:")
|
94 |
user_question = st.text_input("Ask a question about your documents:")
|
95 |
+
|
96 |
if user_question:
|
97 |
handle_userinput(user_question)
|
98 |
|
|
|
112 |
vectorstore = get_vectorstore(text_chunks)
|
113 |
|
114 |
# create conversation chain
|
115 |
+
st.session_state.conversation = get_conversation_chain(vectorstore, model_name)
|
|
|
|
|
|
|
|