File size: 3,866 Bytes
20b2a40
d2e5b38
20b2a40
 
fdda9c6
 
 
 
2c1b6a1
d2e5b38
fdda9c6
 
 
 
d2e5b38
fdda9c6
d2e5b38
fdda9c6
 
2068f16
 
 
92a6755
2068f16
 
92a6755
2068f16
fdda9c6
 
 
 
eef61bc
fdda9c6
d2e5b38
8565080
 
2068f16
 
 
 
 
 
8565080
28f4b4e
8565080
 
28f4b4e
 
 
92a6755
28f4b4e
 
 
 
 
 
 
2068f16
28f4b4e
 
 
 
 
 
92a6755
94f41cc
 
 
 
 
 
2c1b6a1
8565080
28f4b4e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""
This specific file was bodged together by ham-handed hedgehogs. If something looks wrong, it's because it is.
If you're not a hedgehog, you shouldn't reuse this code. Use this instead: https://docs.streamlit.io/library/get-started
"""

import streamlit as st


from st_helpers import make_header, content_text, content_title, cite, make_footer, make_tabs
from charts import draw_current_progress

st.set_page_config(page_title="Training Transformers Together", layout="centered")


st.markdown("## Full demo content will be posted here on December 7th!")

make_header()

content_text(f"""
There was a time when you could comfortably train state-of-the-art vision and language models at home on your workstation.
The first convolutional neural net to beat ImageNet
(<a target="_blank" href="https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf">AlexNet</a>)
was trained for 5-6 days on two gamer-grade GPUs. In contrast, today's TOP-1 ImageNet model
(<a target="_blank" href="https://arxiv.org/abs/2106.04803">CoAtNet</a>)
takes 20,000 TPU-v3 days. And things are even worse in the NLP world: training
<a target="_blank" href="https://arxiv.org/abs/2005.14165">GPT&#8209;3</a> on a top-tier server
with 8x A100 would take decades.""")

content_text(f"""
So, can individual researchers and small labs still train state-of-the-art? Yes we can!
All it takes is for a bunch of us to come together. In fact, we're doing it right now and <b>you're invited to join!</b>
""", vspace_before=12)

draw_current_progress()

content_text(f"""
We're training a model similar to <a target="_blank" href="https://openai.com/blog/dall-e/">OpenAI DALL-E</a>,
that is, a transformer "language model" that generates images from text description.
It is trained on <a target="_blank" href=https://laion.ai/laion-400-open-dataset/>LAION-400M</a>,
the world's largest openly available image-text-pair dataset with 400 million samples. Our model is based on
the <a target="_blank" href=https://github.com/lucidrains/DALLE-pytorch>dalle&#8209;pytorch</a> implementation
by <a target="_blank" href="https://github.com/lucidrains">Phil Wang</a> with several tweaks for memory-efficient training.""")


content_title("How do I join?")

content_text("""
That's easy. First, make sure you're logged in at Hugging Face. If you don't have an account, create one <b>TODO</b>.<br>

<ul style="text-align: left; list-style-position: inside; margin-top: 12px; margin-left: -24px;">
    <li style="margin-top: 4px;">
        Join our organization on Hugging Face here: <b>TODO</b>. </li>
    <li style="margin-top: 4px;">
        The simplest way to start is with colab <b>TODO</b>;</li>
    <li style="margin-top: 4px;">
        You can find other starter kits, evaluation and inference notebooks <b>TODO IN OUR ORGANIZATION</b>;</li>
    <li style="margin-top: 4px;">
        If you have any issues, <b>TODO DISCORD BADGE</b> </li>
</ul>

Please note that we currently limit the number of colab participants to <b>TODO</b> to make sure we do not interfere
with other users. If there are too many active peers, take a look at alternative starter kits here <b>TODO</b>
""")

content_title("How does it work?")
content_text("<b> TODO </b> General Story That Weaves Together Three Tabs Below . Lorem ipsum dolor sit amet, "
             "consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim"
             " ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. "
             "Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. "
             "Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.")

make_tabs()

content_text("<b> TODO UPDATE")
make_footer()