Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ from langchain.chains import ConversationalRetrievalChain
|
|
10 |
from htmlTemplates import css, bot_template, user_template
|
11 |
from langchain.llms import HuggingFaceHub, LlamaCpp
|
12 |
from huggingface_hub import snapshot_download, hf_hub_download
|
|
|
13 |
|
14 |
repo_name = "IlyaGusev/saiga2_7b_gguf"
|
15 |
model_name = "model-q2_K.gguf"
|
@@ -30,8 +31,8 @@ def get_pdf_text(pdf_docs):
|
|
30 |
def get_text_chunks(text):
|
31 |
|
32 |
text_splitter = CharacterTextSplitter(separator="\n",
|
33 |
-
chunk_size=1000
|
34 |
-
chunk_overlap=200
|
35 |
length_function=len
|
36 |
)
|
37 |
chunks = text_splitter.split_text(text)
|
@@ -51,12 +52,22 @@ def get_vectorstore(text_chunks):
|
|
51 |
|
52 |
def get_conversation_chain(vectorstore, model_name):
|
53 |
|
54 |
-
llm = LlamaCpp(model_path=model_name,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
#llm = ChatOpenAI()
|
56 |
|
57 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
58 |
|
59 |
conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm,
|
|
|
60 |
retriever=vectorstore.as_retriever(),
|
61 |
memory=memory
|
62 |
)
|
|
|
10 |
from htmlTemplates import css, bot_template, user_template
|
11 |
from langchain.llms import HuggingFaceHub, LlamaCpp
|
12 |
from huggingface_hub import snapshot_download, hf_hub_download
|
13 |
+
from prompts import CONDENSE_QUESTION_PROMPT
|
14 |
|
15 |
repo_name = "IlyaGusev/saiga2_7b_gguf"
|
16 |
model_name = "model-q2_K.gguf"
|
|
|
31 |
def get_text_chunks(text):
|
32 |
|
33 |
text_splitter = CharacterTextSplitter(separator="\n",
|
34 |
+
chunk_size=500, #1000
|
35 |
+
chunk_overlap=30, #200
|
36 |
length_function=len
|
37 |
)
|
38 |
chunks = text_splitter.split_text(text)
|
|
|
52 |
|
53 |
def get_conversation_chain(vectorstore, model_name):
|
54 |
|
55 |
+
llm = LlamaCpp(model_path=model_name,
|
56 |
+
temperature=0.1,
|
57 |
+
top_k=30,
|
58 |
+
top_p=0.9,
|
59 |
+
streaming=True,
|
60 |
+
n_ctx=2048,
|
61 |
+
n_parts=1,
|
62 |
+
echo=True
|
63 |
+
)
|
64 |
+
|
65 |
#llm = ChatOpenAI()
|
66 |
|
67 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
68 |
|
69 |
conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm,
|
70 |
+
condense_question_prompt=CONDENSE_QUESTION_PROMPT
|
71 |
retriever=vectorstore.as_retriever(),
|
72 |
memory=memory
|
73 |
)
|