File size: 8,441 Bytes
186701e
 
bcf1bcb
186701e
 
 
 
fa52fdd
186701e
 
 
 
 
 
bcf1bcb
186701e
 
 
 
 
 
 
 
 
 
 
 
bcf1bcb
 
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b9cc43
186701e
 
 
 
 
 
 
 
 
 
 
bcf1bcb
 
 
 
186701e
 
 
bcf1bcb
 
 
 
 
 
 
 
 
 
 
 
186701e
 
bcf1bcb
 
 
 
 
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa52fdd
186701e
 
 
 
 
 
 
 
 
 
 
 
 
2ed4a37
186701e
2ed4a37
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa52fdd
 
 
 
186701e
 
 
2ed4a37
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1845a
 
 
 
 
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56994b0
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
fd61144
186701e
 
bb741bd
186701e
 
 
 
 
 
 
 
 
 
3b9cc43
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed4a37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright (c) Tencent Inc. All rights reserved.
import os
import cv2
import argparse
import os.path as osp
from functools import partial
from io import BytesIO
from copy import deepcopy

import onnx
import onnxsim
import torch
import gradio as gr
import numpy as np
import supervision as sv
from PIL import Image
from torchvision.ops import nms
from mmengine.config import Config, ConfigDict, DictAction
from mmengine.runner import Runner
from mmengine.runner.amp import autocast
from mmengine.dataset import Compose
from mmdet.visualization import DetLocalVisualizer
from mmdet.datasets import CocoDataset
from mmyolo.registry import RUNNERS

from yolo_world.easydeploy.model import DeployModel, MMYOLOBackend

BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator(text_color=sv.Color.BLACK)

def parse_args():
    parser = argparse.ArgumentParser(
        description='YOLO-World Demo')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('checkpoint', help='checkpoint file')
    parser.add_argument(
        '--work-dir',
        help='the directory to save the file containing evaluation metrics')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    args = parser.parse_args()
    return args


def run_image(runner,
              image,
              text,
              max_num_boxes,
              score_thr,
              nms_thr,
              image_path='./work_dirs/demo.png'):
    os.makedirs('./work_dirs', exist_ok=True)
    image.save(image_path)
    texts = [[t.strip()] for t in text.split(',')] + [[' ']]
    data_info = dict(img_id=0, img_path=image_path, texts=texts)
    data_info = runner.pipeline(data_info)
    data_batch = dict(inputs=data_info['inputs'].unsqueeze(0),
                      data_samples=[data_info['data_samples']])

    with autocast(enabled=False), torch.no_grad():
        output = runner.model.test_step(data_batch)[0]
        pred_instances = output.pred_instances

    keep = nms(pred_instances.bboxes, pred_instances.scores, iou_threshold=nms_thr)
    pred_instances = pred_instances[keep]
    pred_instances = pred_instances[pred_instances.scores.float() > score_thr]

    if len(pred_instances.scores) > max_num_boxes:
        indices = pred_instances.scores.float().topk(max_num_boxes)[1]
        pred_instances = pred_instances[indices]

    pred_instances = pred_instances.cpu().numpy()
    detections = sv.Detections(
        xyxy=pred_instances['bboxes'],
        class_id=pred_instances['labels'],
        confidence=pred_instances['scores']
    )
    labels = [
        f"{texts[class_id][0]} {confidence:0.2f}"
        for class_id, confidence
        in zip(detections.class_id, detections.confidence)
    ]

    image = np.array(image)
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections)
    image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = Image.fromarray(image)
    return image


def export_model(runner,
                 checkpoint,
                 text,
                 max_num_boxes,
                 score_thr,
                 nms_thr):
    backend = MMYOLOBackend.ONNXRUNTIME
    postprocess_cfg = ConfigDict(
        pre_top_k=10 * max_num_boxes,
        keep_top_k=max_num_boxes,
        iou_threshold=nms_thr,
        score_threshold=score_thr)

    base_model = deepcopy(runner.model)
    texts = [[t.strip() for t in text.split(',')] + [' ']]
    base_model.reparameterize(texts)
    deploy_model = DeployModel(
        baseModel=base_model,
        backend=backend,
        postprocess_cfg=postprocess_cfg)
    deploy_model.eval()

    device = (next(iter(base_model.parameters()))).device
    fake_input = torch.ones([1, 3, 640, 640], device=device)
    # dry run
    deploy_model(fake_input)

    os.makedirs('work_dirs', exist_ok=True)
    save_onnx_path = os.path.join(
        'work_dirs', 'yolow-l.onnx')
    # export onnx
    with BytesIO() as f:
        output_names = ['num_dets', 'boxes', 'scores', 'labels']
        torch.onnx.export(
            deploy_model,
            fake_input,
            f,
            input_names=['images'],
            output_names=output_names,
            opset_version=12)
        f.seek(0)
        onnx_model = onnx.load(f)
        onnx.checker.check_model(onnx_model)
    onnx_model, check = onnxsim.simplify(onnx_model)
    onnx.save(onnx_model, save_onnx_path)

    del base_model
    del deploy_model
    del onnx_model
    return gr.update(visible=True), save_onnx_path


def demo(runner, args, cfg):
    with gr.Blocks(title="YOLO-World") as demo:
        with gr.Row():
            gr.Markdown('<h1><center>YOLO-World: Real-Time Open-Vocabulary '
                        'Object Detector</center></h1>')
        with gr.Row():
            with gr.Column(scale=0.3):
                with gr.Row():
                    image = gr.Image(type='pil', label='input image')
                input_text = gr.Textbox(
                    lines=7,
                    label='Enter the classes to be detected, '
                          'separated by comma',
                    value=', '.join(CocoDataset.METAINFO['classes']),
                    elem_id='textbox')
                with gr.Row():
                    submit = gr.Button('Submit')
                    clear = gr.Button('Clear')
                with gr.Row():
                    export = gr.Button('Deploy and Export ONNX Model')
                out_download = gr.File(
                    label='Download link',
                    visible=True,
                    height=30,
                    interactive=False)
                max_num_boxes = gr.Slider(
                    minimum=1,
                    maximum=300,
                    value=100,
                    step=1,
                    interactive=True,
                    label='Maximum Number Boxes')
                score_thr = gr.Slider(
                    minimum=0,
                    maximum=1,
                    value=0.05,
                    step=0.001,
                    interactive=True,
                    label='Score Threshold')
                nms_thr = gr.Slider(
                    minimum=0,
                    maximum=1,
                    value=0.5,
                    step=0.001,
                    interactive=True,
                    label='NMS Threshold')
            with gr.Column(scale=0.7):
                output_image = gr.Image(
                    type='pil',
                    label='output image')

        submit.click(partial(run_image, runner),
                     [image, input_text, max_num_boxes,
                      score_thr, nms_thr],
                     [output_image])
        clear.click(lambda: [[], '', ''], None,
                    [image, input_text, output_image])
        export.click(partial(export_model, runner, args.checkpoint),
                     [input_text, max_num_boxes, score_thr, nms_thr],
                     [out_download, out_download])
        demo.launch(server_name='0.0.0.0')


if __name__ == '__main__':
    args = parse_args()

    # load config
    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    os.makedirs('./work_dirs', exist_ok=True)
    if args.work_dir is not None:
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])

    cfg.load_from = args.checkpoint

    if 'runner_type' not in cfg:
        runner = Runner.from_cfg(cfg)
    else:
        runner = RUNNERS.build(cfg)

    runner.call_hook('before_run')
    runner.load_or_resume()
    pipeline = cfg.test_dataloader.dataset.pipeline
    runner.pipeline = Compose(pipeline)
    runner.model.eval()
    demo(runner, args, cfg)