stevengrove commited on
Commit
186701e
·
1 Parent(s): d912a42

initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +127 -0
  2. README.md +141 -11
  3. app.py +61 -0
  4. assets/yolo_arch.png +0 -0
  5. assets/yolo_logo.png +0 -0
  6. configs/deploy/detection_onnxruntime-fp16_dynamic.py +18 -0
  7. configs/deploy/detection_onnxruntime-int8_dynamic.py +20 -0
  8. configs/deploy/detection_onnxruntime_static.py +18 -0
  9. configs/deploy/detection_tensorrt-fp16_static-640x640.py +38 -0
  10. configs/deploy/detection_tensorrt-int8_static-640x640.py +30 -0
  11. configs/finetune_coco/yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_coco_finetune.py +183 -0
  12. configs/finetune_coco/yolo_world_m_t2i_bn_2e-4_100e_4x8gpus_coco_finetune.py +183 -0
  13. configs/finetune_coco/yolo_world_s_t2i_bn_2e-4_100e_4x8gpus_coco_finetune.py +183 -0
  14. configs/pretrain/yolo_world_l_dual_3block_l2norm_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py +173 -0
  15. configs/pretrain/yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py +182 -0
  16. configs/pretrain/yolo_world_m_dual_3block_l2norm_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py +173 -0
  17. configs/pretrain/yolo_world_m_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py +171 -0
  18. configs/pretrain/yolo_world_s_dual_l2norm_3block_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py +173 -0
  19. configs/pretrain/yolo_world_s_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py +172 -0
  20. configs/scaleup/yolo_world_l_t2i_bn_2e-4_20e_4x8gpus_obj365v1_goldg_train_lvis_minival_s1024.py +216 -0
  21. configs/scaleup/yolo_world_l_t2i_bn_2e-4_20e_4x8gpus_obj365v1_goldg_train_lvis_minival_s1280.py +216 -0
  22. configs/scaleup/yolo_world_l_t2i_bn_2e-4_20e_4x8gpus_obj365v1_goldg_train_lvis_minival_s1280_v2.py +216 -0
  23. deploy/__init__.py +1 -0
  24. deploy/models/__init__.py +4 -0
  25. docs/data.md +19 -0
  26. docs/deploy.md +0 -0
  27. docs/install.md +0 -0
  28. docs/training.md +0 -0
  29. requirements.txt +1 -0
  30. setup.py +190 -0
  31. taiji/drun +35 -0
  32. taiji/erun +23 -0
  33. taiji/etorchrun +51 -0
  34. taiji/jizhi_run_vanilla +105 -0
  35. third_party/mmyolo/.circleci/config.yml +34 -0
  36. third_party/mmyolo/.circleci/docker/Dockerfile +11 -0
  37. third_party/mmyolo/.circleci/test.yml +213 -0
  38. third_party/mmyolo/.dev_scripts/gather_models.py +312 -0
  39. third_party/mmyolo/.dev_scripts/print_registers.py +448 -0
  40. third_party/mmyolo/.github/CODE_OF_CONDUCT.md +76 -0
  41. third_party/mmyolo/.github/CONTRIBUTING.md +1 -0
  42. third_party/mmyolo/.github/ISSUE_TEMPLATE/1-bug-report.yml +67 -0
  43. third_party/mmyolo/.github/ISSUE_TEMPLATE/2-feature-request.yml +32 -0
  44. third_party/mmyolo/.github/ISSUE_TEMPLATE/3-new-model.yml +30 -0
  45. third_party/mmyolo/.github/ISSUE_TEMPLATE/4-documentation.yml +22 -0
  46. third_party/mmyolo/.github/ISSUE_TEMPLATE/5-reimplementation.yml +87 -0
  47. third_party/mmyolo/.github/ISSUE_TEMPLATE/config.yml +9 -0
  48. third_party/mmyolo/.github/pull_request_template.md +25 -0
  49. third_party/mmyolo/.github/workflows/deploy.yml +28 -0
  50. third_party/mmyolo/.gitignore +126 -0
.gitignore ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ *.egg-info/
24
+ .installed.cfg
25
+ *.egg
26
+ MANIFEST
27
+
28
+ # PyInstaller
29
+ # Usually these files are written by a python script from a template
30
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
31
+ *.manifest
32
+ *.spec
33
+
34
+ # Installer logs
35
+ pip-log.txt
36
+ pip-delete-this-directory.txt
37
+
38
+ # Unit test / coverage reports
39
+ htmlcov/
40
+ .tox/
41
+ .coverage
42
+ .coverage.*
43
+ .cache
44
+ nosetests.xml
45
+ coverage.xml
46
+ *.cover
47
+ .hypothesis/
48
+ .pytest_cache/
49
+
50
+ # Translations
51
+ *.mo
52
+ *.pot
53
+
54
+ # Django stuff:
55
+ *.log
56
+ local_settings.py
57
+ db.sqlite3
58
+
59
+ # Flask stuff:
60
+ instance/
61
+ .webassets-cache
62
+
63
+ # Scrapy stuff:
64
+ .scrapy
65
+
66
+ # Sphinx documentation
67
+ docs/en/_build/
68
+ docs/zh_cn/_build/
69
+
70
+ # PyBuilder
71
+ target/
72
+
73
+ # Jupyter Notebook
74
+ .ipynb_checkpoints
75
+
76
+ # pyenv
77
+ .python-version
78
+
79
+ # celery beat schedule file
80
+ celerybeat-schedule
81
+
82
+ # SageMath parsed files
83
+ *.sage.py
84
+
85
+ # Environments
86
+ .env
87
+ .venv
88
+ env/
89
+ venv/
90
+ ENV/
91
+ env.bak/
92
+ venv.bak/
93
+
94
+ # Spyder project settings
95
+ .spyderproject
96
+ .spyproject
97
+
98
+ # Rope project settings
99
+ .ropeproject
100
+
101
+ # mkdocs documentation
102
+ /site
103
+
104
+ # mypy
105
+ .mypy_cache/
106
+ data/
107
+ data
108
+ .vscode
109
+ .idea
110
+ .DS_Store
111
+
112
+ # custom
113
+ *.pkl
114
+ *.pkl.json
115
+ *.log.json
116
+ docs/modelzoo_statistics.md
117
+ mmdet/.mim
118
+ work_dirs
119
+
120
+ # Pytorch
121
+ *.pth
122
+ *.py~
123
+ *.sh~
124
+
125
+ # venus
126
+ venus_run.sh
127
+
README.md CHANGED
@@ -1,11 +1,141 @@
1
- ---
2
- title: YOLO World
3
- emoji: 🔥
4
- colorFrom: pink
5
- colorTo: blue
6
- sdk: docker
7
- pinned: false
8
- license: apache-2.0
9
- ---
10
-
11
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <center>
3
+ <img width=500px src="./assets/yolo_logo.png">
4
+ </center>
5
+ <br>
6
+ <a href="https://scholar.google.com/citations?hl=zh-CN&user=PH8rJHYAAAAJ">Tianheng Cheng*</a><sup><span>2,3</span></sup>,
7
+ <a href="https://linsong.info/">Lin Song*</a><sup><span>1</span></sup>,
8
+ <a href="">Yixiao Ge</a><sup><span>1,2</span></sup>,
9
+ <a href="">Xinggang Wang</a><sup><span>3</span></sup>,
10
+ <a href="http://eic.hust.edu.cn/professor/liuwenyu/"> Wenyu Liu</a><sup><span>3</span></sup>,
11
+ <a href="">Ying Shan</a><sup><span>1,2</span></sup>
12
+ </br>
13
+
14
+ <sup>1</sup> Tencent AI Lab, <sup>2</sup> ARC Lab, Tencent PCG
15
+ <sup>3</sup> Huazhong University of Science and Technology
16
+ <br>
17
+ <div>
18
+
19
+ [![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/)
20
+ [![video](https://img.shields.io/badge/🤗HugginngFace-Spaces-orange)](https://huggingface.co/)
21
+ [![license](https://img.shields.io/badge/License-GPLv3.0-blue)](LICENSE)
22
+
23
+ </div>
24
+ </div>
25
+
26
+
27
+ ## Updates
28
+
29
+ `[2024-1-25]:` We are excited to launch **YOLO-World**, a cutting-edge real-time open-vocabulary object detector.
30
+
31
+ ## Highlights
32
+
33
+ This repo contains the PyTorch implementation, pre-trained weights, and pre-training/fine-tuning code for YOLO-World.
34
+
35
+ * YOLO-World is pre-trained on large-scale datasets, including detection, grounding, and image-text datasets.
36
+
37
+ * YOLO-World is the next-generation YOLO detector, with a strong open-vocabulary detection capability and grounding ability.
38
+
39
+ * YOLO-World presents a *prompt-then-detect* paradigm for efficient user-vocabulary inference, which re-parameterizes vocabulary embeddings as parameters into the model and achieve superior inference speed. You can try to export your own detection model without extra training or fine-tuning in our [online demo]()!
40
+
41
+
42
+ <center>
43
+ <img width=800px src="./assets/yolo_arch.png">
44
+ </center>
45
+
46
+
47
+ ## Abstract
48
+
49
+ The You Only Look Once (YOLO) series of detectors have established themselves as efficient and practical tools. However, their reliance on predefined and trained object categories limits their applicability in open scenarios. Addressing this limitation, we introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities through vision-language modeling and pre-training on large-scale datasets. Specifically, we propose a new Re-parameterizable Vision-Language Path Aggregation Network (RepVL-PAN) and region-text contrastive loss to facilitate the interaction between visual and linguistic information. Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency. On the challenging LVIS dataset, YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed. Furthermore, the fine-tuned YOLO-World achieves remarkable performance on several downstream tasks, including object detection and open-vocabulary instance segmentation.
50
+
51
+
52
+ ## Demo
53
+
54
+
55
+ ## Main Results
56
+
57
+ We've pre-trained YOLO-World-S/M/L from scratch and evaluate on the `LVIS val-1.0` and `LVIS minival`. We provide the pre-trained model weights and training logs for applications/research or re-producing the results.
58
+
59
+ ### Zero-shot Inference on LVIS dataset
60
+
61
+ | model | Pre-train Data | AP | AP<sub>r</sub> | AP<sub>c</sub> | AP<sub>f</sub> | FPS(V100) | weights | log |
62
+ | :---- | :------------- | :-:| :------------: |:-------------: | :-------: | :-----: | :---: | :---: |
63
+ | [YOLO-World-S](./configs/pretrain/yolo_world_s_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG | 17.6 | 11.9 | 14.5 | 23.2 | - | [wecom](https://drive.weixin.qq.com/s?k=AJEAIQdfAAoREsieRl) | [log]() |
64
+ | [YOLO-World-M](./configs/pretrain/yolo_world_m_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG | 23.5 | 17.2 | 20.4 | 29.6 | - | [wecom](https://drive.weixin.qq.com/s?k=AJEAIQdfAAoj0byBC0) | [log]() |
65
+ | [YOLO-World-L](./configs/pretrain/yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG | 25.7 | 18.7 | 22.6 | 32.2 | - | [wecom](https://drive.weixin.qq.com/s?k=AJEAIQdfAAoK06oxO2) | [log]() |
66
+
67
+ **NOTE:**
68
+ 1. The evaluation results are tested on LVIS minival in a zero-shot manner.
69
+
70
+
71
+ ## Getting started
72
+
73
+ ### 1. Installation
74
+
75
+ YOLO-World is developed based on `torch==1.11.0` `mmyolo==0.6.0` and `mmdetection==3.0.0`.
76
+
77
+ ```bash
78
+ # install key dependencies
79
+ pip install mmdetection==3.0.0 mmengine transformers
80
+
81
+ # clone the repo
82
+ git clone https://xxxx.YOLO-World.git
83
+ cd YOLO-World
84
+
85
+ # install mmyolo
86
+ mkdir third_party
87
+ git clone https://github.com/open-mmlab/mmyolo.git
88
+ cd ..
89
+
90
+ ```
91
+
92
+ ### 2. Preparing Data
93
+
94
+ We provide the details about the pre-training data in [docs/data](./docs/data.md).
95
+
96
+
97
+ ## Training & Evaluation
98
+
99
+ We adopt the default [training](./tools/train.py) or [evaluation](./tools/test.py) scripts of [mmyolo](https://github.com/open-mmlab/mmyolo).
100
+ We provide the configs for pre-training and fine-tuning in `configs/pretrain` and `configs/finetune_coco`.
101
+ Training YOLO-World is easy:
102
+
103
+ ```bash
104
+ chmod +x tools/dist_train.sh
105
+ # sample command for pre-training, use AMP for mixed-precision training
106
+ ./tools/dist_train.sh configs/pretrain/yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py 8 --amp
107
+ ```
108
+ **NOTE:** YOLO-World is pre-trained on 4 nodes with 8 GPUs per node (32 GPUs in total). For pre-training, the `node_rank` and `nnodes` for multi-node training should be specified.
109
+
110
+ Evalutating YOLO-World is also easy:
111
+
112
+ ```bash
113
+ chmod +x tools/dist_test.sh
114
+ ./tools/dist_test.sh path/to/config path/to/weights 8
115
+ ```
116
+
117
+ **NOTE:** We mainly evaluate the performance on LVIS-minival for pre-training.
118
+
119
+ ## Deployment
120
+
121
+ We provide the details about deployment for downstream applications in [docs/deployment](./docs/deploy.md).
122
+ You can directly download the ONNX model through the online [demo]() in Huggingface Spaces 🤗.
123
+
124
+ ## Acknowledgement
125
+
126
+ We sincerely thank [mmyolo](https://github.com/open-mmlab/mmyolo), [mmdetection](https://github.com/open-mmlab/mmdetection), and [transformers](https://github.com/huggingface/transformers) for providing their wonderful code to the community!
127
+
128
+ ## Citations
129
+ If you find YOLO-World is useful in your research or applications, please consider giving us a star 🌟 and citing it.
130
+
131
+ ```bibtex
132
+ @article{cheng2024yolow,
133
+ title={YOLO-World: Real-Time Open-Vocabulary Object Detection},
134
+ author={Cheng, Tianheng and Song, Lin and Ge, Yixiao and Liu, Wenyu and Wang, Xinggang and Shan, Ying},
135
+ journal={arXiv preprint arXiv:},
136
+ year={2024}
137
+ }
138
+ ```
139
+
140
+ ## Licence
141
+ YOLO-World is under the GPL-v3 Licence and is supported for comercial usage.
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os.path as osp
3
+
4
+ from mmengine.config import Config, DictAction
5
+ from mmengine.runner import Runner
6
+ from mmengine.dataset import Compose
7
+ from mmyolo.registry import RUNNERS
8
+
9
+ from tools.demo import demo
10
+
11
+
12
+ def parse_args():
13
+ parser = argparse.ArgumentParser(
14
+ description='YOLO-World Demo')
15
+ parser.add_argument('--config', default='configs/pretrain/yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py')
16
+ parser.add_argument('--checkpoint', default='model_zoo/yolow-v8_l_clipv2_frozen_t2iv2_bn_o365_goldg_pretrain.pth')
17
+ parser.add_argument(
18
+ '--work-dir',
19
+ help='the directory to save the file containing evaluation metrics')
20
+ parser.add_argument(
21
+ '--cfg-options',
22
+ nargs='+',
23
+ action=DictAction,
24
+ help='override some settings in the used config, the key-value pair '
25
+ 'in xxx=yyy format will be merged into config file. If the value to '
26
+ 'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
27
+ 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
28
+ 'Note that the quotation marks are necessary and that no white space '
29
+ 'is allowed.')
30
+ args = parser.parse_args()
31
+ return args
32
+
33
+
34
+ if __name__ == '__main__':
35
+ args = parse_args()
36
+
37
+ # load config
38
+ cfg = Config.fromfile(args.config)
39
+ if args.cfg_options is not None:
40
+ cfg.merge_from_dict(args.cfg_options)
41
+
42
+ if args.work_dir is not None:
43
+ cfg.work_dir = args.work_dir
44
+ elif cfg.get('work_dir', None) is None:
45
+ cfg.work_dir = osp.join('./work_dirs',
46
+ osp.splitext(osp.basename(args.config))[0])
47
+
48
+ cfg.load_from = args.checkpoint
49
+
50
+ if 'runner_type' not in cfg:
51
+ runner = Runner.from_cfg(cfg)
52
+ else:
53
+ runner = RUNNERS.build(cfg)
54
+
55
+ runner.call_hook('before_run')
56
+ runner.load_or_resume()
57
+ pipeline = cfg.test_dataloader.dataset.pipeline
58
+ runner.pipeline = Compose(pipeline)
59
+ runner.model.eval()
60
+ demo(runner, args)
61
+
assets/yolo_arch.png ADDED
assets/yolo_logo.png ADDED
configs/deploy/detection_onnxruntime-fp16_dynamic.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = (
2
+ '../../third_party/mmdeploy/configs/mmdet/detection/'
3
+ 'detection_onnxruntime-fp16_dynamic.py')
4
+ codebase_config = dict(
5
+ type='mmyolo',
6
+ task='ObjectDetection',
7
+ model_type='end2end',
8
+ post_processing=dict(
9
+ score_threshold=0.1,
10
+ confidence_threshold=0.005,
11
+ iou_threshold=0.3,
12
+ max_output_boxes_per_class=100,
13
+ pre_top_k=1000,
14
+ keep_top_k=100,
15
+ background_label_id=-1),
16
+ module=['mmyolo.deploy'])
17
+ backend_config = dict(
18
+ type='onnxruntime')
configs/deploy/detection_onnxruntime-int8_dynamic.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = (
2
+ '../../third_party/mmdeploy/configs/mmdet/detection/'
3
+ 'detection_onnxruntime-fp16_dynamic.py')
4
+ backend_config = dict(
5
+ precision='int8')
6
+ codebase_config = dict(
7
+ type='mmyolo',
8
+ task='ObjectDetection',
9
+ model_type='end2end',
10
+ post_processing=dict(
11
+ score_threshold=0.1,
12
+ confidence_threshold=0.005,
13
+ iou_threshold=0.3,
14
+ max_output_boxes_per_class=100,
15
+ pre_top_k=1000,
16
+ keep_top_k=100,
17
+ background_label_id=-1),
18
+ module=['mmyolo.deploy'])
19
+ backend_config = dict(
20
+ type='onnxruntime')
configs/deploy/detection_onnxruntime_static.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = (
2
+ '../../third_party/mmyolo/configs/deploy/'
3
+ 'detection_onnxruntime_static.py')
4
+ codebase_config = dict(
5
+ type='mmyolo',
6
+ task='ObjectDetection',
7
+ model_type='end2end',
8
+ post_processing=dict(
9
+ score_threshold=0.25,
10
+ confidence_threshold=0.005,
11
+ iou_threshold=0.65,
12
+ max_output_boxes_per_class=200,
13
+ pre_top_k=1000,
14
+ keep_top_k=100,
15
+ background_label_id=-1),
16
+ module=['mmyolo.deploy'])
17
+ backend_config = dict(
18
+ type='onnxruntime')
configs/deploy/detection_tensorrt-fp16_static-640x640.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = (
2
+ '../../third_party/mmyolo/configs/deploy/'
3
+ 'detection_tensorrt-fp16_static-640x640.py')
4
+ onnx_config = dict(
5
+ type='onnx',
6
+ export_params=True,
7
+ keep_initializers_as_inputs=False,
8
+ opset_version=11,
9
+ save_file='end2end.onnx',
10
+ input_names=['input'],
11
+ output_names=['dets', 'labels'],
12
+ input_shape=(640, 640),
13
+ optimize=True)
14
+ backend_config = dict(
15
+ type='tensorrt',
16
+ common_config=dict(fp16_mode=True, max_workspace_size=1 << 34),
17
+ model_inputs=[
18
+ dict(
19
+ input_shapes=dict(
20
+ input=dict(
21
+ min_shape=[1, 3, 640, 640],
22
+ opt_shape=[1, 3, 640, 640],
23
+ max_shape=[1, 3, 640, 640])))
24
+ ])
25
+ use_efficientnms = False # whether to replace TRTBatchedNMS plugin with EfficientNMS plugin # noqa E501
26
+ codebase_config = dict(
27
+ type='mmyolo',
28
+ task='ObjectDetection',
29
+ model_type='end2end',
30
+ post_processing=dict(
31
+ score_threshold=0.25,
32
+ confidence_threshold=0.005,
33
+ iou_threshold=0.65,
34
+ max_output_boxes_per_class=100,
35
+ pre_top_k=1,
36
+ keep_top_k=1,
37
+ background_label_id=-1),
38
+ module=['mmyolo.deploy'])
configs/deploy/detection_tensorrt-int8_static-640x640.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = [
2
+ '../../third_party/mmdeploy/configs/mmdet/_base_/base_static.py',
3
+ '../../third_party/mmdeploy/configs/_base_/backends/tensorrt-int8.py']
4
+
5
+ onnx_config = dict(input_shape=(640, 640))
6
+
7
+ backend_config = dict(
8
+ common_config=dict(max_workspace_size=1 << 30),
9
+ model_inputs=[
10
+ dict(
11
+ input_shapes=dict(
12
+ input=dict(
13
+ min_shape=[1, 3, 640, 640],
14
+ opt_shape=[1, 3, 640, 640],
15
+ max_shape=[1, 3, 640, 640])))
16
+ ])
17
+
18
+ codebase_config = dict(
19
+ type='mmyolo',
20
+ task='ObjectDetection',
21
+ model_type='end2end',
22
+ post_processing=dict(
23
+ score_threshold=0.1,
24
+ confidence_threshold=0.005,
25
+ iou_threshold=0.3,
26
+ max_output_boxes_per_class=100,
27
+ pre_top_k=1000,
28
+ keep_top_k=100,
29
+ background_label_id=-1),
30
+ module=['mmyolo.deploy'])
configs/finetune_coco/yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_coco_finetune.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = ('../../third_party/mmyolo/configs/yolov8/'
2
+ 'yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco.py')
3
+ custom_imports = dict(imports=['yolo_world'],
4
+ allow_failed_imports=False)
5
+
6
+ # hyper-parameters
7
+ num_classes = 80
8
+ num_training_classes = 80
9
+ max_epochs = 80 # Maximum training epochs
10
+ close_mosaic_epochs = 10
11
+ save_epoch_intervals = 5
12
+ text_channels = 512
13
+ neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
14
+ neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
15
+ base_lr = 2e-4
16
+ weight_decay = 0.05
17
+ train_batch_size_per_gpu = 16
18
+ load_from = 'weights/yolow-v8_l_clipv2_frozen_t2iv2_bn_o365_goldg_pretrain.pth'
19
+ persistent_workers = False
20
+
21
+
22
+ # model settings
23
+ model = dict(
24
+ type='YOLOWorldDetector',
25
+ mm_neck=True,
26
+ num_train_classes=num_training_classes,
27
+ num_test_classes=num_classes,
28
+ data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
29
+ backbone=dict(
30
+ _delete_=True,
31
+ type='MultiModalYOLOBackbone',
32
+ image_model={{_base_.model.backbone}},
33
+ text_model=dict(
34
+ type='HuggingCLIPLanguageBackbone',
35
+ model_name='pretrained_models/clip-vit-base-patch32-projection',
36
+ frozen_modules=['all'])),
37
+ neck=dict(type='YOLOWorldPAFPN',
38
+ guide_channels=text_channels,
39
+ embed_channels=neck_embed_channels,
40
+ num_heads=neck_num_heads,
41
+ block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
42
+ num_csp_blocks=2),
43
+ bbox_head=dict(type='YOLOWorldHead',
44
+ head_module=dict(type='YOLOWorldHeadModule',
45
+ embed_dims=text_channels,
46
+ use_bn_head=True,
47
+ num_classes=num_training_classes)),
48
+ train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
49
+
50
+ # dataset settings
51
+ text_transform = [
52
+ dict(type='RandomLoadText',
53
+ num_neg_samples=(num_classes, num_classes),
54
+ max_num_samples=num_training_classes,
55
+ padding_to_max=True,
56
+ padding_value=''),
57
+ dict(type='mmdet.PackDetInputs',
58
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
59
+ 'flip_direction', 'texts'))
60
+ ]
61
+ mosaic_affine_transform = [
62
+ dict(
63
+ type='MultiModalMosaic',
64
+ img_scale=_base_.img_scale,
65
+ pad_val=114.0,
66
+ pre_transform=_base_.pre_transform),
67
+ dict(type='YOLOv5CopyPaste', prob=_base_.copypaste_prob),
68
+ dict(
69
+ type='YOLOv5RandomAffine',
70
+ max_rotate_degree=0.0,
71
+ max_shear_degree=0.0,
72
+ max_aspect_ratio=100.,
73
+ scaling_ratio_range=(1 - _base_.affine_scale,
74
+ 1 + _base_.affine_scale),
75
+ # img_scale is (width, height)
76
+ border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
77
+ border_val=(114, 114, 114),
78
+ min_area_ratio=_base_.min_area_ratio,
79
+ use_mask_refine=_base_.use_mask2refine)
80
+ ]
81
+ train_pipeline = [
82
+ *_base_.pre_transform,
83
+ *mosaic_affine_transform,
84
+ dict(
85
+ type='YOLOv5MultiModalMixUp',
86
+ prob=_base_.mixup_prob,
87
+ pre_transform=[*_base_.pre_transform,
88
+ *mosaic_affine_transform]),
89
+ *_base_.last_transform[:-1],
90
+ *text_transform
91
+ ]
92
+ train_pipeline_stage2 = [
93
+ *_base_.train_pipeline_stage2[:-1],
94
+ *text_transform
95
+ ]
96
+ coco_train_dataset = dict(
97
+ _delete_=True,
98
+ type='MultiModalDataset',
99
+ dataset=dict(
100
+ type='YOLOv5CocoDataset',
101
+ data_root='data/coco',
102
+ ann_file='annotations/instances_train2017.json',
103
+ data_prefix=dict(img='train2017/'),
104
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
105
+ class_text_path='data/captions/coco_class_captions.json',
106
+ pipeline=train_pipeline)
107
+ train_dataloader = dict(
108
+ persistent_workers=persistent_workers,
109
+ batch_size=train_batch_size_per_gpu,
110
+ collate_fn=dict(type='yolow_collate'),
111
+ dataset=coco_train_dataset)
112
+ test_pipeline = [
113
+ *_base_.test_pipeline[:-1],
114
+ dict(type='LoadTextFixed'),
115
+ dict(
116
+ type='mmdet.PackDetInputs',
117
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
118
+ 'scale_factor', 'pad_param', 'texts'))
119
+ ]
120
+ coco_val_dataset = dict(
121
+ _delete_=True,
122
+ type='MultiModalDataset',
123
+ dataset=dict(
124
+ type='YOLOv5CocoDataset',
125
+ data_root='data/coco',
126
+ ann_file='annotations/instances_val2017.json',
127
+ data_prefix=dict(img='val2017/'),
128
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
129
+ class_text_path='data/captions/coco_class_captions.json',
130
+ pipeline=test_pipeline)
131
+ val_dataloader = dict(dataset=coco_val_dataset)
132
+ test_dataloader = val_dataloader
133
+ # training settings
134
+ default_hooks = dict(
135
+ param_scheduler=dict(
136
+ scheduler_type='linear',
137
+ lr_factor=0.01,
138
+ max_epochs=max_epochs),
139
+ checkpoint=dict(
140
+ max_keep_ckpts=-1,
141
+ save_best=None,
142
+ interval=save_epoch_intervals))
143
+ custom_hooks = [
144
+ dict(
145
+ type='EMAHook',
146
+ ema_type='ExpMomentumEMA',
147
+ momentum=0.0001,
148
+ update_buffers=True,
149
+ strict_load=False,
150
+ priority=49),
151
+ dict(
152
+ type='mmdet.PipelineSwitchHook',
153
+ switch_epoch=max_epochs - close_mosaic_epochs,
154
+ switch_pipeline=train_pipeline_stage2)
155
+ ]
156
+ train_cfg = dict(
157
+ max_epochs=max_epochs,
158
+ val_interval=5,
159
+ dynamic_intervals=[((max_epochs - close_mosaic_epochs),
160
+ _base_.val_interval_stage2)])
161
+ optim_wrapper = dict(
162
+ optimizer=dict(
163
+ _delete_=True,
164
+ type='AdamW',
165
+ lr=base_lr,
166
+ weight_decay=weight_decay,
167
+ batch_size_per_gpu=train_batch_size_per_gpu),
168
+ paramwise_cfg=dict(
169
+ bias_decay_mult=0.0,
170
+ norm_decay_mult=0.0,
171
+ custom_keys={'backbone.text_model': dict(lr_mult=0.01),
172
+ 'logit_scale': dict(weight_decay=0.0)}),
173
+ constructor='YOLOWv5OptimizerConstructor')
174
+
175
+ # evaluation settings
176
+ val_evaluator = dict(
177
+ _delete_=True,
178
+ type='mmdet.CocoMetric',
179
+ proposal_nums=(100, 1, 10),
180
+ ann_file='data/coco/annotations/instances_val2017.json',
181
+ metric='bbox')
182
+
183
+ test_evaluator = val_evaluator
configs/finetune_coco/yolo_world_m_t2i_bn_2e-4_100e_4x8gpus_coco_finetune.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = ('../../third_party/mmyolo/configs/yolov8/'
2
+ 'yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco.py')
3
+ custom_imports = dict(imports=['yolo_world'],
4
+ allow_failed_imports=False)
5
+
6
+ # hyper-parameters
7
+ num_classes = 80
8
+ num_training_classes = 80
9
+ max_epochs = 80 # Maximum training epochs
10
+ close_mosaic_epochs = 10
11
+ save_epoch_intervals = 5
12
+ text_channels = 512
13
+ neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
14
+ neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
15
+ base_lr = 2e-4
16
+ weight_decay = 0.05
17
+ train_batch_size_per_gpu = 16
18
+ load_from = 'weights/yolow-v8_m_clipv2_frozen_t2iv2_bn_o365_goldg_pretrain.pth'
19
+ persistent_workers = False
20
+
21
+
22
+ # model settings
23
+ model = dict(
24
+ type='YOLOWorldDetector',
25
+ mm_neck=True,
26
+ num_train_classes=num_training_classes,
27
+ num_test_classes=num_classes,
28
+ data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
29
+ backbone=dict(
30
+ _delete_=True,
31
+ type='MultiModalYOLOBackbone',
32
+ image_model={{_base_.model.backbone}},
33
+ text_model=dict(
34
+ type='HuggingCLIPLanguageBackbone',
35
+ model_name='pretrained_models/clip-vit-base-patch32-projection',
36
+ frozen_modules=['all'])),
37
+ neck=dict(type='YOLOWorldPAFPN',
38
+ guide_channels=text_channels,
39
+ embed_channels=neck_embed_channels,
40
+ num_heads=neck_num_heads,
41
+ block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
42
+ num_csp_blocks=2),
43
+ bbox_head=dict(type='YOLOWorldHead',
44
+ head_module=dict(type='YOLOWorldHeadModule',
45
+ embed_dims=text_channels,
46
+ use_bn_head=True,
47
+ num_classes=num_training_classes)),
48
+ train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
49
+
50
+ # dataset settings
51
+ text_transform = [
52
+ dict(type='RandomLoadText',
53
+ num_neg_samples=(num_classes, num_classes),
54
+ max_num_samples=num_training_classes,
55
+ padding_to_max=True,
56
+ padding_value=''),
57
+ dict(type='mmdet.PackDetInputs',
58
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
59
+ 'flip_direction', 'texts'))
60
+ ]
61
+ mosaic_affine_transform = [
62
+ dict(
63
+ type='MultiModalMosaic',
64
+ img_scale=_base_.img_scale,
65
+ pad_val=114.0,
66
+ pre_transform=_base_.pre_transform),
67
+ dict(type='YOLOv5CopyPaste', prob=_base_.copypaste_prob),
68
+ dict(
69
+ type='YOLOv5RandomAffine',
70
+ max_rotate_degree=0.0,
71
+ max_shear_degree=0.0,
72
+ max_aspect_ratio=100.,
73
+ scaling_ratio_range=(1 - _base_.affine_scale,
74
+ 1 + _base_.affine_scale),
75
+ # img_scale is (width, height)
76
+ border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
77
+ border_val=(114, 114, 114),
78
+ min_area_ratio=_base_.min_area_ratio,
79
+ use_mask_refine=_base_.use_mask2refine)
80
+ ]
81
+ train_pipeline = [
82
+ *_base_.pre_transform,
83
+ *mosaic_affine_transform,
84
+ dict(
85
+ type='YOLOv5MultiModalMixUp',
86
+ prob=_base_.mixup_prob,
87
+ pre_transform=[*_base_.pre_transform,
88
+ *mosaic_affine_transform]),
89
+ *_base_.last_transform[:-1],
90
+ *text_transform
91
+ ]
92
+ train_pipeline_stage2 = [
93
+ *_base_.train_pipeline_stage2[:-1],
94
+ *text_transform
95
+ ]
96
+ coco_train_dataset = dict(
97
+ _delete_=True,
98
+ type='MultiModalDataset',
99
+ dataset=dict(
100
+ type='YOLOv5CocoDataset',
101
+ data_root='data/coco',
102
+ ann_file='annotations/instances_train2017.json',
103
+ data_prefix=dict(img='train2017/'),
104
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
105
+ class_text_path='data/captions/coco_class_captions.json',
106
+ pipeline=train_pipeline)
107
+ train_dataloader = dict(
108
+ persistent_workers=persistent_workers,
109
+ batch_size=train_batch_size_per_gpu,
110
+ collate_fn=dict(type='yolow_collate'),
111
+ dataset=coco_train_dataset)
112
+ test_pipeline = [
113
+ *_base_.test_pipeline[:-1],
114
+ dict(type='LoadTextFixed'),
115
+ dict(
116
+ type='mmdet.PackDetInputs',
117
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
118
+ 'scale_factor', 'pad_param', 'texts'))
119
+ ]
120
+ coco_val_dataset = dict(
121
+ _delete_=True,
122
+ type='MultiModalDataset',
123
+ dataset=dict(
124
+ type='YOLOv5CocoDataset',
125
+ data_root='data/coco',
126
+ ann_file='annotations/instances_val2017.json',
127
+ data_prefix=dict(img='val2017/'),
128
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
129
+ class_text_path='data/captions/coco_class_captions.json',
130
+ pipeline=test_pipeline)
131
+ val_dataloader = dict(dataset=coco_val_dataset)
132
+ test_dataloader = val_dataloader
133
+ # training settings
134
+ default_hooks = dict(
135
+ param_scheduler=dict(
136
+ scheduler_type='linear',
137
+ lr_factor=0.01,
138
+ max_epochs=max_epochs),
139
+ checkpoint=dict(
140
+ max_keep_ckpts=-1,
141
+ save_best=None,
142
+ interval=save_epoch_intervals))
143
+ custom_hooks = [
144
+ dict(
145
+ type='EMAHook',
146
+ ema_type='ExpMomentumEMA',
147
+ momentum=0.0001,
148
+ update_buffers=True,
149
+ strict_load=False,
150
+ priority=49),
151
+ dict(
152
+ type='mmdet.PipelineSwitchHook',
153
+ switch_epoch=max_epochs - close_mosaic_epochs,
154
+ switch_pipeline=train_pipeline_stage2)
155
+ ]
156
+ train_cfg = dict(
157
+ max_epochs=max_epochs,
158
+ val_interval=5,
159
+ dynamic_intervals=[((max_epochs - close_mosaic_epochs),
160
+ _base_.val_interval_stage2)])
161
+ optim_wrapper = dict(
162
+ optimizer=dict(
163
+ _delete_=True,
164
+ type='AdamW',
165
+ lr=base_lr,
166
+ weight_decay=weight_decay,
167
+ batch_size_per_gpu=train_batch_size_per_gpu),
168
+ paramwise_cfg=dict(
169
+ bias_decay_mult=0.0,
170
+ norm_decay_mult=0.0,
171
+ custom_keys={'backbone.text_model': dict(lr_mult=0.01),
172
+ 'logit_scale': dict(weight_decay=0.0)}),
173
+ constructor='YOLOWv5OptimizerConstructor')
174
+
175
+ # evaluation settings
176
+ val_evaluator = dict(
177
+ _delete_=True,
178
+ type='mmdet.CocoMetric',
179
+ proposal_nums=(100, 1, 10),
180
+ ann_file='data/coco/annotations/instances_val2017.json',
181
+ metric='bbox')
182
+
183
+ test_evaluator = val_evaluator
configs/finetune_coco/yolo_world_s_t2i_bn_2e-4_100e_4x8gpus_coco_finetune.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = ('../../third_party/mmyolo/configs/yolov8/'
2
+ 'yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco.py')
3
+ custom_imports = dict(imports=['yolo_world'],
4
+ allow_failed_imports=False)
5
+
6
+ # hyper-parameters
7
+ num_classes = 80
8
+ num_training_classes = 80
9
+ max_epochs = 80 # Maximum training epochs
10
+ close_mosaic_epochs = 10
11
+ save_epoch_intervals = 5
12
+ text_channels = 512
13
+ neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
14
+ neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
15
+ base_lr = 2e-4
16
+ weight_decay = 0.05
17
+ train_batch_size_per_gpu = 16
18
+ load_from = 'weights/yolow-v8_s_clipv2_frozen_t2iv2_bn_o365_goldg_pretrain.pth'
19
+ persistent_workers = False
20
+
21
+
22
+ # model settings
23
+ model = dict(
24
+ type='YOLOWorldDetector',
25
+ mm_neck=True,
26
+ num_train_classes=num_training_classes,
27
+ num_test_classes=num_classes,
28
+ data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
29
+ backbone=dict(
30
+ _delete_=True,
31
+ type='MultiModalYOLOBackbone',
32
+ image_model={{_base_.model.backbone}},
33
+ text_model=dict(
34
+ type='HuggingCLIPLanguageBackbone',
35
+ model_name='pretrained_models/clip-vit-base-patch32-projection',
36
+ frozen_modules=['all'])),
37
+ neck=dict(type='YOLOWorldPAFPN',
38
+ guide_channels=text_channels,
39
+ embed_channels=neck_embed_channels,
40
+ num_heads=neck_num_heads,
41
+ block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
42
+ num_csp_blocks=2),
43
+ bbox_head=dict(type='YOLOWorldHead',
44
+ head_module=dict(type='YOLOWorldHeadModule',
45
+ embed_dims=text_channels,
46
+ use_bn_head=True,
47
+ num_classes=num_training_classes)),
48
+ train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
49
+
50
+ # dataset settings
51
+ text_transform = [
52
+ dict(type='RandomLoadText',
53
+ num_neg_samples=(num_classes, num_classes),
54
+ max_num_samples=num_training_classes,
55
+ padding_to_max=True,
56
+ padding_value=''),
57
+ dict(type='mmdet.PackDetInputs',
58
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
59
+ 'flip_direction', 'texts'))
60
+ ]
61
+ mosaic_affine_transform = [
62
+ dict(
63
+ type='MultiModalMosaic',
64
+ img_scale=_base_.img_scale,
65
+ pad_val=114.0,
66
+ pre_transform=_base_.pre_transform),
67
+ dict(type='YOLOv5CopyPaste', prob=_base_.copypaste_prob),
68
+ dict(
69
+ type='YOLOv5RandomAffine',
70
+ max_rotate_degree=0.0,
71
+ max_shear_degree=0.0,
72
+ max_aspect_ratio=100.,
73
+ scaling_ratio_range=(1 - _base_.affine_scale,
74
+ 1 + _base_.affine_scale),
75
+ # img_scale is (width, height)
76
+ border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
77
+ border_val=(114, 114, 114),
78
+ min_area_ratio=_base_.min_area_ratio,
79
+ use_mask_refine=_base_.use_mask2refine)
80
+ ]
81
+ train_pipeline = [
82
+ *_base_.pre_transform,
83
+ *mosaic_affine_transform,
84
+ dict(
85
+ type='YOLOv5MultiModalMixUp',
86
+ prob=_base_.mixup_prob,
87
+ pre_transform=[*_base_.pre_transform,
88
+ *mosaic_affine_transform]),
89
+ *_base_.last_transform[:-1],
90
+ *text_transform
91
+ ]
92
+ train_pipeline_stage2 = [
93
+ *_base_.train_pipeline_stage2[:-1],
94
+ *text_transform
95
+ ]
96
+ coco_train_dataset = dict(
97
+ _delete_=True,
98
+ type='MultiModalDataset',
99
+ dataset=dict(
100
+ type='YOLOv5CocoDataset',
101
+ data_root='data/coco',
102
+ ann_file='annotations/instances_train2017.json',
103
+ data_prefix=dict(img='train2017/'),
104
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
105
+ class_text_path='data/captions/coco_class_captions.json',
106
+ pipeline=train_pipeline)
107
+ train_dataloader = dict(
108
+ persistent_workers=persistent_workers,
109
+ batch_size=train_batch_size_per_gpu,
110
+ collate_fn=dict(type='yolow_collate'),
111
+ dataset=coco_train_dataset)
112
+ test_pipeline = [
113
+ *_base_.test_pipeline[:-1],
114
+ dict(type='LoadTextFixed'),
115
+ dict(
116
+ type='mmdet.PackDetInputs',
117
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
118
+ 'scale_factor', 'pad_param', 'texts'))
119
+ ]
120
+ coco_val_dataset = dict(
121
+ _delete_=True,
122
+ type='MultiModalDataset',
123
+ dataset=dict(
124
+ type='YOLOv5CocoDataset',
125
+ data_root='data/coco',
126
+ ann_file='annotations/instances_val2017.json',
127
+ data_prefix=dict(img='val2017/'),
128
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
129
+ class_text_path='data/captions/coco_class_captions.json',
130
+ pipeline=test_pipeline)
131
+ val_dataloader = dict(dataset=coco_val_dataset)
132
+ test_dataloader = val_dataloader
133
+ # training settings
134
+ default_hooks = dict(
135
+ param_scheduler=dict(
136
+ scheduler_type='linear',
137
+ lr_factor=0.01,
138
+ max_epochs=max_epochs),
139
+ checkpoint=dict(
140
+ max_keep_ckpts=-1,
141
+ save_best=None,
142
+ interval=save_epoch_intervals))
143
+ custom_hooks = [
144
+ dict(
145
+ type='EMAHook',
146
+ ema_type='ExpMomentumEMA',
147
+ momentum=0.0001,
148
+ update_buffers=True,
149
+ strict_load=False,
150
+ priority=49),
151
+ dict(
152
+ type='mmdet.PipelineSwitchHook',
153
+ switch_epoch=max_epochs - close_mosaic_epochs,
154
+ switch_pipeline=train_pipeline_stage2)
155
+ ]
156
+ train_cfg = dict(
157
+ max_epochs=max_epochs,
158
+ val_interval=5,
159
+ dynamic_intervals=[((max_epochs - close_mosaic_epochs),
160
+ _base_.val_interval_stage2)])
161
+ optim_wrapper = dict(
162
+ optimizer=dict(
163
+ _delete_=True,
164
+ type='AdamW',
165
+ lr=base_lr,
166
+ weight_decay=weight_decay,
167
+ batch_size_per_gpu=train_batch_size_per_gpu),
168
+ paramwise_cfg=dict(
169
+ bias_decay_mult=0.0,
170
+ norm_decay_mult=0.0,
171
+ custom_keys={'backbone.text_model': dict(lr_mult=0.01),
172
+ 'logit_scale': dict(weight_decay=0.0)}),
173
+ constructor='YOLOWv5OptimizerConstructor')
174
+
175
+ # evaluation settings
176
+ val_evaluator = dict(
177
+ _delete_=True,
178
+ type='mmdet.CocoMetric',
179
+ proposal_nums=(100, 1, 10),
180
+ ann_file='data/coco/annotations/instances_val2017.json',
181
+ metric='bbox')
182
+
183
+ test_evaluator = val_evaluator
configs/pretrain/yolo_world_l_dual_3block_l2norm_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = ('../../third_party/mmyolo/configs/yolov8/'
2
+ 'yolov8_l_syncbn_fast_8xb16-500e_coco.py')
3
+ custom_imports = dict(imports=['yolo_world'],
4
+ allow_failed_imports=False)
5
+
6
+ # hyper-parameters
7
+ num_classes = 1203
8
+ num_training_classes = 80
9
+ max_epochs = 100 # Maximum training epochs
10
+ close_mosaic_epochs = 2
11
+ save_epoch_intervals = 2
12
+ text_channels = 512
13
+ neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
14
+ neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
15
+ base_lr = 2e-3
16
+ weight_decay = 0.05 / 2
17
+ train_batch_size_per_gpu = 16
18
+
19
+ # model settings
20
+ model = dict(
21
+ type='YOLOWorldDetector',
22
+ mm_neck=True,
23
+ num_train_classes=num_training_classes,
24
+ num_test_classes=num_classes,
25
+ data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
26
+ backbone=dict(
27
+ _delete_=True,
28
+ type='MultiModalYOLOBackbone',
29
+ image_model={{_base_.model.backbone}},
30
+ text_model=dict(
31
+ type='HuggingCLIPLanguageBackbone',
32
+ model_name='pretrained_models/clip-vit-base-patch32-projection',
33
+ frozen_modules=['all'])),
34
+ neck=dict(type='YOLOWolrdDualPAFPN',
35
+ guide_channels=text_channels,
36
+ embed_channels=neck_embed_channels,
37
+ num_heads=neck_num_heads,
38
+ block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
39
+ text_enhancder=dict(type='ImagePoolingAttentionModule',
40
+ embed_channels=256,
41
+ num_heads=8)),
42
+ bbox_head=dict(type='YOLOWorldHead',
43
+ head_module=dict(type='YOLOWorldHeadModule',
44
+ embed_dims=text_channels,
45
+ num_classes=num_training_classes)),
46
+ train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
47
+
48
+ # dataset settings
49
+ text_transform = [
50
+ dict(type='RandomLoadText',
51
+ num_neg_samples=(num_classes, num_classes),
52
+ max_num_samples=num_training_classes,
53
+ padding_to_max=True,
54
+ padding_value=''),
55
+ dict(type='mmdet.PackDetInputs',
56
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
57
+ 'flip_direction', 'texts'))
58
+ ]
59
+ train_pipeline = [
60
+ *_base_.pre_transform,
61
+ dict(type='MultiModalMosaic',
62
+ img_scale=_base_.img_scale,
63
+ pad_val=114.0,
64
+ pre_transform=_base_.pre_transform),
65
+ dict(
66
+ type='YOLOv5RandomAffine',
67
+ max_rotate_degree=0.0,
68
+ max_shear_degree=0.0,
69
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
70
+ max_aspect_ratio=_base_.max_aspect_ratio,
71
+ border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
72
+ border_val=(114, 114, 114)),
73
+ *_base_.last_transform[:-1],
74
+ *text_transform,
75
+ ]
76
+ train_pipeline_stage2 = [*_base_.train_pipeline_stage2[:-1], *text_transform]
77
+ obj365v1_train_dataset = dict(
78
+ type='MultiModalDataset',
79
+ dataset=dict(
80
+ type='YOLOv5Objects365V1Dataset',
81
+ data_root='data/objects365v1/',
82
+ ann_file='annotations/objects365_train.json',
83
+ data_prefix=dict(img='train/'),
84
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
85
+ class_text_path='data/captions/obj365v1_class_captions.json',
86
+ pipeline=train_pipeline)
87
+
88
+ mg_train_dataset = dict(type='YOLOv5MixedGroundingDataset',
89
+ data_root='data/mixed_grounding/',
90
+ ann_file='annotations/final_mixed_train_no_coco.json',
91
+ data_prefix=dict(img='gqa/images/'),
92
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
93
+ pipeline=train_pipeline)
94
+
95
+ flickr_train_dataset = dict(
96
+ type='YOLOv5MixedGroundingDataset',
97
+ data_root='data/flickr/',
98
+ ann_file='annotations/final_flickr_separateGT_train.json',
99
+ data_prefix=dict(img='full_images/'),
100
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
101
+ pipeline=train_pipeline)
102
+
103
+ train_dataloader = dict(batch_size=train_batch_size_per_gpu,
104
+ collate_fn=dict(type='yolow_collate'),
105
+ dataset=dict(_delete_=True,
106
+ type='ConcatDataset',
107
+ datasets=[
108
+ obj365v1_train_dataset,
109
+ flickr_train_dataset, mg_train_dataset
110
+ ],
111
+ ignore_keys=['classes', 'palette']))
112
+
113
+ test_pipeline = [
114
+ *_base_.test_pipeline[:-1],
115
+ dict(type='LoadText'),
116
+ dict(type='mmdet.PackDetInputs',
117
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
118
+ 'scale_factor', 'pad_param', 'texts'))
119
+ ]
120
+ coco_val_dataset = dict(
121
+ _delete_=True,
122
+ type='MultiModalDataset',
123
+ dataset=dict(type='YOLOv5LVISV1Dataset',
124
+ data_root='data/coco/',
125
+ test_mode=True,
126
+ ann_file='lvis/lvis_v1_minival_inserted_image_name.json',
127
+ data_prefix=dict(img=''),
128
+ batch_shapes_cfg=None),
129
+ class_text_path='data/captions/lvis_v1_class_captions.json',
130
+ pipeline=test_pipeline)
131
+ val_dataloader = dict(dataset=coco_val_dataset)
132
+ test_dataloader = val_dataloader
133
+
134
+ val_evaluator = dict(type='mmdet.LVISMetric',
135
+ ann_file='data/coco/lvis/\
136
+ lvis_v1_minival_inserted_image_name.json',
137
+ metric='bbox')
138
+ test_evaluator = val_evaluator
139
+
140
+ # training settings
141
+ default_hooks = dict(param_scheduler=dict(max_epochs=max_epochs),
142
+ checkpoint=dict(interval=save_epoch_intervals,
143
+ rule='greater'))
144
+ custom_hooks = [
145
+ dict(type='EMAHook',
146
+ ema_type='ExpMomentumEMA',
147
+ momentum=0.0001,
148
+ update_buffers=True,
149
+ strict_load=False,
150
+ priority=49),
151
+ dict(type='mmdet.PipelineSwitchHook',
152
+ switch_epoch=max_epochs - close_mosaic_epochs,
153
+ switch_pipeline=train_pipeline_stage2)
154
+ ]
155
+ train_cfg = dict(max_epochs=max_epochs,
156
+ val_interval=10,
157
+ dynamic_intervals=[((max_epochs - close_mosaic_epochs),
158
+ _base_.val_interval_stage2)])
159
+ optim_wrapper = dict(optimizer=dict(
160
+ _delete_=True,
161
+ type='AdamW',
162
+ lr=base_lr,
163
+ weight_decay=weight_decay,
164
+ batch_size_per_gpu=train_batch_size_per_gpu),
165
+ paramwise_cfg=dict(bias_decay_mult=0.0,
166
+ norm_decay_mult=0.0,
167
+ custom_keys={
168
+ 'backbone.text_model':
169
+ dict(lr_mult=0.01),
170
+ 'logit_scale':
171
+ dict(weight_decay=0.0)
172
+ }),
173
+ constructor='YOLOWv5OptimizerConstructor')
configs/pretrain/yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = ('../../third_party/mmyolo/configs/yolov8/'
2
+ 'yolov8_l_syncbn_fast_8xb16-500e_coco.py')
3
+ custom_imports = dict(imports=['yolo_world'],
4
+ allow_failed_imports=False)
5
+
6
+ # hyper-parameters
7
+ num_classes = 1203
8
+ num_training_classes = 80
9
+ max_epochs = 100 # Maximum training epochs
10
+ close_mosaic_epochs = 2
11
+ save_epoch_intervals = 2
12
+ text_channels = 512
13
+ neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
14
+ neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
15
+ base_lr = 2e-3
16
+ weight_decay = 0.05 / 2
17
+ train_batch_size_per_gpu = 16
18
+
19
+ # model settings
20
+ model = dict(
21
+ type='YOLOWorldDetector',
22
+ mm_neck=True,
23
+ num_train_classes=num_training_classes,
24
+ num_test_classes=num_classes,
25
+ data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
26
+ backbone=dict(
27
+ _delete_=True,
28
+ type='MultiModalYOLOBackbone',
29
+ image_model={{_base_.model.backbone}},
30
+ text_model=dict(
31
+ type='HuggingCLIPLanguageBackbone',
32
+ model_name='openai/clip-vit-base-patch32',
33
+ frozen_modules=['all'])),
34
+ neck=dict(type='YOLOWorldPAFPN',
35
+ guide_channels=text_channels,
36
+ embed_channels=neck_embed_channels,
37
+ num_heads=neck_num_heads,
38
+ block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
39
+ num_csp_blocks=2),
40
+ bbox_head=dict(type='YOLOWorldHead',
41
+ head_module=dict(type='YOLOWorldHeadModule',
42
+ embed_dims=text_channels,
43
+ use_bn_head=True,
44
+ num_classes=num_training_classes)),
45
+ train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
46
+
47
+ # dataset settings
48
+ text_transform = [
49
+ dict(type='RandomLoadText',
50
+ num_neg_samples=(num_classes, num_classes),
51
+ max_num_samples=num_training_classes,
52
+ padding_to_max=True,
53
+ padding_value=''),
54
+ dict(type='mmdet.PackDetInputs',
55
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
56
+ 'flip_direction', 'texts'))
57
+ ]
58
+ train_pipeline = [
59
+ *_base_.pre_transform,
60
+ dict(type='MultiModalMosaic',
61
+ img_scale=_base_.img_scale,
62
+ pad_val=114.0,
63
+ pre_transform=_base_.pre_transform),
64
+ dict(
65
+ type='YOLOv5RandomAffine',
66
+ max_rotate_degree=0.0,
67
+ max_shear_degree=0.0,
68
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
69
+ max_aspect_ratio=_base_.max_aspect_ratio,
70
+ border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
71
+ border_val=(114, 114, 114)),
72
+ *_base_.last_transform[:-1],
73
+ *text_transform,
74
+ ]
75
+ train_pipeline_stage2 = [*_base_.train_pipeline_stage2[:-1], *text_transform]
76
+ obj365v1_train_dataset = dict(
77
+ type='MultiModalDataset',
78
+ dataset=dict(
79
+ type='YOLOv5Objects365V1Dataset',
80
+ data_root='data/objects365v1/',
81
+ ann_file='annotations/objects365_train.json',
82
+ data_prefix=dict(img='train/'),
83
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
84
+ class_text_path='data/captions/obj365v1_class_captions.json',
85
+ pipeline=train_pipeline)
86
+
87
+ mg_train_dataset = dict(
88
+ type='YOLOv5MixedGroundingDataset',
89
+ data_root='data/mixed_grounding/',
90
+ ann_file='annotations/final_mixed_train_no_coco.json',
91
+ data_prefix=dict(img='gqa/images/'),
92
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
93
+ pipeline=train_pipeline)
94
+
95
+ flickr_train_dataset = dict(
96
+ type='YOLOv5MixedGroundingDataset',
97
+ data_root='data/flickr/',
98
+ ann_file='annotations/final_flickr_separateGT_train.json',
99
+ data_prefix=dict(img='images/'),
100
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
101
+ pipeline=train_pipeline)
102
+
103
+ train_dataloader = dict(
104
+ batch_size=train_batch_size_per_gpu,
105
+ collate_fn=dict(type='yolow_collate'),
106
+ dataset=dict(
107
+ _delete_=True,
108
+ type='ConcatDataset',
109
+ datasets=[
110
+ obj365v1_train_dataset,
111
+ flickr_train_dataset,
112
+ mg_train_dataset
113
+ ],
114
+ ignore_keys=['classes', 'palette']))
115
+
116
+ test_pipeline = [
117
+ *_base_.test_pipeline[:-1],
118
+ dict(type='LoadText'),
119
+ dict(type='mmdet.PackDetInputs',
120
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
121
+ 'scale_factor', 'pad_param', 'texts'))
122
+ ]
123
+ coco_val_dataset = dict(
124
+ _delete_=True,
125
+ type='MultiModalDataset',
126
+ dataset=dict(
127
+ type='YOLOv5LVISV1Dataset',
128
+ data_root='data/lvis/',
129
+ test_mode=True,
130
+ ann_file='annotations/'
131
+ 'lvis_v1_minival_inserted_image_name.json',
132
+ data_prefix=dict(img=''),
133
+ batch_shapes_cfg=None),
134
+ class_text_path='data/captions/lvis_v1_class_captions.json',
135
+ pipeline=test_pipeline)
136
+ val_dataloader = dict(dataset=coco_val_dataset)
137
+ test_dataloader = val_dataloader
138
+
139
+ val_evaluator = dict(
140
+ type='mmdet.LVISMetric',
141
+ ann_file='data/lvis/annotations/'
142
+ 'lvis_v1_minival_inserted_image_name.json',
143
+ metric='bbox')
144
+ test_evaluator = val_evaluator
145
+
146
+ # training settings
147
+ default_hooks = dict(
148
+ param_scheduler=dict(max_epochs=max_epochs),
149
+ checkpoint=dict(interval=save_epoch_intervals,
150
+ rule='greater'))
151
+ custom_hooks = [
152
+ dict(type='EMAHook',
153
+ ema_type='ExpMomentumEMA',
154
+ momentum=0.0001,
155
+ update_buffers=True,
156
+ strict_load=False,
157
+ priority=49),
158
+ dict(type='mmdet.PipelineSwitchHook',
159
+ switch_epoch=max_epochs - close_mosaic_epochs,
160
+ switch_pipeline=train_pipeline_stage2)
161
+ ]
162
+ train_cfg = dict(
163
+ max_epochs=max_epochs,
164
+ val_interval=10,
165
+ dynamic_intervals=[((max_epochs - close_mosaic_epochs),
166
+ _base_.val_interval_stage2)])
167
+ optim_wrapper = dict(optimizer=dict(
168
+ _delete_=True,
169
+ type='AdamW',
170
+ lr=base_lr,
171
+ weight_decay=weight_decay,
172
+ batch_size_per_gpu=train_batch_size_per_gpu),
173
+ paramwise_cfg=dict(
174
+ bias_decay_mult=0.0,
175
+ norm_decay_mult=0.0,
176
+ custom_keys={
177
+ 'backbone.text_model':
178
+ dict(lr_mult=0.01),
179
+ 'logit_scale':
180
+ dict(weight_decay=0.0)
181
+ }),
182
+ constructor='YOLOWv5OptimizerConstructor')
configs/pretrain/yolo_world_m_dual_3block_l2norm_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = ('../../third_party/mmyolo/configs/yolov8/'
2
+ 'yolov8_m_syncbn_fast_8xb16-500e_coco.py')
3
+ custom_imports = dict(imports=['yolo_world'],
4
+ allow_failed_imports=False)
5
+
6
+ # hyper-parameters
7
+ num_classes = 1203
8
+ num_training_classes = 80
9
+ max_epochs = 100 # Maximum training epochs
10
+ close_mosaic_epochs = 2
11
+ save_epoch_intervals = 2
12
+ text_channels = 512
13
+ neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
14
+ neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
15
+ base_lr = 2e-3
16
+ weight_decay = 0.05 / 2
17
+ train_batch_size_per_gpu = 16
18
+
19
+ # model settings
20
+ model = dict(
21
+ type='YOLOWorldDetector',
22
+ mm_neck=True,
23
+ num_train_classes=num_training_classes,
24
+ num_test_classes=num_classes,
25
+ data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
26
+ backbone=dict(
27
+ _delete_=True,
28
+ type='MultiModalYOLOBackbone',
29
+ image_model={{_base_.model.backbone}},
30
+ text_model=dict(
31
+ type='HuggingCLIPLanguageBackbone',
32
+ model_name='pretrained_models/clip-vit-base-patch32-projection',
33
+ frozen_modules=['all'])),
34
+ neck=dict(type='YOLOWolrdDualPAFPN',
35
+ guide_channels=text_channels,
36
+ embed_channels=neck_embed_channels,
37
+ num_heads=neck_num_heads,
38
+ block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
39
+ text_enhancder=dict(type='ImagePoolingAttentionModule',
40
+ embed_channels=256,
41
+ num_heads=8)),
42
+ bbox_head=dict(type='YOLOWorldHead',
43
+ head_module=dict(type='YOLOWorldHeadModule',
44
+ embed_dims=text_channels,
45
+ num_classes=num_training_classes)),
46
+ train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
47
+
48
+ # dataset settings
49
+ text_transform = [
50
+ dict(type='RandomLoadText',
51
+ num_neg_samples=(num_classes, num_classes),
52
+ max_num_samples=num_training_classes,
53
+ padding_to_max=True,
54
+ padding_value=''),
55
+ dict(type='mmdet.PackDetInputs',
56
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
57
+ 'flip_direction', 'texts'))
58
+ ]
59
+ train_pipeline = [
60
+ *_base_.pre_transform,
61
+ dict(type='MultiModalMosaic',
62
+ img_scale=_base_.img_scale,
63
+ pad_val=114.0,
64
+ pre_transform=_base_.pre_transform),
65
+ dict(
66
+ type='YOLOv5RandomAffine',
67
+ max_rotate_degree=0.0,
68
+ max_shear_degree=0.0,
69
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
70
+ max_aspect_ratio=_base_.max_aspect_ratio,
71
+ border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
72
+ border_val=(114, 114, 114)),
73
+ *_base_.last_transform[:-1],
74
+ *text_transform,
75
+ ]
76
+ train_pipeline_stage2 = [*_base_.train_pipeline_stage2[:-1], *text_transform]
77
+ obj365v1_train_dataset = dict(
78
+ type='MultiModalDataset',
79
+ dataset=dict(
80
+ type='YOLOv5Objects365V1Dataset',
81
+ data_root='data/objects365v1/',
82
+ ann_file='annotations/objects365_train.json',
83
+ data_prefix=dict(img='train/'),
84
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
85
+ class_text_path='data/captions/obj365v1_class_captions.json',
86
+ pipeline=train_pipeline)
87
+
88
+ mg_train_dataset = dict(type='YOLOv5MixedGroundingDataset',
89
+ data_root='data/mixed_grounding/',
90
+ ann_file='annotations/final_mixed_train_no_coco.json',
91
+ data_prefix=dict(img='gqa/images/'),
92
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
93
+ pipeline=train_pipeline)
94
+
95
+ flickr_train_dataset = dict(
96
+ type='YOLOv5MixedGroundingDataset',
97
+ data_root='data/flickr/',
98
+ ann_file='annotations/final_flickr_separateGT_train.json',
99
+ data_prefix=dict(img='full_images/'),
100
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
101
+ pipeline=train_pipeline)
102
+
103
+ train_dataloader = dict(batch_size=train_batch_size_per_gpu,
104
+ collate_fn=dict(type='yolow_collate'),
105
+ dataset=dict(_delete_=True,
106
+ type='ConcatDataset',
107
+ datasets=[
108
+ obj365v1_train_dataset,
109
+ flickr_train_dataset, mg_train_dataset
110
+ ],
111
+ ignore_keys=['classes', 'palette']))
112
+
113
+ test_pipeline = [
114
+ *_base_.test_pipeline[:-1],
115
+ dict(type='LoadText'),
116
+ dict(type='mmdet.PackDetInputs',
117
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
118
+ 'scale_factor', 'pad_param', 'texts'))
119
+ ]
120
+ coco_val_dataset = dict(
121
+ _delete_=True,
122
+ type='MultiModalDataset',
123
+ dataset=dict(type='YOLOv5LVISV1Dataset',
124
+ data_root='data/coco/',
125
+ test_mode=True,
126
+ ann_file='lvis/lvis_v1_minival_inserted_image_name.json',
127
+ data_prefix=dict(img=''),
128
+ batch_shapes_cfg=None),
129
+ class_text_path='data/captions/lvis_v1_class_captions.json',
130
+ pipeline=test_pipeline)
131
+ val_dataloader = dict(dataset=coco_val_dataset)
132
+ test_dataloader = val_dataloader
133
+
134
+ val_evaluator = dict(type='mmdet.LVISMetric',
135
+ ann_file='data/coco/lvis/\
136
+ lvis_v1_minival_inserted_image_name.json',
137
+ metric='bbox')
138
+ test_evaluator = val_evaluator
139
+
140
+ # training settings
141
+ default_hooks = dict(param_scheduler=dict(max_epochs=max_epochs),
142
+ checkpoint=dict(interval=save_epoch_intervals,
143
+ rule='greater'))
144
+ custom_hooks = [
145
+ dict(type='EMAHook',
146
+ ema_type='ExpMomentumEMA',
147
+ momentum=0.0001,
148
+ update_buffers=True,
149
+ strict_load=False,
150
+ priority=49),
151
+ dict(type='mmdet.PipelineSwitchHook',
152
+ switch_epoch=max_epochs - close_mosaic_epochs,
153
+ switch_pipeline=train_pipeline_stage2)
154
+ ]
155
+ train_cfg = dict(max_epochs=max_epochs,
156
+ val_interval=10,
157
+ dynamic_intervals=[((max_epochs - close_mosaic_epochs),
158
+ _base_.val_interval_stage2)])
159
+ optim_wrapper = dict(optimizer=dict(
160
+ _delete_=True,
161
+ type='AdamW',
162
+ lr=base_lr,
163
+ weight_decay=weight_decay,
164
+ batch_size_per_gpu=train_batch_size_per_gpu),
165
+ paramwise_cfg=dict(bias_decay_mult=0.0,
166
+ norm_decay_mult=0.0,
167
+ custom_keys={
168
+ 'backbone.text_model':
169
+ dict(lr_mult=0.01),
170
+ 'logit_scale':
171
+ dict(weight_decay=0.0)
172
+ }),
173
+ constructor='YOLOWv5OptimizerConstructor')
configs/pretrain/yolo_world_m_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = ('../../third_party/mmyolo/configs/yolov8/'
2
+ 'yolov8_m_syncbn_fast_8xb16-500e_coco.py')
3
+ custom_imports = dict(imports=['yolo_world'],
4
+ allow_failed_imports=False)
5
+
6
+ # hyper-parameters
7
+ num_classes = 1203
8
+ num_training_classes = 80
9
+ max_epochs = 100 # Maximum training epochs
10
+ close_mosaic_epochs = 2
11
+ save_epoch_intervals = 2
12
+ text_channels = 512
13
+ neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
14
+ neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
15
+ base_lr = 2e-3
16
+ weight_decay = 0.05 / 2
17
+ train_batch_size_per_gpu = 16
18
+
19
+ # model settings
20
+ model = dict(
21
+ type='YOLOWorldDetector',
22
+ mm_neck=True,
23
+ num_train_classes=num_training_classes,
24
+ num_test_classes=num_classes,
25
+ data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
26
+ backbone=dict(
27
+ _delete_=True,
28
+ type='MultiModalYOLOBackbone',
29
+ image_model={{_base_.model.backbone}},
30
+ text_model=dict(
31
+ type='HuggingCLIPLanguageBackbone',
32
+ model_name='pretrained_models/clip-vit-base-patch32-projection',
33
+ frozen_modules=['all'])),
34
+ neck=dict(type='YOLOWorldPAFPN',
35
+ guide_channels=text_channels,
36
+ embed_channels=neck_embed_channels,
37
+ num_heads=neck_num_heads,
38
+ block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
39
+ num_csp_blocks=2),
40
+ bbox_head=dict(type='YOLOWorldHead',
41
+ head_module=dict(type='YOLOWorldHeadModule',
42
+ embed_dims=text_channels,
43
+ use_bn_head=True,
44
+ num_classes=num_training_classes)),
45
+ train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
46
+
47
+ # dataset settings
48
+ text_transform = [
49
+ dict(type='RandomLoadText',
50
+ num_neg_samples=(num_classes, num_classes),
51
+ max_num_samples=num_training_classes,
52
+ padding_to_max=True,
53
+ padding_value=''),
54
+ dict(type='mmdet.PackDetInputs',
55
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
56
+ 'flip_direction', 'texts'))
57
+ ]
58
+ train_pipeline = [
59
+ *_base_.pre_transform,
60
+ dict(type='MultiModalMosaic',
61
+ img_scale=_base_.img_scale,
62
+ pad_val=114.0,
63
+ pre_transform=_base_.pre_transform),
64
+ dict(
65
+ type='YOLOv5RandomAffine',
66
+ max_rotate_degree=0.0,
67
+ max_shear_degree=0.0,
68
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
69
+ max_aspect_ratio=_base_.max_aspect_ratio,
70
+ border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
71
+ border_val=(114, 114, 114)),
72
+ *_base_.last_transform[:-1],
73
+ *text_transform,
74
+ ]
75
+ train_pipeline_stage2 = [*_base_.train_pipeline_stage2[:-1], *text_transform]
76
+ obj365v1_train_dataset = dict(
77
+ type='MultiModalDataset',
78
+ dataset=dict(
79
+ type='YOLOv5Objects365V1Dataset',
80
+ data_root='data/objects365v1/',
81
+ ann_file='annotations/objects365_train.json',
82
+ data_prefix=dict(img='train/'),
83
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
84
+ class_text_path='data/captions/obj365v1_class_captions.json',
85
+ pipeline=train_pipeline)
86
+
87
+ mg_train_dataset = dict(type='YOLOv5MixedGroundingDataset',
88
+ data_root='data/mixed_grounding/',
89
+ ann_file='annotations/final_mixed_train_no_coco.json',
90
+ data_prefix=dict(img='gqa/images/'),
91
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
92
+ pipeline=train_pipeline)
93
+
94
+ flickr_train_dataset = dict(
95
+ type='YOLOv5MixedGroundingDataset',
96
+ data_root='data/flickr/',
97
+ ann_file='annotations/final_flickr_separateGT_train.json',
98
+ data_prefix=dict(img='full_images/'),
99
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
100
+ pipeline=train_pipeline)
101
+
102
+ train_dataloader = dict(batch_size=train_batch_size_per_gpu,
103
+ collate_fn=dict(type='yolow_collate'),
104
+ dataset=dict(_delete_=True,
105
+ type='ConcatDataset',
106
+ datasets=[
107
+ obj365v1_train_dataset,
108
+ flickr_train_dataset, mg_train_dataset
109
+ ],
110
+ ignore_keys=['classes', 'palette']))
111
+
112
+ test_pipeline = [
113
+ *_base_.test_pipeline[:-1],
114
+ dict(type='LoadText'),
115
+ dict(type='mmdet.PackDetInputs',
116
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
117
+ 'scale_factor', 'pad_param', 'texts'))
118
+ ]
119
+ coco_val_dataset = dict(
120
+ _delete_=True,
121
+ type='MultiModalDataset',
122
+ dataset=dict(type='YOLOv5LVISV1Dataset',
123
+ data_root='data/coco/',
124
+ test_mode=True,
125
+ ann_file='lvis/lvis_v1_minival_inserted_image_name.json',
126
+ data_prefix=dict(img=''),
127
+ batch_shapes_cfg=None),
128
+ class_text_path='data/captions/lvis_v1_class_captions.json',
129
+ pipeline=test_pipeline)
130
+ val_dataloader = dict(dataset=coco_val_dataset)
131
+ test_dataloader = val_dataloader
132
+
133
+ val_evaluator = dict(type='mmdet.LVISMetric',
134
+ ann_file='data/coco/lvis/lvis_v1_minival_inserted_image_name.json',
135
+ metric='bbox')
136
+ test_evaluator = val_evaluator
137
+
138
+ # training settings
139
+ default_hooks = dict(param_scheduler=dict(max_epochs=max_epochs),
140
+ checkpoint=dict(interval=save_epoch_intervals,
141
+ rule='greater'))
142
+ custom_hooks = [
143
+ dict(type='EMAHook',
144
+ ema_type='ExpMomentumEMA',
145
+ momentum=0.0001,
146
+ update_buffers=True,
147
+ strict_load=False,
148
+ priority=49),
149
+ dict(type='mmdet.PipelineSwitchHook',
150
+ switch_epoch=max_epochs - close_mosaic_epochs,
151
+ switch_pipeline=train_pipeline_stage2)
152
+ ]
153
+ train_cfg = dict(max_epochs=max_epochs,
154
+ val_interval=10,
155
+ dynamic_intervals=[((max_epochs - close_mosaic_epochs),
156
+ _base_.val_interval_stage2)])
157
+ optim_wrapper = dict(optimizer=dict(
158
+ _delete_=True,
159
+ type='AdamW',
160
+ lr=base_lr,
161
+ weight_decay=weight_decay,
162
+ batch_size_per_gpu=train_batch_size_per_gpu),
163
+ paramwise_cfg=dict(bias_decay_mult=0.0,
164
+ norm_decay_mult=0.0,
165
+ custom_keys={
166
+ 'backbone.text_model':
167
+ dict(lr_mult=0.01),
168
+ 'logit_scale':
169
+ dict(weight_decay=0.0)
170
+ }),
171
+ constructor='YOLOWv5OptimizerConstructor')
configs/pretrain/yolo_world_s_dual_l2norm_3block_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = ('../../third_party/mmyolo/configs/yolov8/'
2
+ 'yolov8_s_syncbn_fast_8xb16-500e_coco.py')
3
+ custom_imports = dict(imports=['yolo_world'],
4
+ allow_failed_imports=False)
5
+
6
+ # hyper-parameters
7
+ num_classes = 1203
8
+ num_training_classes = 80
9
+ max_epochs = 100 # Maximum training epochs
10
+ close_mosaic_epochs = 2
11
+ save_epoch_intervals = 2
12
+ text_channels = 512
13
+ neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
14
+ neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
15
+ base_lr = 2e-3
16
+ weight_decay = 0.05 / 2
17
+ train_batch_size_per_gpu = 16
18
+
19
+ # model settings
20
+ model = dict(
21
+ type='YOLOWorldDetector',
22
+ mm_neck=True,
23
+ num_train_classes=num_training_classes,
24
+ num_test_classes=num_classes,
25
+ data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
26
+ backbone=dict(
27
+ _delete_=True,
28
+ type='MultiModalYOLOBackbone',
29
+ image_model={{_base_.model.backbone}},
30
+ text_model=dict(
31
+ type='HuggingCLIPLanguageBackbone',
32
+ model_name='pretrained_models/clip-vit-base-patch32-projection',
33
+ frozen_modules=['all'])),
34
+ neck=dict(type='YOLOWolrdDualPAFPN',
35
+ guide_channels=text_channels,
36
+ embed_channels=neck_embed_channels,
37
+ num_heads=neck_num_heads,
38
+ block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
39
+ text_enhancder=dict(type='ImagePoolingAttentionModule',
40
+ embed_channels=256,
41
+ num_heads=8)),
42
+ bbox_head=dict(type='YOLOWorldHead',
43
+ head_module=dict(type='YOLOWorldHeadModule',
44
+ embed_dims=text_channels,
45
+ num_classes=num_training_classes)),
46
+ train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
47
+
48
+ # dataset settings
49
+ text_transform = [
50
+ dict(type='RandomLoadText',
51
+ num_neg_samples=(num_classes, num_classes),
52
+ max_num_samples=num_training_classes,
53
+ padding_to_max=True,
54
+ padding_value=''),
55
+ dict(type='mmdet.PackDetInputs',
56
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
57
+ 'flip_direction', 'texts'))
58
+ ]
59
+ train_pipeline = [
60
+ *_base_.pre_transform,
61
+ dict(type='MultiModalMosaic',
62
+ img_scale=_base_.img_scale,
63
+ pad_val=114.0,
64
+ pre_transform=_base_.pre_transform),
65
+ dict(
66
+ type='YOLOv5RandomAffine',
67
+ max_rotate_degree=0.0,
68
+ max_shear_degree=0.0,
69
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
70
+ max_aspect_ratio=_base_.max_aspect_ratio,
71
+ border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
72
+ border_val=(114, 114, 114)),
73
+ *_base_.last_transform[:-1],
74
+ *text_transform,
75
+ ]
76
+ train_pipeline_stage2 = [*_base_.train_pipeline_stage2[:-1], *text_transform]
77
+ obj365v1_train_dataset = dict(
78
+ type='MultiModalDataset',
79
+ dataset=dict(
80
+ type='YOLOv5Objects365V1Dataset',
81
+ data_root='data/objects365v1/',
82
+ ann_file='annotations/objects365_train.json',
83
+ data_prefix=dict(img='train/'),
84
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
85
+ class_text_path='data/captions/obj365v1_class_captions.json',
86
+ pipeline=train_pipeline)
87
+
88
+ mg_train_dataset = dict(type='YOLOv5MixedGroundingDataset',
89
+ data_root='data/mixed_grounding/',
90
+ ann_file='annotations/final_mixed_train_no_coco.json',
91
+ data_prefix=dict(img='gqa/images/'),
92
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
93
+ pipeline=train_pipeline)
94
+
95
+ flickr_train_dataset = dict(
96
+ type='YOLOv5MixedGroundingDataset',
97
+ data_root='data/flickr/',
98
+ ann_file='annotations/final_flickr_separateGT_train.json',
99
+ data_prefix=dict(img='full_images/'),
100
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
101
+ pipeline=train_pipeline)
102
+
103
+ train_dataloader = dict(batch_size=train_batch_size_per_gpu,
104
+ collate_fn=dict(type='yolow_collate'),
105
+ dataset=dict(_delete_=True,
106
+ type='ConcatDataset',
107
+ datasets=[
108
+ obj365v1_train_dataset,
109
+ flickr_train_dataset, mg_train_dataset
110
+ ],
111
+ ignore_keys=['classes', 'palette']))
112
+
113
+ test_pipeline = [
114
+ *_base_.test_pipeline[:-1],
115
+ dict(type='LoadText'),
116
+ dict(type='mmdet.PackDetInputs',
117
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
118
+ 'scale_factor', 'pad_param', 'texts'))
119
+ ]
120
+ coco_val_dataset = dict(
121
+ _delete_=True,
122
+ type='MultiModalDataset',
123
+ dataset=dict(type='YOLOv5LVISV1Dataset',
124
+ data_root='data/coco/',
125
+ test_mode=True,
126
+ ann_file='lvis/lvis_v1_minival_inserted_image_name.json',
127
+ data_prefix=dict(img=''),
128
+ batch_shapes_cfg=None),
129
+ class_text_path='data/captions/lvis_v1_class_captions.json',
130
+ pipeline=test_pipeline)
131
+ val_dataloader = dict(dataset=coco_val_dataset)
132
+ test_dataloader = val_dataloader
133
+
134
+ val_evaluator = dict(type='mmdet.LVISMetric',
135
+ ann_file='data/coco/lvis/\
136
+ lvis_v1_minival_inserted_image_name.json',
137
+ metric='bbox')
138
+ test_evaluator = val_evaluator
139
+
140
+ # training settings
141
+ default_hooks = dict(param_scheduler=dict(max_epochs=max_epochs),
142
+ checkpoint=dict(interval=save_epoch_intervals,
143
+ rule='greater'))
144
+ custom_hooks = [
145
+ dict(type='EMAHook',
146
+ ema_type='ExpMomentumEMA',
147
+ momentum=0.0001,
148
+ update_buffers=True,
149
+ strict_load=False,
150
+ priority=49),
151
+ dict(type='mmdet.PipelineSwitchHook',
152
+ switch_epoch=max_epochs - close_mosaic_epochs,
153
+ switch_pipeline=train_pipeline_stage2)
154
+ ]
155
+ train_cfg = dict(max_epochs=max_epochs,
156
+ val_interval=10,
157
+ dynamic_intervals=[((max_epochs - close_mosaic_epochs),
158
+ _base_.val_interval_stage2)])
159
+ optim_wrapper = dict(optimizer=dict(
160
+ _delete_=True,
161
+ type='AdamW',
162
+ lr=base_lr,
163
+ weight_decay=weight_decay,
164
+ batch_size_per_gpu=train_batch_size_per_gpu),
165
+ paramwise_cfg=dict(bias_decay_mult=0.0,
166
+ norm_decay_mult=0.0,
167
+ custom_keys={
168
+ 'backbone.text_model':
169
+ dict(lr_mult=0.01),
170
+ 'logit_scale':
171
+ dict(weight_decay=0.0)
172
+ }),
173
+ constructor='YOLOWv5OptimizerConstructor')
configs/pretrain/yolo_world_s_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = ('../../third_party/mmyolo/configs/yolov8/'
2
+ 'yolov8_s_syncbn_fast_8xb16-500e_coco.py')
3
+ custom_imports = dict(imports=['yolo_world'],
4
+ allow_failed_imports=False)
5
+
6
+ # hyper-parameters
7
+ num_classes = 1203
8
+ num_training_classes = 80
9
+ max_epochs = 100 # Maximum training epochs
10
+ close_mosaic_epochs = 2
11
+ save_epoch_intervals = 2
12
+ text_channels = 512
13
+ neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
14
+ neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
15
+ base_lr = 2e-3
16
+ # for 4 nodes, 8 gpus per node, 32 total gpus
17
+ weight_decay = 0.05 / 2
18
+ train_batch_size_per_gpu = 16
19
+
20
+ # model settings
21
+ model = dict(
22
+ type='YOLOWorldDetector',
23
+ mm_neck=True,
24
+ num_train_classes=num_training_classes,
25
+ num_test_classes=num_classes,
26
+ data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
27
+ backbone=dict(
28
+ _delete_=True,
29
+ type='MultiModalYOLOBackbone',
30
+ image_model={{_base_.model.backbone}},
31
+ text_model=dict(
32
+ type='HuggingCLIPLanguageBackbone',
33
+ model_name='pretrained_models/clip-vit-base-patch32-projection',
34
+ frozen_modules=['all'])),
35
+ neck=dict(type='YOLOWorldPAFPN',
36
+ guide_channels=text_channels,
37
+ embed_channels=neck_embed_channels,
38
+ num_heads=neck_num_heads,
39
+ block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
40
+ num_csp_blocks=2),
41
+ bbox_head=dict(type='YOLOWorldHead',
42
+ head_module=dict(type='YOLOWorldHeadModule',
43
+ embed_dims=text_channels,
44
+ use_bn_head=True,
45
+ num_classes=num_training_classes)),
46
+ train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
47
+
48
+ # dataset settings
49
+ text_transform = [
50
+ dict(type='RandomLoadText',
51
+ num_neg_samples=(num_classes, num_classes),
52
+ max_num_samples=num_training_classes,
53
+ padding_to_max=True,
54
+ padding_value=''),
55
+ dict(type='mmdet.PackDetInputs',
56
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
57
+ 'flip_direction', 'texts'))
58
+ ]
59
+ train_pipeline = [
60
+ *_base_.pre_transform,
61
+ dict(type='MultiModalMosaic',
62
+ img_scale=_base_.img_scale,
63
+ pad_val=114.0,
64
+ pre_transform=_base_.pre_transform),
65
+ dict(
66
+ type='YOLOv5RandomAffine',
67
+ max_rotate_degree=0.0,
68
+ max_shear_degree=0.0,
69
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
70
+ max_aspect_ratio=_base_.max_aspect_ratio,
71
+ border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
72
+ border_val=(114, 114, 114)),
73
+ *_base_.last_transform[:-1],
74
+ *text_transform,
75
+ ]
76
+ train_pipeline_stage2 = [*_base_.train_pipeline_stage2[:-1], *text_transform]
77
+ obj365v1_train_dataset = dict(
78
+ type='MultiModalDataset',
79
+ dataset=dict(
80
+ type='YOLOv5Objects365V1Dataset',
81
+ data_root='data/objects365v1/',
82
+ ann_file='annotations/objects365_train.json',
83
+ data_prefix=dict(img='train/'),
84
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
85
+ class_text_path='data/captions/obj365v1_class_captions.json',
86
+ pipeline=train_pipeline)
87
+
88
+ mg_train_dataset = dict(type='YOLOv5MixedGroundingDataset',
89
+ data_root='data/mixed_grounding/',
90
+ ann_file='annotations/final_mixed_train_no_coco.json',
91
+ data_prefix=dict(img='gqa/images/'),
92
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
93
+ pipeline=train_pipeline)
94
+
95
+ flickr_train_dataset = dict(
96
+ type='YOLOv5MixedGroundingDataset',
97
+ data_root='data/flickr/',
98
+ ann_file='annotations/final_flickr_separateGT_train.json',
99
+ data_prefix=dict(img='full_images/'),
100
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
101
+ pipeline=train_pipeline)
102
+
103
+ train_dataloader = dict(batch_size=train_batch_size_per_gpu,
104
+ collate_fn=dict(type='yolow_collate'),
105
+ dataset=dict(_delete_=True,
106
+ type='ConcatDataset',
107
+ datasets=[
108
+ obj365v1_train_dataset,
109
+ flickr_train_dataset, mg_train_dataset
110
+ ],
111
+ ignore_keys=['classes', 'palette']))
112
+
113
+ test_pipeline = [
114
+ *_base_.test_pipeline[:-1],
115
+ dict(type='LoadText'),
116
+ dict(type='mmdet.PackDetInputs',
117
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
118
+ 'scale_factor', 'pad_param', 'texts'))
119
+ ]
120
+ coco_val_dataset = dict(
121
+ _delete_=True,
122
+ type='MultiModalDataset',
123
+ dataset=dict(type='YOLOv5LVISV1Dataset',
124
+ data_root='data/coco/',
125
+ test_mode=True,
126
+ ann_file='lvis/lvis_v1_minival_inserted_image_name.json',
127
+ data_prefix=dict(img=''),
128
+ batch_shapes_cfg=None),
129
+ class_text_path='data/captions/lvis_v1_class_captions.json',
130
+ pipeline=test_pipeline)
131
+ val_dataloader = dict(dataset=coco_val_dataset)
132
+ test_dataloader = val_dataloader
133
+
134
+ val_evaluator = dict(type='mmdet.LVISMetric',
135
+ ann_file='data/coco/lvis/lvis_v1_minival_inserted_image_name.json',
136
+ metric='bbox')
137
+ test_evaluator = val_evaluator
138
+
139
+ # training settings
140
+ default_hooks = dict(param_scheduler=dict(max_epochs=max_epochs),
141
+ checkpoint=dict(interval=save_epoch_intervals,
142
+ rule='greater'))
143
+ custom_hooks = [
144
+ dict(type='EMAHook',
145
+ ema_type='ExpMomentumEMA',
146
+ momentum=0.0001,
147
+ update_buffers=True,
148
+ strict_load=False,
149
+ priority=49),
150
+ dict(type='mmdet.PipelineSwitchHook',
151
+ switch_epoch=max_epochs - close_mosaic_epochs,
152
+ switch_pipeline=train_pipeline_stage2)
153
+ ]
154
+ train_cfg = dict(max_epochs=max_epochs,
155
+ val_interval=10,
156
+ dynamic_intervals=[((max_epochs - close_mosaic_epochs),
157
+ _base_.val_interval_stage2)])
158
+ optim_wrapper = dict(optimizer=dict(
159
+ _delete_=True,
160
+ type='AdamW',
161
+ lr=base_lr,
162
+ weight_decay=weight_decay,
163
+ batch_size_per_gpu=train_batch_size_per_gpu),
164
+ paramwise_cfg=dict(bias_decay_mult=0.0,
165
+ norm_decay_mult=0.0,
166
+ custom_keys={
167
+ 'backbone.text_model':
168
+ dict(lr_mult=0.01),
169
+ 'logit_scale':
170
+ dict(weight_decay=0.0)
171
+ }),
172
+ constructor='YOLOWv5OptimizerConstructor')
configs/scaleup/yolo_world_l_t2i_bn_2e-4_20e_4x8gpus_obj365v1_goldg_train_lvis_minival_s1024.py ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = ('../../third_party/mmyolo/configs/yolov8/'
2
+ 'yolov8_l_syncbn_fast_8xb16-500e_coco.py')
3
+ custom_imports = dict(imports=['yolo_world'],
4
+ allow_failed_imports=False)
5
+
6
+ # hyper-parameters
7
+ num_classes = 1203
8
+ num_training_classes = 80
9
+ max_epochs = 20 # Maximum training epochs
10
+ close_mosaic_epochs = 2
11
+ save_epoch_intervals = 2
12
+ text_channels = 512
13
+ neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
14
+ neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
15
+ base_lr = 2e-4
16
+ weight_decay = 0.05 / 2
17
+ train_batch_size_per_gpu = 8
18
+ img_scale = (1024, 1024)
19
+ load_from = 'work_dirs/model_zoo/yolow-v8_l_clipv2_frozen_t2iv2_bn_o365_goldg_pretrain.pth' # noqa
20
+
21
+ # model settings
22
+ model = dict(
23
+ type='YOLOWorldDetector',
24
+ mm_neck=True,
25
+ num_train_classes=num_training_classes,
26
+ num_test_classes=num_classes,
27
+ data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
28
+ backbone=dict(
29
+ _delete_=True,
30
+ type='MultiModalYOLOBackbone',
31
+ image_model={{_base_.model.backbone}},
32
+ text_model=dict(
33
+ type='HuggingCLIPLanguageBackbone',
34
+ model_name='openai/clip-vit-base-patch32',
35
+ frozen_modules=['all'])),
36
+ neck=dict(type='YOLOWorldPAFPN',
37
+ guide_channels=text_channels,
38
+ embed_channels=neck_embed_channels,
39
+ num_heads=neck_num_heads,
40
+ block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
41
+ num_csp_blocks=2),
42
+ bbox_head=dict(type='YOLOWorldHead',
43
+ head_module=dict(type='YOLOWorldHeadModule',
44
+ embed_dims=text_channels,
45
+ use_bn_head=True,
46
+ num_classes=num_training_classes)),
47
+ train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
48
+
49
+ # dataset settings
50
+ text_transform = [
51
+ dict(type='RandomLoadText',
52
+ num_neg_samples=(num_classes, num_classes),
53
+ max_num_samples=num_training_classes,
54
+ padding_to_max=True,
55
+ padding_value=''),
56
+ dict(type='mmdet.PackDetInputs',
57
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
58
+ 'flip_direction', 'texts'))
59
+ ]
60
+ mosaic_affine_transform = [
61
+ dict(type='MultiModalMosaic',
62
+ img_scale=img_scale,
63
+ pad_val=114.0,
64
+ pre_transform=_base_.pre_transform),
65
+ dict(
66
+ type='YOLOv5RandomAffine',
67
+ max_rotate_degree=0.0,
68
+ max_shear_degree=0.0,
69
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
70
+ max_aspect_ratio=_base_.max_aspect_ratio,
71
+ border=(-img_scale[0] // 2, -img_scale[1] // 2),
72
+ border_val=(114, 114, 114))
73
+ ]
74
+ train_pipeline = [
75
+ *_base_.pre_transform,
76
+ *mosaic_affine_transform,
77
+ dict(
78
+ type='YOLOv5MultiModalMixUp',
79
+ prob=_base_.mixup_prob,
80
+ pre_transform=[*_base_.pre_transform,
81
+ *mosaic_affine_transform]),
82
+ *_base_.last_transform[:-1],
83
+ *text_transform,
84
+ ]
85
+ train_pipeline_stage2 = [
86
+ *_base_.pre_transform,
87
+ dict(type='YOLOv5KeepRatioResize', scale=img_scale),
88
+ dict(
89
+ type='LetterResize',
90
+ scale=img_scale,
91
+ allow_scale_up=True,
92
+ pad_val=dict(img=114.0)),
93
+ dict(
94
+ type='YOLOv5RandomAffine',
95
+ max_rotate_degree=0.0,
96
+ max_shear_degree=0.0,
97
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
98
+ max_aspect_ratio=_base_.max_aspect_ratio,
99
+ border_val=(114, 114, 114)),
100
+ *_base_.last_transform[:-1],
101
+ *text_transform,
102
+ ]
103
+ obj365v1_train_dataset = dict(
104
+ type='MultiModalDataset',
105
+ dataset=dict(
106
+ type='YOLOv5Objects365V1Dataset',
107
+ data_root='data/objects365v1/',
108
+ ann_file='annotations/objects365_train.json',
109
+ data_prefix=dict(img='train/'),
110
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
111
+ class_text_path='data/captions/obj365v1_class_captions.json',
112
+ pipeline=train_pipeline)
113
+
114
+ mg_train_dataset = dict(
115
+ type='YOLOv5MixedGroundingDataset',
116
+ data_root='data/mixed_grounding/',
117
+ ann_file='annotations/final_mixed_train_no_coco.json',
118
+ data_prefix=dict(img='gqa/images/'),
119
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
120
+ pipeline=train_pipeline)
121
+
122
+ flickr_train_dataset = dict(
123
+ type='YOLOv5MixedGroundingDataset',
124
+ data_root='data/flickr/',
125
+ ann_file='annotations/final_flickr_separateGT_train.json',
126
+ data_prefix=dict(img='images/'),
127
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
128
+ pipeline=train_pipeline)
129
+
130
+ train_dataloader = dict(
131
+ batch_size=train_batch_size_per_gpu,
132
+ collate_fn=dict(type='yolow_collate'),
133
+ dataset=dict(
134
+ _delete_=True,
135
+ type='ConcatDataset',
136
+ datasets=[
137
+ obj365v1_train_dataset,
138
+ flickr_train_dataset,
139
+ mg_train_dataset
140
+ ],
141
+ ignore_keys=['classes', 'palette']))
142
+
143
+ test_pipeline = [
144
+ dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
145
+ dict(type='YOLOv5KeepRatioResize', scale=img_scale),
146
+ dict(
147
+ type='LetterResize',
148
+ scale=img_scale,
149
+ allow_scale_up=False,
150
+ pad_val=dict(img=114)),
151
+ dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
152
+ dict(type='LoadText'),
153
+ dict(type='mmdet.PackDetInputs',
154
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
155
+ 'scale_factor', 'pad_param', 'texts'))
156
+ ]
157
+ coco_val_dataset = dict(
158
+ _delete_=True,
159
+ type='MultiModalDataset',
160
+ dataset=dict(
161
+ type='YOLOv5LVISV1Dataset',
162
+ data_root='data/lvis/',
163
+ test_mode=True,
164
+ ann_file='annotations/'
165
+ 'lvis_v1_minival_inserted_image_name.json',
166
+ data_prefix=dict(img=''),
167
+ batch_shapes_cfg=None),
168
+ class_text_path='data/captions/lvis_v1_class_captions.json',
169
+ pipeline=test_pipeline)
170
+ val_dataloader = dict(dataset=coco_val_dataset)
171
+ test_dataloader = val_dataloader
172
+
173
+ val_evaluator = dict(
174
+ type='mmdet.LVISMetric',
175
+ ann_file='data/lvis/annotations/'
176
+ 'lvis_v1_minival_inserted_image_name.json',
177
+ metric='bbox')
178
+ test_evaluator = val_evaluator
179
+
180
+ # training settings
181
+ default_hooks = dict(
182
+ param_scheduler=dict(max_epochs=max_epochs),
183
+ checkpoint=dict(interval=save_epoch_intervals,
184
+ rule='greater'))
185
+ custom_hooks = [
186
+ dict(type='EMAHook',
187
+ ema_type='ExpMomentumEMA',
188
+ momentum=0.0001,
189
+ update_buffers=True,
190
+ strict_load=False,
191
+ priority=49),
192
+ dict(type='mmdet.PipelineSwitchHook',
193
+ switch_epoch=max_epochs - close_mosaic_epochs,
194
+ switch_pipeline=train_pipeline_stage2)
195
+ ]
196
+ train_cfg = dict(
197
+ max_epochs=max_epochs,
198
+ val_interval=10,
199
+ dynamic_intervals=[((max_epochs - close_mosaic_epochs),
200
+ _base_.val_interval_stage2)])
201
+ optim_wrapper = dict(optimizer=dict(
202
+ _delete_=True,
203
+ type='AdamW',
204
+ lr=base_lr,
205
+ weight_decay=weight_decay,
206
+ batch_size_per_gpu=train_batch_size_per_gpu),
207
+ paramwise_cfg=dict(
208
+ bias_decay_mult=0.0,
209
+ norm_decay_mult=0.0,
210
+ custom_keys={
211
+ 'backbone.text_model':
212
+ dict(lr_mult=0.0),
213
+ 'logit_scale':
214
+ dict(weight_decay=0.0)
215
+ }),
216
+ constructor='YOLOWv5OptimizerConstructor')
configs/scaleup/yolo_world_l_t2i_bn_2e-4_20e_4x8gpus_obj365v1_goldg_train_lvis_minival_s1280.py ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = ('../../third_party/mmyolo/configs/yolov8/'
2
+ 'yolov8_l_syncbn_fast_8xb16-500e_coco.py')
3
+ custom_imports = dict(imports=['yolo_world'],
4
+ allow_failed_imports=False)
5
+
6
+ # hyper-parameters
7
+ num_classes = 1203
8
+ num_training_classes = 80
9
+ max_epochs = 20 # Maximum training epochs
10
+ close_mosaic_epochs = 2
11
+ save_epoch_intervals = 2
12
+ text_channels = 512
13
+ neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
14
+ neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
15
+ base_lr = 2e-4
16
+ weight_decay = 0.05 / 2
17
+ train_batch_size_per_gpu = 4
18
+ img_scale = (1280, 1280)
19
+ load_from = 'work_dirs/model_zoo/yolow-v8_l_clipv2_frozen_t2iv2_bn_o365_goldg_pretrain.pth' # noqa
20
+
21
+ # model settings
22
+ model = dict(
23
+ type='YOLOWorldDetector',
24
+ mm_neck=True,
25
+ num_train_classes=num_training_classes,
26
+ num_test_classes=num_classes,
27
+ data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
28
+ backbone=dict(
29
+ _delete_=True,
30
+ type='MultiModalYOLOBackbone',
31
+ image_model={{_base_.model.backbone}},
32
+ text_model=dict(
33
+ type='HuggingCLIPLanguageBackbone',
34
+ model_name='openai/clip-vit-base-patch32',
35
+ frozen_modules=['all'])),
36
+ neck=dict(type='YOLOWorldPAFPN',
37
+ guide_channels=text_channels,
38
+ embed_channels=neck_embed_channels,
39
+ num_heads=neck_num_heads,
40
+ block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
41
+ num_csp_blocks=2),
42
+ bbox_head=dict(type='YOLOWorldHead',
43
+ head_module=dict(type='YOLOWorldHeadModule',
44
+ embed_dims=text_channels,
45
+ use_bn_head=True,
46
+ num_classes=num_training_classes)),
47
+ train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
48
+
49
+ # dataset settings
50
+ text_transform = [
51
+ dict(type='RandomLoadText',
52
+ num_neg_samples=(num_classes, num_classes),
53
+ max_num_samples=num_training_classes,
54
+ padding_to_max=True,
55
+ padding_value=''),
56
+ dict(type='mmdet.PackDetInputs',
57
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
58
+ 'flip_direction', 'texts'))
59
+ ]
60
+ mosaic_affine_transform = [
61
+ dict(type='MultiModalMosaic',
62
+ img_scale=img_scale,
63
+ pad_val=114.0,
64
+ pre_transform=_base_.pre_transform),
65
+ dict(
66
+ type='YOLOv5RandomAffine',
67
+ max_rotate_degree=0.0,
68
+ max_shear_degree=0.0,
69
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
70
+ max_aspect_ratio=_base_.max_aspect_ratio,
71
+ border=(-img_scale[0] // 2, -img_scale[1] // 2),
72
+ border_val=(114, 114, 114))
73
+ ]
74
+ train_pipeline = [
75
+ *_base_.pre_transform,
76
+ *mosaic_affine_transform,
77
+ dict(
78
+ type='YOLOv5MultiModalMixUp',
79
+ prob=_base_.mixup_prob,
80
+ pre_transform=[*_base_.pre_transform,
81
+ *mosaic_affine_transform]),
82
+ *_base_.last_transform[:-1],
83
+ *text_transform,
84
+ ]
85
+ train_pipeline_stage2 = [
86
+ *_base_.pre_transform,
87
+ dict(type='YOLOv5KeepRatioResize', scale=img_scale),
88
+ dict(
89
+ type='LetterResize',
90
+ scale=img_scale,
91
+ allow_scale_up=True,
92
+ pad_val=dict(img=114.0)),
93
+ dict(
94
+ type='YOLOv5RandomAffine',
95
+ max_rotate_degree=0.0,
96
+ max_shear_degree=0.0,
97
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
98
+ max_aspect_ratio=_base_.max_aspect_ratio,
99
+ border_val=(114, 114, 114)),
100
+ *_base_.last_transform[:-1],
101
+ *text_transform,
102
+ ]
103
+ obj365v1_train_dataset = dict(
104
+ type='MultiModalDataset',
105
+ dataset=dict(
106
+ type='YOLOv5Objects365V1Dataset',
107
+ data_root='data/objects365v1/',
108
+ ann_file='annotations/objects365_train.json',
109
+ data_prefix=dict(img='train/'),
110
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
111
+ class_text_path='data/captions/obj365v1_class_captions.json',
112
+ pipeline=train_pipeline)
113
+
114
+ mg_train_dataset = dict(
115
+ type='YOLOv5MixedGroundingDataset',
116
+ data_root='data/mixed_grounding/',
117
+ ann_file='annotations/final_mixed_train_no_coco.json',
118
+ data_prefix=dict(img='gqa/images/'),
119
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
120
+ pipeline=train_pipeline)
121
+
122
+ flickr_train_dataset = dict(
123
+ type='YOLOv5MixedGroundingDataset',
124
+ data_root='data/flickr/',
125
+ ann_file='annotations/final_flickr_separateGT_train.json',
126
+ data_prefix=dict(img='images/'),
127
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
128
+ pipeline=train_pipeline)
129
+
130
+ train_dataloader = dict(
131
+ batch_size=train_batch_size_per_gpu,
132
+ collate_fn=dict(type='yolow_collate'),
133
+ dataset=dict(
134
+ _delete_=True,
135
+ type='ConcatDataset',
136
+ datasets=[
137
+ obj365v1_train_dataset,
138
+ flickr_train_dataset,
139
+ mg_train_dataset
140
+ ],
141
+ ignore_keys=['classes', 'palette']))
142
+
143
+ test_pipeline = [
144
+ dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
145
+ dict(type='YOLOv5KeepRatioResize', scale=img_scale),
146
+ dict(
147
+ type='LetterResize',
148
+ scale=img_scale,
149
+ allow_scale_up=False,
150
+ pad_val=dict(img=114)),
151
+ dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
152
+ dict(type='LoadText'),
153
+ dict(type='mmdet.PackDetInputs',
154
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
155
+ 'scale_factor', 'pad_param', 'texts'))
156
+ ]
157
+ coco_val_dataset = dict(
158
+ _delete_=True,
159
+ type='MultiModalDataset',
160
+ dataset=dict(
161
+ type='YOLOv5LVISV1Dataset',
162
+ data_root='data/lvis/',
163
+ test_mode=True,
164
+ ann_file='annotations/'
165
+ 'lvis_v1_minival_inserted_image_name.json',
166
+ data_prefix=dict(img=''),
167
+ batch_shapes_cfg=None),
168
+ class_text_path='data/captions/lvis_v1_class_captions.json',
169
+ pipeline=test_pipeline)
170
+ val_dataloader = dict(dataset=coco_val_dataset)
171
+ test_dataloader = val_dataloader
172
+
173
+ val_evaluator = dict(
174
+ type='mmdet.LVISMetric',
175
+ ann_file='data/lvis/annotations/'
176
+ 'lvis_v1_minival_inserted_image_name.json',
177
+ metric='bbox')
178
+ test_evaluator = val_evaluator
179
+
180
+ # training settings
181
+ default_hooks = dict(
182
+ param_scheduler=dict(max_epochs=max_epochs),
183
+ checkpoint=dict(interval=save_epoch_intervals,
184
+ rule='greater'))
185
+ custom_hooks = [
186
+ dict(type='EMAHook',
187
+ ema_type='ExpMomentumEMA',
188
+ momentum=0.0001,
189
+ update_buffers=True,
190
+ strict_load=False,
191
+ priority=49),
192
+ dict(type='mmdet.PipelineSwitchHook',
193
+ switch_epoch=max_epochs - close_mosaic_epochs,
194
+ switch_pipeline=train_pipeline_stage2)
195
+ ]
196
+ train_cfg = dict(
197
+ max_epochs=max_epochs,
198
+ val_interval=10,
199
+ dynamic_intervals=[((max_epochs - close_mosaic_epochs),
200
+ _base_.val_interval_stage2)])
201
+ optim_wrapper = dict(optimizer=dict(
202
+ _delete_=True,
203
+ type='AdamW',
204
+ lr=base_lr,
205
+ weight_decay=weight_decay,
206
+ batch_size_per_gpu=train_batch_size_per_gpu),
207
+ paramwise_cfg=dict(
208
+ bias_decay_mult=0.0,
209
+ norm_decay_mult=0.0,
210
+ custom_keys={
211
+ 'backbone.text_model':
212
+ dict(lr_mult=0.0),
213
+ 'logit_scale':
214
+ dict(weight_decay=0.0)
215
+ }),
216
+ constructor='YOLOWv5OptimizerConstructor')
configs/scaleup/yolo_world_l_t2i_bn_2e-4_20e_4x8gpus_obj365v1_goldg_train_lvis_minival_s1280_v2.py ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = ('../../third_party/mmyolo/configs/yolov8/'
2
+ 'yolov8_l_syncbn_fast_8xb16-500e_coco.py')
3
+ custom_imports = dict(imports=['yolo_world'],
4
+ allow_failed_imports=False)
5
+
6
+ # hyper-parameters
7
+ num_classes = 1203
8
+ num_training_classes = 80
9
+ max_epochs = 20 # Maximum training epochs
10
+ close_mosaic_epochs = 2
11
+ save_epoch_intervals = 2
12
+ text_channels = 512
13
+ neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
14
+ neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
15
+ base_lr = 2e-4
16
+ weight_decay = 0.05 / 2
17
+ train_batch_size_per_gpu = 6
18
+ img_scale = (1280, 1280)
19
+ load_from = 'work_dirs/yolo_world_l_t2i_bn_2e-4_20e_4x8gpus_obj365v1_goldg_train_lvis_minival_s1280/epoch_20.pth' # noqa
20
+
21
+ # model settings
22
+ model = dict(
23
+ type='YOLOWorldDetector',
24
+ mm_neck=True,
25
+ num_train_classes=num_training_classes,
26
+ num_test_classes=num_classes,
27
+ data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
28
+ backbone=dict(
29
+ _delete_=True,
30
+ type='MultiModalYOLOBackbone',
31
+ image_model={{_base_.model.backbone}},
32
+ text_model=dict(
33
+ type='HuggingCLIPLanguageBackbone',
34
+ model_name='openai/clip-vit-base-patch32',
35
+ frozen_modules=['all'])),
36
+ neck=dict(type='YOLOWorldPAFPN',
37
+ guide_channels=text_channels,
38
+ embed_channels=neck_embed_channels,
39
+ num_heads=neck_num_heads,
40
+ block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
41
+ num_csp_blocks=2),
42
+ bbox_head=dict(type='YOLOWorldHead',
43
+ head_module=dict(type='YOLOWorldHeadModule',
44
+ embed_dims=text_channels,
45
+ use_bn_head=True,
46
+ num_classes=num_training_classes)),
47
+ train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
48
+
49
+ # dataset settings
50
+ text_transform = [
51
+ dict(type='RandomLoadText',
52
+ num_neg_samples=(num_classes, num_classes),
53
+ max_num_samples=num_training_classes,
54
+ padding_to_max=True,
55
+ padding_value=''),
56
+ dict(type='mmdet.PackDetInputs',
57
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
58
+ 'flip_direction', 'texts'))
59
+ ]
60
+ mosaic_affine_transform = [
61
+ dict(type='MultiModalMosaic',
62
+ img_scale=img_scale,
63
+ pad_val=114.0,
64
+ pre_transform=_base_.pre_transform),
65
+ dict(
66
+ type='YOLOv5RandomAffine',
67
+ max_rotate_degree=0.0,
68
+ max_shear_degree=0.0,
69
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
70
+ max_aspect_ratio=_base_.max_aspect_ratio,
71
+ border=(-img_scale[0] // 2, -img_scale[1] // 2),
72
+ border_val=(114, 114, 114))
73
+ ]
74
+ train_pipeline = [
75
+ *_base_.pre_transform,
76
+ *mosaic_affine_transform,
77
+ dict(
78
+ type='YOLOv5MultiModalMixUp',
79
+ prob=_base_.mixup_prob,
80
+ pre_transform=[*_base_.pre_transform,
81
+ *mosaic_affine_transform]),
82
+ *_base_.last_transform[:-1],
83
+ *text_transform,
84
+ ]
85
+ train_pipeline_stage2 = [
86
+ *_base_.pre_transform,
87
+ dict(type='YOLOv5KeepRatioResize', scale=img_scale),
88
+ dict(
89
+ type='LetterResize',
90
+ scale=img_scale,
91
+ allow_scale_up=True,
92
+ pad_val=dict(img=114.0)),
93
+ dict(
94
+ type='YOLOv5RandomAffine',
95
+ max_rotate_degree=0.0,
96
+ max_shear_degree=0.0,
97
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
98
+ max_aspect_ratio=_base_.max_aspect_ratio,
99
+ border_val=(114, 114, 114)),
100
+ *_base_.last_transform[:-1],
101
+ *text_transform,
102
+ ]
103
+ obj365v1_train_dataset = dict(
104
+ type='MultiModalDataset',
105
+ dataset=dict(
106
+ type='YOLOv5Objects365V1Dataset',
107
+ data_root='data/objects365v1/',
108
+ ann_file='annotations/objects365_train.json',
109
+ data_prefix=dict(img='train/'),
110
+ filter_cfg=dict(filter_empty_gt=False, min_size=32)),
111
+ class_text_path='data/captions/obj365v1_class_captions.json',
112
+ pipeline=train_pipeline)
113
+
114
+ mg_train_dataset = dict(
115
+ type='YOLOv5MixedGroundingDataset',
116
+ data_root='data/mixed_grounding/',
117
+ ann_file='annotations/final_mixed_train_no_coco.json',
118
+ data_prefix=dict(img='gqa/images/'),
119
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
120
+ pipeline=train_pipeline)
121
+
122
+ flickr_train_dataset = dict(
123
+ type='YOLOv5MixedGroundingDataset',
124
+ data_root='data/flickr/',
125
+ ann_file='annotations/final_flickr_separateGT_train.json',
126
+ data_prefix=dict(img='images/'),
127
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
128
+ pipeline=train_pipeline)
129
+
130
+ train_dataloader = dict(
131
+ batch_size=train_batch_size_per_gpu,
132
+ collate_fn=dict(type='yolow_collate'),
133
+ dataset=dict(
134
+ _delete_=True,
135
+ type='ConcatDataset',
136
+ datasets=[
137
+ obj365v1_train_dataset,
138
+ flickr_train_dataset,
139
+ mg_train_dataset
140
+ ],
141
+ ignore_keys=['classes', 'palette']))
142
+
143
+ test_pipeline = [
144
+ dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
145
+ dict(type='YOLOv5KeepRatioResize', scale=img_scale),
146
+ dict(
147
+ type='LetterResize',
148
+ scale=img_scale,
149
+ allow_scale_up=False,
150
+ pad_val=dict(img=114)),
151
+ dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
152
+ dict(type='LoadText'),
153
+ dict(type='mmdet.PackDetInputs',
154
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
155
+ 'scale_factor', 'pad_param', 'texts'))
156
+ ]
157
+ coco_val_dataset = dict(
158
+ _delete_=True,
159
+ type='MultiModalDataset',
160
+ dataset=dict(
161
+ type='YOLOv5LVISV1Dataset',
162
+ data_root='data/lvis/',
163
+ test_mode=True,
164
+ ann_file='annotations/'
165
+ 'lvis_v1_minival_inserted_image_name.json',
166
+ data_prefix=dict(img=''),
167
+ batch_shapes_cfg=None),
168
+ class_text_path='data/captions/lvis_v1_class_captions.json',
169
+ pipeline=test_pipeline)
170
+ val_dataloader = dict(dataset=coco_val_dataset)
171
+ test_dataloader = val_dataloader
172
+
173
+ val_evaluator = dict(
174
+ type='mmdet.LVISMetric',
175
+ ann_file='data/lvis/annotations/'
176
+ 'lvis_v1_minival_inserted_image_name.json',
177
+ metric='bbox')
178
+ test_evaluator = val_evaluator
179
+
180
+ # training settings
181
+ default_hooks = dict(
182
+ param_scheduler=dict(max_epochs=max_epochs),
183
+ checkpoint=dict(interval=save_epoch_intervals,
184
+ rule='greater'))
185
+ custom_hooks = [
186
+ dict(type='EMAHook',
187
+ ema_type='ExpMomentumEMA',
188
+ momentum=0.0001,
189
+ update_buffers=True,
190
+ strict_load=False,
191
+ priority=49),
192
+ dict(type='mmdet.PipelineSwitchHook',
193
+ switch_epoch=max_epochs - close_mosaic_epochs,
194
+ switch_pipeline=train_pipeline_stage2)
195
+ ]
196
+ train_cfg = dict(
197
+ max_epochs=max_epochs,
198
+ val_interval=10,
199
+ dynamic_intervals=[((max_epochs - close_mosaic_epochs),
200
+ _base_.val_interval_stage2)])
201
+ optim_wrapper = dict(optimizer=dict(
202
+ _delete_=True,
203
+ type='AdamW',
204
+ lr=base_lr,
205
+ weight_decay=weight_decay,
206
+ batch_size_per_gpu=train_batch_size_per_gpu),
207
+ paramwise_cfg=dict(
208
+ bias_decay_mult=0.0,
209
+ norm_decay_mult=0.0,
210
+ custom_keys={
211
+ 'backbone.text_model':
212
+ dict(lr_mult=0.0),
213
+ 'logit_scale':
214
+ dict(weight_decay=0.0)
215
+ }),
216
+ constructor='YOLOWv5OptimizerConstructor')
deploy/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .models import * # noqa
deploy/models/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .detectors import * # noqa
2
+ from .dense_heads import * # noqa
3
+ from .layers import * # noqa
4
+ from .necks import * # noqa
docs/data.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Preparing Data for YOLO-World
2
+
3
+
4
+ ### Overview
5
+
6
+
7
+
8
+ ### Pre-training Data
9
+
10
+ | Data | Samples | Type | Boxes | Annotations |
11
+ | :-- | :-----: | :---:| :---: | :---------: |
12
+ | Objects365v1 | | detection | | |
13
+ | GQA | | ground | | |
14
+ | Flickr | | ground | | |
15
+
16
+
17
+
18
+
19
+
docs/deploy.md ADDED
File without changes
docs/install.md ADDED
File without changes
docs/training.md ADDED
File without changes
requirements.txt CHANGED
@@ -15,3 +15,4 @@ regex
15
  pot
16
  sentencepiece
17
  tokenizers
 
 
15
  pot
16
  sentencepiece
17
  tokenizers
18
+
setup.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Tencent Inc. All rights reserved.
2
+ import os
3
+ import os.path as osp
4
+ import shutil
5
+ import sys
6
+ import warnings
7
+ from setuptools import find_packages, setup
8
+
9
+
10
+ def readme():
11
+ with open('README.md', encoding='utf-8') as f:
12
+ content = f.read()
13
+ return content
14
+
15
+
16
+ def get_version():
17
+ version_file = 'yolo_world/version.py'
18
+ with open(version_file, 'r', encoding='utf-8') as f:
19
+ exec(compile(f.read(), version_file, 'exec'))
20
+ return locals()['__version__']
21
+
22
+
23
+ def parse_requirements(fname='requirements.txt', with_version=True):
24
+ """Parse the package dependencies listed in a requirements file but strips
25
+ specific versioning information.
26
+
27
+ Args:
28
+ fname (str): path to requirements file
29
+ with_version (bool, default=False): if True include version specs
30
+
31
+ Returns:
32
+ List[str]: list of requirements items
33
+
34
+ CommandLine:
35
+ python -c "import setup; print(setup.parse_requirements())"
36
+ """
37
+ import re
38
+ import sys
39
+ from os.path import exists
40
+ require_fpath = fname
41
+
42
+ def parse_line(line):
43
+ """Parse information from a line in a requirements text file."""
44
+ if line.startswith('-r '):
45
+ # Allow specifying requirements in other files
46
+ target = line.split(' ')[1]
47
+ for info in parse_require_file(target):
48
+ yield info
49
+ else:
50
+ info = {'line': line}
51
+ if line.startswith('-e '):
52
+ info['package'] = line.split('#egg=')[1]
53
+ else:
54
+ # Remove versioning from the package
55
+ pat = '(' + '|'.join(['>=', '==', '>']) + ')'
56
+ parts = re.split(pat, line, maxsplit=1)
57
+ parts = [p.strip() for p in parts]
58
+
59
+ info['package'] = parts[0]
60
+ if len(parts) > 1:
61
+ op, rest = parts[1:]
62
+ if ';' in rest:
63
+ # Handle platform specific dependencies
64
+ # http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
65
+ version, platform_deps = map(str.strip,
66
+ rest.split(';'))
67
+ info['platform_deps'] = platform_deps
68
+ else:
69
+ version = rest # NOQA
70
+ if '--' in version:
71
+ # the `extras_require` doesn't accept options.
72
+ version = version.split('--')[0].strip()
73
+ info['version'] = (op, version)
74
+ yield info
75
+
76
+ def parse_require_file(fpath):
77
+ with open(fpath, 'r') as f:
78
+ for line in f.readlines():
79
+ line = line.strip()
80
+ if line and not line.startswith('#'):
81
+ for info in parse_line(line):
82
+ yield info
83
+
84
+ def gen_packages_items():
85
+ if exists(require_fpath):
86
+ for info in parse_require_file(require_fpath):
87
+ parts = [info['package']]
88
+ if with_version and 'version' in info:
89
+ parts.extend(info['version'])
90
+ if not sys.version.startswith('3.4'):
91
+ # apparently package_deps are broken in 3.4
92
+ platform_deps = info.get('platform_deps')
93
+ if platform_deps is not None:
94
+ parts.append(';' + platform_deps)
95
+ item = ''.join(parts)
96
+ yield item
97
+
98
+ packages = list(gen_packages_items())
99
+ return packages
100
+
101
+
102
+ def add_mim_extension():
103
+ """Add extra files that are required to support MIM into the package.
104
+
105
+ These files will be added by creating a symlink to the originals if the
106
+ package is installed in `editable` mode (e.g. pip install -e .), or by
107
+ copying from the originals otherwise.
108
+ """
109
+
110
+ # parse installment mode
111
+ if 'develop' in sys.argv:
112
+ # installed by `pip install -e .`
113
+ mode = 'symlink'
114
+ elif 'sdist' in sys.argv or 'bdist_wheel' in sys.argv:
115
+ # installed by `pip install .`
116
+ # or create source distribution by `python setup.py sdist`
117
+ mode = 'copy'
118
+ else:
119
+ return
120
+
121
+ filenames = ['tools', 'configs', 'model-index.yml', 'dataset-index.yml']
122
+ repo_path = osp.dirname(__file__)
123
+ mim_path = osp.join(repo_path, 'yolo_world', '.mim')
124
+ os.makedirs(mim_path, exist_ok=True)
125
+
126
+ for filename in filenames:
127
+ if osp.exists(filename):
128
+ src_path = osp.join(repo_path, filename)
129
+ tar_path = osp.join(mim_path, filename)
130
+
131
+ if osp.isfile(tar_path) or osp.islink(tar_path):
132
+ os.remove(tar_path)
133
+ elif osp.isdir(tar_path):
134
+ shutil.rmtree(tar_path)
135
+
136
+ if mode == 'symlink':
137
+ src_relpath = osp.relpath(src_path, osp.dirname(tar_path))
138
+ try:
139
+ os.symlink(src_relpath, tar_path)
140
+ except OSError:
141
+ # Creating a symbolic link on windows may raise an
142
+ # `OSError: [WinError 1314]` due to privilege. If
143
+ # the error happens, the src file will be copied
144
+ mode = 'copy'
145
+ warnings.warn(
146
+ f'Failed to create a symbolic link for {src_relpath}, '
147
+ f'and it will be copied to {tar_path}')
148
+ else:
149
+ continue
150
+
151
+ if mode == 'copy':
152
+ if osp.isfile(src_path):
153
+ shutil.copyfile(src_path, tar_path)
154
+ elif osp.isdir(src_path):
155
+ shutil.copytree(src_path, tar_path)
156
+ else:
157
+ warnings.warn(f'Cannot copy file {src_path}.')
158
+ else:
159
+ raise ValueError(f'Invalid mode {mode}')
160
+
161
+
162
+ if __name__ == '__main__':
163
+ setup(
164
+ name='yolo_world',
165
+ version=get_version(),
166
+ description='YOLO-World: Real-time Open Vocabulary Object Detection',
167
+ long_description=readme(),
168
+ long_description_content_type='text/markdown',
169
+ keywords='object detection',
170
+ packages=find_packages(exclude=(
171
+ 'data', 'third_party', 'tools')),
172
+ include_package_data=True,
173
+ python_requires='>=3.7',
174
+ classifiers=[
175
+ 'Development Status :: 4 - Beta',
176
+ 'License :: OSI Approved :: Apache Software License',
177
+ 'Operating System :: OS Independent',
178
+ 'Programming Language :: Python :: 3',
179
+ 'Programming Language :: Python :: 3.7',
180
+ 'Programming Language :: Python :: 3.8',
181
+ 'Programming Language :: Python :: 3.9',
182
+ 'Programming Language :: Python :: 3.10',
183
+ 'Programming Language :: Python :: 3.11',
184
+ 'Topic :: Scientific/Engineering :: Artificial Intelligence',
185
+ ],
186
+ author='Tencent AILab',
187
+ author_email='ronnysong@tencent.com',
188
+ license='Apache License 2.0',
189
+ install_requires=parse_requirements('requirements.txt'),
190
+ zip_safe=False)
taiji/drun ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ DOCKER_IMAGE="mirrors.tencent.com/ronnysong_rd/fastdet:torch2.0.1-cuda11.7"
3
+
4
+ if [ ! -n "$DEBUG" ]; then
5
+ COMMAND_PREFIX="pip3 install -e ."
6
+ else
7
+ COMMAND_PREFIX="pip3 install -q -e third_party/mmengine;
8
+ pip3 install -q -e third_party/mmdetection;
9
+ pip3 install -q -e third_party/mmcv;
10
+ pip3 install -q -e third_party/mmyolo;
11
+ pip3 install -q -e ."
12
+ fi
13
+
14
+ sudo nvidia-docker run \
15
+ --rm \
16
+ -it \
17
+ -e NVIDIA_VISIBLE_DEVICES=all \
18
+ --env="DISPLAY" \
19
+ --env="QT_X11_NO_MITSHM=1" \
20
+ --volume="$HOME/.Xauthority:/root/.Xauthority:rw" \
21
+ --shm-size=20gb \
22
+ --network=host \
23
+ -v /apdcephfs/:/apdcephfs/ \
24
+ -v /apdcephfs_cq2/:/apdcephfs_cq2/ \
25
+ -v /apdcephfs_cq3/:/apdcephfs_cq3/ \
26
+ -v /data/:/data/ \
27
+ -w $PWD \
28
+ $DOCKER_IMAGE \
29
+ bash -c "export TRANSFORMERS_CACHE=$PWD/work_dirs/.cache/transformers;
30
+ export TORCH_HOME=$PWD/work_dirs/.cache/torch;
31
+ export CLIP_CACHE=$PWD/work_dirs/.cache/clip;
32
+ export HF_HOME=$PWD/work_dirs/.cache/hf;
33
+ export TOKENIZERS_PARALLELISM=false;
34
+ $COMMAND_PREFIX
35
+ $*"
taiji/erun ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ export NCCL_IB_GID_INDEX=3
3
+
4
+ export TRANSFORMERS_CACHE=$PWD/work_dirs/.cache/transformers
5
+ export TORCH_HOME=$PWD/work_dirs/.cache/torch
6
+ export CLIP_CACHE=$PWD/work_dirs/.cache/clip
7
+ export HF_HOME=$PWD/work_dirs/.cache/hf
8
+ export TOKENIZERS_PARALLELISM=false
9
+ export MKL_NUM_THREADS=1
10
+ export OMP_NUM_THREADS=1
11
+ export TORCH_DISTRIBUTED_DEBUG=INFO
12
+ export HF_DATASETS_OFFLINE=1
13
+ export TRANSFORMERS_OFFLINE=1
14
+ export http_proxy="http://star-proxy.oa.com:3128"
15
+ export https_proxy="http://star-proxy.oa.com:3128"
16
+ export ftp_proxy="http://star-proxy.oa.com:3128"
17
+ export no_proxy=".woa.com,mirrors.cloud.tencent.com,tlinux-mirror.tencent-cloud.com,tlinux-mirrorlist.tencent-cloud.com,localhost,127.0.0.1,mirrors-tlinux.tencentyun.com,.oa.com,.local,.3gqq.com,.7700.org,.ad.com,.ada_sixjoy.com,.addev.com,.app.local,.apps.local,.aurora.com,.autotest123.com,.bocaiwawa.com,.boss.com,.cdc.com,.cdn.com,.cds.com,.cf.com,.cjgc.local,.cm.com,.code.com,.datamine.com,.dvas.com,.dyndns.tv,.ecc.com,.expochart.cn,.expovideo.cn,.fms.com,.great.com,.hadoop.sec,.heme.com,.home.com,.hotbar.com,.ibg.com,.ied.com,.ieg.local,.ierd.com,.imd.com,.imoss.com,.isd.com,.isoso.com,.itil.com,.kao5.com,.kf.com,.kitty.com,.lpptp.com,.m.com,.matrix.cloud,.matrix.net,.mickey.com,.mig.local,.mqq.com,.oiweb.com,.okbuy.isddev.com,.oss.com,.otaworld.com,.paipaioa.com,.qqbrowser.local,.qqinternal.com,.qqwork.com,.rtpre.com,.sc.oa.com,.sec.com,.server.com,.service.com,.sjkxinternal.com,.sllwrnm5.cn,.sng.local,.soc.com,.t.km,.tcna.com,.teg.local,.tencentvoip.com,.tenpayoa.com,.test.air.tenpay.com,.tr.com,.tr_autotest123.com,.vpn.com,.wb.local,.webdev.com,.webdev2.com,.wizard.com,.wqq.com,.wsd.com,.sng.com,.music.lan,.mnet2.com,.tencentb2.com,.tmeoa.com,.pcg.com,www.wip3.adobe.com,www-mm.wip3.adobe.com,mirrors.tencent.com,csighub.tencentyun.com"
18
+ sed -i 's/np.float/float/g' /usr/local/python/lib/python3.8/site-packages/lvis/eval.py
19
+ touch /tmp/.unhold
20
+
21
+ pip3 install -e .
22
+ $*
23
+ rm /tmp/.unhold
taiji/etorchrun ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ if [ ! -n "$SH" ]; then
3
+ #export NCCL_IB_GID_INDEX=3
4
+ export NCCL_IB_DISABLE=1
5
+ export NCCL_P2P_DISABLE=1
6
+ export NCCL_SOCKET_IFNAME=eth1
7
+ else
8
+ export NCCL_IB_GID_INDEX=3
9
+ export NCCL_IB_SL=3
10
+ export NCCL_CHECKS_DISABLE=1
11
+ export NCCL_P2P_DISABLE=0
12
+ export NCCL_IB_DISABLE=0
13
+ export NCCL_LL_THRESHOLD=16384
14
+ export NCCL_IB_CUDA_SUPPORT=1
15
+ export NCCL_SOCKET_IFNAME=bond1
16
+ export UCX_NET_DEVICES=bond1
17
+ export NCCL_IB_HCA=mlx5_bond_1,mlx5_bond_5,mlx5_bond_3,mlx5_bond_7,mlx5_bond_4,mlx5_bond_8,mlx5_bond_2,mlx5_bond_6
18
+ export NCCL_COLLNET_ENABLE=0
19
+ export SHARP_COLL_ENABLE_SAT=0
20
+ export NCCL_NET_GDR_LEVEL=2
21
+ export NCCL_IB_QPS_PER_CONNECTION=4
22
+ export NCCL_IB_TC=160
23
+ export NCCL_PXN_DISABLE=1
24
+ export GLOO_SOCKET_IFNAME=bond1
25
+ export NCCL_DEBUG=info
26
+ fi
27
+
28
+ export TRANSFORMERS_CACHE=$PWD/work_dirs/.cache/transformers
29
+ export TORCH_HOME=$PWD/work_dirs/.cache/torch
30
+ export CLIP_CACHE=$PWD/work_dirs/.cache/clip
31
+ export HF_HOME=$PWD/work_dirs/.cache/hf
32
+ export TOKENIZERS_PARALLELISM=false
33
+ export MKL_NUM_THREADS=1
34
+ export OMP_NUM_THREADS=1
35
+ export TORCH_DISTRIBUTED_DEBUG=INFO
36
+ export HF_DATASETS_OFFLINE=1
37
+ export TRANSFORMERS_OFFLINE=1
38
+
39
+ export http_proxy="http://star-proxy.oa.com:3128"
40
+ export https_proxy="http://star-proxy.oa.com:3128"
41
+ export ftp_proxy="http://star-proxy.oa.com:3128"
42
+ export no_proxy=".woa.com,mirrors.cloud.tencent.com,tlinux-mirror.tencent-cloud.com,tlinux-mirrorlist.tencent-cloud.com,localhost,127.0.0.1,mirrors-tlinux.tencentyun.com,.oa.com,.local,.3gqq.com,.7700.org,.ad.com,.ada_sixjoy.com,.addev.com,.app.local,.apps.local,.aurora.com,.autotest123.com,.bocaiwawa.com,.boss.com,.cdc.com,.cdn.com,.cds.com,.cf.com,.cjgc.local,.cm.com,.code.com,.datamine.com,.dvas.com,.dyndns.tv,.ecc.com,.expochart.cn,.expovideo.cn,.fms.com,.great.com,.hadoop.sec,.heme.com,.home.com,.hotbar.com,.ibg.com,.ied.com,.ieg.local,.ierd.com,.imd.com,.imoss.com,.isd.com,.isoso.com,.itil.com,.kao5.com,.kf.com,.kitty.com,.lpptp.com,.m.com,.matrix.cloud,.matrix.net,.mickey.com,.mig.local,.mqq.com,.oiweb.com,.okbuy.isddev.com,.oss.com,.otaworld.com,.paipaioa.com,.qqbrowser.local,.qqinternal.com,.qqwork.com,.rtpre.com,.sc.oa.com,.sec.com,.server.com,.service.com,.sjkxinternal.com,.sllwrnm5.cn,.sng.local,.soc.com,.t.km,.tcna.com,.teg.local,.tencentvoip.com,.tenpayoa.com,.test.air.tenpay.com,.tr.com,.tr_autotest123.com,.vpn.com,.wb.local,.webdev.com,.webdev2.com,.wizard.com,.wqq.com,.wsd.com,.sng.com,.music.lan,.mnet2.com,.tencentb2.com,.tmeoa.com,.pcg.com,www.wip3.adobe.com,www-mm.wip3.adobe.com,mirrors.tencent.com,csighub.tencentyun.com"
43
+
44
+ sed -i 's/np.float/float/g' /usr/local/python/lib/python3.8/site-packages/lvis/eval.py
45
+
46
+ touch /tmp/.unhold
47
+
48
+ pip3 install -e .
49
+ torchrun --nnodes=$1 --nproc_per_node=$2 --node_rank=$INDEX --master_addr=$CHIEF_IP ${@:3}
50
+
51
+ rm /tmp/.unhold
taiji/jizhi_run_vanilla ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ if [[ $1 = "--help" ]] || [[ $1 = "-h" ]]
3
+ then
4
+ echo "Usage: jizhi_run NUM_MECHINES NUM_GPUS TASK_NAME <CMDS>"
5
+ fi
6
+
7
+ # user configuration
8
+ TOKEN=$TOKEN
9
+ if [ ! -n "$IMAGE_FULL_NAME" ]; then
10
+ IMAGE_FULL_NAME="mirrors.tencent.com/ronnysong_rd/fastdet:torch2.0.1-cuda11.7"
11
+ fi
12
+ if [ ! -n "$BUSINESS_FLAG" ]; then
13
+ BUSINESS_FLAG="TEG_AILab_CVC_chongqing"
14
+ fi
15
+ if [ ! -n "$CEPH_BUSINESS_FLAG" ]; then
16
+ CEPH_BUSINESS_FLAG="TEG_AILab_CVC_chongqing"
17
+ fi
18
+ if [ ! -n "$GPU_NAME" ]; then
19
+ GPU_NAME="V100"
20
+ fi
21
+ if [ ! -n "$PRIORITY_LEVEL" ]; then
22
+ PRIORITY_LEVEL="HIGH"
23
+ fi
24
+ if [ ! -n "$ELASTIC_LEVEL" ]; then
25
+ ELASTIC_LEVEL=1
26
+ fi
27
+ if [ ! -n "$RDMA" ]; then
28
+ RDMA="false"
29
+ fi
30
+ if [ ! -n "$CUDA" ]; then
31
+ CUDA="11.0"
32
+ fi
33
+
34
+ CMD_PATH="start.sh"
35
+ CONF_PATH="jizhi_conf.json"
36
+ ROOT_PATH=$PWD
37
+ UUID=$(date +%s)
38
+
39
+ rm -f $CMD_PATH
40
+
41
+ echo 'cd '$ROOT_PATH >> $CMD_PATH
42
+ echo 'export HF_HOME="'$ROOT_PATH'/work_dirs/.cache/hf"' >> $CMD_PATH
43
+ echo 'export TORCH_HOME="'$ROOT_PATH'/work_dirs/.cache/torch"' >> $CMD_PATH
44
+ echo 'export CLIP_CACHE="'$ROOT_PATH'/work_dirs/.cache/clip"' >> $CMD_PATH
45
+ echo 'export TRANSFORMERS_CACHE="'$ROOT_PATH'/work_dirs/.cache/transformers"' >> $CMD_PATH
46
+ echo 'export MKL_NUM_THREADS=1' >> $CMD_PATH
47
+ echo 'export OMP_NUM_THREADS=1' >> $CMD_PATH
48
+ echo 'export TOKENIZERS_PARALLELISM=false' >> $CMD_PATH
49
+ echo 'export TORCH_DISTRIBUTED_DEBUG=INFO' >> $CMD_PATH
50
+ echo 'export NCCL_IB_GID_INDEX=3' >> $CMD_PATH
51
+ if [ $BUSINESS_FLAG = "TaiJi_HYAide_BUFFER_SH_A800H" ]; then
52
+ echo 'export NCCL_IB_GID_INDEX=3' >> $CMD_PATH
53
+ echo 'export NCCL_IB_SL=3' >> $CMD_PATH
54
+ echo 'export NCCL_CHECKS_DISABLE=1' >> $CMD_PATH
55
+ echo 'export NCCL_P2P_DISABLE=0' >> $CMD_PATH
56
+ echo 'export NCCL_IB_DISABLE=0' >> $CMD_PATH
57
+ echo 'export NCCL_LL_THRESHOLD=16384' >> $CMD_PATH
58
+ echo 'export NCCL_IB_CUDA_SUPPORT=1' >> $CMD_PATH
59
+ echo 'export NCCL_SOCKET_IFNAME=bond1' >> $CMD_PATH
60
+ echo 'export UCX_NET_DEVICES=bond1' >> $CMD_PATH
61
+ echo 'export NCCL_IB_HCA=mlx5_bond_1,mlx5_bond_5,mlx5_bond_3,mlx5_bond_7,mlx5_bond_4,mlx5_bond_8,mlx5_bond_2,mlx5_bond_6' >> $CMD_PATH
62
+ echo 'export NCCL_COLLNET_ENABLE=0' >> $CMD_PATH
63
+ echo 'export SHARP_COLL_ENABLE_SAT=0' >> $CMD_PATH
64
+ echo 'export NCCL_NET_GDR_LEVEL=2' >> $CMD_PATH
65
+ echo 'export NCCL_IB_QPS_PER_CONNECTION=4' >> $CMD_PATH
66
+ echo 'export NCCL_IB_TC=160' >> $CMD_PATH
67
+ echo 'export NCCL_PXN_DISABLE=1' >> $CMD_PATH
68
+ fi
69
+ echo ${@:4} >> $CMD_PATH
70
+
71
+ chmod +x $CMD_PATH
72
+
73
+ rm -f $CONF_PATH
74
+
75
+ #INIT_CMD="jizhi_client mount -bf TEG_AILab_CVC_chongqing -tk $TOKEN"
76
+ INIT_CMD=""
77
+
78
+ echo '{' > $CONF_PATH
79
+ echo '"Token": "'$TOKEN'",' >> $CONF_PATH
80
+ echo '"business_flag": "'$BUSINESS_FLAG'",' >> $CONF_PATH
81
+ echo '"model_local_file_path": "'$ROOT_PATH'/'$CMD_PATH'",' >> $CONF_PATH
82
+ echo '"host_num": '$1',' >> $CONF_PATH
83
+ echo '"host_gpu_num": '$2',' >> $CONF_PATH
84
+ echo '"task_flag": "'$3'_'$UUID'",' >> $CONF_PATH
85
+ echo '"priority_level": "'$PRIORITY_LEVEL'",' >> $CONF_PATH
86
+ echo '"elastic_level": '$ELASTIC_LEVEL',' >> $CONF_PATH
87
+ echo '"cuda_version": "'$CUDA'",' >> $CONF_PATH
88
+ echo '"image_full_name": "'$IMAGE_FULL_NAME'",' >> $CONF_PATH
89
+ echo '"GPUName": "'$GPU_NAME'",' >> $CONF_PATH
90
+ echo '"mount_ceph_business_flag": "'$CEPH_BUSINESS_FLAG'",' >> $CONF_PATH
91
+ echo '"exec_start_in_all_mpi_pods": true,' >> $CONF_PATH
92
+ echo '"enable_rdma": '$RDMA',' >> $CONF_PATH
93
+ echo '"init_cmd": "'$INIT_CMD'",' >> $CONF_PATH
94
+ echo '"envs": {' >> $CONF_PATH
95
+ echo ' "HUNYUAN_TASK_CATEGORY": "LLM",' >> $CONF_PATH
96
+ echo ' "HUNYUAN_TASK_MODEL_TYPE": "SFT",' >> $CONF_PATH
97
+ echo ' "HUNYUAN_TASK_DOMAIN": "NLP",' >> $CONF_PATH
98
+ echo ' "HUNYUAN_TASK_START_MODEL_TYPE": "7B冷启"}' >> $CONF_PATH
99
+ echo '}' >> $CONF_PATH
100
+
101
+ jizhi_client start -scfg $CONF_PATH
102
+
103
+ rm -f $CMD_PATH
104
+ rm -f $CONF_PATH
105
+
third_party/mmyolo/.circleci/config.yml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ version: 2.1
2
+
3
+ # this allows you to use CircleCI's dynamic configuration feature
4
+ setup: true
5
+
6
+ # the path-filtering orb is required to continue a pipeline based on
7
+ # the path of an updated fileset
8
+ orbs:
9
+ path-filtering: circleci/path-filtering@0.1.2
10
+
11
+ workflows:
12
+ # the always-run workflow is always triggered, regardless of the pipeline parameters.
13
+ always-run:
14
+ jobs:
15
+ # the path-filtering/filter job determines which pipeline
16
+ # parameters to update.
17
+ - path-filtering/filter:
18
+ name: check-updated-files
19
+ # 3-column, whitespace-delimited mapping. One mapping per
20
+ # line:
21
+ # <regex path-to-test> <parameter-to-set> <value-of-pipeline-parameter>
22
+ mapping: |
23
+ mmyolo/.* lint_only false
24
+ requirements/.* lint_only false
25
+ tests/.* lint_only false
26
+ tools/.* lint_only false
27
+ configs/.* lint_only false
28
+ .circleci/.* lint_only false
29
+ base-revision: main
30
+ # this is the path of the configuration we should trigger once
31
+ # path filtering and pipeline parameter value updates are
32
+ # complete. In this case, we are using the parent dynamic
33
+ # configuration itself.
34
+ config-path: .circleci/test.yml
third_party/mmyolo/.circleci/docker/Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ARG PYTORCH="1.8.1"
2
+ ARG CUDA="10.2"
3
+ ARG CUDNN="7"
4
+
5
+ FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
6
+
7
+ # To fix GPG key error when running apt-get update
8
+ RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub
9
+ RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub
10
+
11
+ RUN apt-get update && apt-get install -y ninja-build libglib2.0-0 libsm6 libxrender-dev libxext6 libgl1-mesa-glx
third_party/mmyolo/.circleci/test.yml ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ version: 2.1
2
+
3
+ # the default pipeline parameters, which will be updated according to
4
+ # the results of the path-filtering orb
5
+ parameters:
6
+ lint_only:
7
+ type: boolean
8
+ default: true
9
+
10
+ jobs:
11
+ lint:
12
+ docker:
13
+ - image: cimg/python:3.7.4
14
+ steps:
15
+ - checkout
16
+ - run:
17
+ name: Install pre-commit hook
18
+ command: |
19
+ pip install pre-commit
20
+ pre-commit install
21
+ - run:
22
+ name: Linting
23
+ command: pre-commit run --all-files
24
+ - run:
25
+ name: Check docstring coverage
26
+ command: |
27
+ pip install interrogate
28
+ interrogate -v --ignore-init-method --ignore-module --ignore-nested-functions --ignore-magic --ignore-regex "__repr__" --fail-under 90 mmyolo
29
+ build_cpu:
30
+ parameters:
31
+ # The python version must match available image tags in
32
+ # https://circleci.com/developer/images/image/cimg/python
33
+ python:
34
+ type: string
35
+ torch:
36
+ type: string
37
+ torchvision:
38
+ type: string
39
+ docker:
40
+ - image: cimg/python:<< parameters.python >>
41
+ resource_class: large
42
+ steps:
43
+ - checkout
44
+ - run:
45
+ name: Install Libraries
46
+ command: |
47
+ sudo apt-get update
48
+ sudo apt-get install -y ninja-build libglib2.0-0 libsm6 libxrender-dev libxext6 libgl1-mesa-glx libjpeg-dev zlib1g-dev libtinfo-dev libncurses5
49
+ - run:
50
+ name: Configure Python & pip
51
+ command: |
52
+ pip install --upgrade pip
53
+ pip install wheel
54
+ - run:
55
+ name: Install PyTorch
56
+ command: |
57
+ python -V
58
+ pip install torch==<< parameters.torch >>+cpu torchvision==<< parameters.torchvision >>+cpu -f https://download.pytorch.org/whl/torch_stable.html
59
+ - run:
60
+ name: Install ONNXRuntime
61
+ command: |
62
+ pip install onnxruntime==1.8.1
63
+ wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz
64
+ tar xvf onnxruntime-linux-x64-1.8.1.tgz
65
+ - run:
66
+ name: Install mmyolo dependencies
67
+ command: |
68
+ pip install -U openmim
69
+ mim install git+https://github.com/open-mmlab/mmengine.git@main
70
+ mim install 'mmcv >= 2.0.0'
71
+ mim install git+https://github.com/open-mmlab/mmdetection.git@dev-3.x
72
+ pip install -r requirements/albu.txt
73
+ pip install -r requirements/tests.txt
74
+ - run:
75
+ name: Install mmdeploy
76
+ command: |
77
+ pip install setuptools
78
+ git clone -b dev-1.x --depth 1 https://github.com/open-mmlab/mmdeploy.git mmdeploy --recurse-submodules
79
+ wget https://github.com/Kitware/CMake/releases/download/v3.20.0/cmake-3.20.0-linux-x86_64.tar.gz
80
+ tar -xzvf cmake-3.20.0-linux-x86_64.tar.gz
81
+ sudo ln -sf $(pwd)/cmake-3.20.0-linux-x86_64/bin/* /usr/bin/
82
+ cd mmdeploy && mkdir build && cd build && cmake .. -DMMDEPLOY_TARGET_BACKENDS=ort -DONNXRUNTIME_DIR=/home/circleci/project/onnxruntime-linux-x64-1.8.1 && make -j8 && make install
83
+ export LD_LIBRARY_PATH=/home/circleci/project/onnxruntime-linux-x64-1.8.1/lib:${LD_LIBRARY_PATH}
84
+ cd /home/circleci/project/mmdeploy && python -m pip install -v -e .
85
+ - run:
86
+ name: Build and install
87
+ command: |
88
+ pip install -e .
89
+ - run:
90
+ name: Run unittests
91
+ command: |
92
+ export LD_LIBRARY_PATH=/home/circleci/project/onnxruntime-linux-x64-1.8.1/lib:${LD_LIBRARY_PATH}
93
+ pytest tests/
94
+ # coverage run --branch --source mmyolo -m pytest tests/
95
+ # coverage xml
96
+ # coverage report -m
97
+ build_cuda:
98
+ parameters:
99
+ torch:
100
+ type: string
101
+ cuda:
102
+ type: enum
103
+ enum: ["10.1", "10.2", "11.0", "11.7"]
104
+ cudnn:
105
+ type: integer
106
+ default: 7
107
+ machine:
108
+ image: ubuntu-2004-cuda-11.4:202110-01
109
+ # docker_layer_caching: true
110
+ resource_class: gpu.nvidia.small
111
+ steps:
112
+ - checkout
113
+ - run:
114
+ # Cloning repos in VM since Docker doesn't have access to the private key
115
+ name: Clone Repos
116
+ command: |
117
+ git clone -b main --depth 1 https://github.com/open-mmlab/mmengine.git /home/circleci/mmengine
118
+ git clone -b dev-3.x --depth 1 https://github.com/open-mmlab/mmdetection.git /home/circleci/mmdetection
119
+ - run:
120
+ name: Build Docker image
121
+ command: |
122
+ docker build .circleci/docker -t mmyolo:gpu --build-arg PYTORCH=<< parameters.torch >> --build-arg CUDA=<< parameters.cuda >> --build-arg CUDNN=<< parameters.cudnn >>
123
+ docker run --gpus all -t -d -v /home/circleci/project:/mmyolo -v /home/circleci/mmengine:/mmengine -v /home/circleci/mmdetection:/mmdetection -w /mmyolo --name mmyolo mmyolo:gpu
124
+ - run:
125
+ name: Install mmyolo dependencies
126
+ command: |
127
+ docker exec mmyolo pip install -U openmim
128
+ docker exec mmyolo mim install -e /mmengine
129
+ docker exec mmyolo mim install 'mmcv >= 2.0.0'
130
+ docker exec mmyolo pip install -e /mmdetection
131
+ docker exec mmyolo pip install -r requirements/albu.txt
132
+ docker exec mmyolo pip install -r requirements/tests.txt
133
+ - run:
134
+ name: Build and install
135
+ command: |
136
+ docker exec mmyolo pip install -e .
137
+ - run:
138
+ name: Run unittests
139
+ command: |
140
+ docker exec mmyolo pytest tests/
141
+
142
+ workflows:
143
+ pr_stage_lint:
144
+ when: << pipeline.parameters.lint_only >>
145
+ jobs:
146
+ - lint:
147
+ name: lint
148
+ filters:
149
+ branches:
150
+ ignore:
151
+ - main
152
+
153
+ pr_stage_test:
154
+ when:
155
+ not: << pipeline.parameters.lint_only >>
156
+ jobs:
157
+ - lint:
158
+ name: lint
159
+ filters:
160
+ branches:
161
+ ignore:
162
+ - main
163
+ - build_cpu:
164
+ name: minimum_version_cpu
165
+ torch: 1.8.0
166
+ torchvision: 0.9.0
167
+ python: 3.8.0 # The lowest python 3.7.x version available on CircleCI images
168
+ requires:
169
+ - lint
170
+ - build_cpu:
171
+ name: maximum_version_cpu
172
+ # mmdeploy not supported
173
+ # torch: 2.0.0
174
+ # torchvision: 0.15.1
175
+ torch: 1.12.1
176
+ torchvision: 0.13.1
177
+ python: 3.9.0
178
+ requires:
179
+ - minimum_version_cpu
180
+ - hold:
181
+ type: approval
182
+ requires:
183
+ - maximum_version_cpu
184
+ - build_cuda:
185
+ name: mainstream_version_gpu
186
+ torch: 1.8.1
187
+ # Use double quotation mark to explicitly specify its type
188
+ # as string instead of number
189
+ cuda: "10.2"
190
+ requires:
191
+ - hold
192
+ - build_cuda:
193
+ name: maximum_version_gpu
194
+ torch: 2.0.0
195
+ cuda: "11.7"
196
+ cudnn: 8
197
+ requires:
198
+ - hold
199
+ merge_stage_test:
200
+ when:
201
+ not: << pipeline.parameters.lint_only >>
202
+ jobs:
203
+ - build_cuda:
204
+ name: minimum_version_gpu
205
+ torch: 1.7.0
206
+ # Use double quotation mark to explicitly specify its type
207
+ # as string instead of number
208
+ cuda: "11.0"
209
+ cudnn: 8
210
+ filters:
211
+ branches:
212
+ only:
213
+ - main
third_party/mmyolo/.dev_scripts/gather_models.py ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import argparse
3
+ import glob
4
+ import os
5
+ import os.path as osp
6
+ import shutil
7
+ import subprocess
8
+ import time
9
+ from collections import OrderedDict
10
+
11
+ import torch
12
+ import yaml
13
+ from mmengine.config import Config
14
+ from mmengine.fileio import dump
15
+ from mmengine.utils import mkdir_or_exist, scandir
16
+
17
+
18
+ def ordered_yaml_dump(data, stream=None, Dumper=yaml.SafeDumper, **kwds):
19
+
20
+ class OrderedDumper(Dumper):
21
+ pass
22
+
23
+ def _dict_representer(dumper, data):
24
+ return dumper.represent_mapping(
25
+ yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, data.items())
26
+
27
+ OrderedDumper.add_representer(OrderedDict, _dict_representer)
28
+ return yaml.dump(data, stream, OrderedDumper, **kwds)
29
+
30
+
31
+ def process_checkpoint(in_file, out_file):
32
+ checkpoint = torch.load(in_file, map_location='cpu')
33
+ # remove optimizer for smaller file size
34
+ if 'optimizer' in checkpoint:
35
+ del checkpoint['optimizer']
36
+ if 'message_hub' in checkpoint:
37
+ del checkpoint['message_hub']
38
+ if 'ema_state_dict' in checkpoint:
39
+ del checkpoint['ema_state_dict']
40
+
41
+ for key in list(checkpoint['state_dict']):
42
+ if key.startswith('data_preprocessor'):
43
+ checkpoint['state_dict'].pop(key)
44
+ elif 'priors_base_sizes' in key:
45
+ checkpoint['state_dict'].pop(key)
46
+ elif 'grid_offset' in key:
47
+ checkpoint['state_dict'].pop(key)
48
+ elif 'prior_inds' in key:
49
+ checkpoint['state_dict'].pop(key)
50
+
51
+ # if it is necessary to remove some sensitive data in checkpoint['meta'],
52
+ # add the code here.
53
+ if torch.__version__ >= '1.6':
54
+ torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False)
55
+ else:
56
+ torch.save(checkpoint, out_file)
57
+ sha = subprocess.check_output(['sha256sum', out_file]).decode()
58
+ final_file = out_file.rstrip('.pth') + f'-{sha[:8]}.pth'
59
+ subprocess.Popen(['mv', out_file, final_file])
60
+ return final_file
61
+
62
+
63
+ def is_by_epoch(config):
64
+ cfg = Config.fromfile('./configs/' + config)
65
+ return cfg.train_cfg.type == 'EpochBasedTrainLoop'
66
+
67
+
68
+ def get_final_epoch_or_iter(config):
69
+ cfg = Config.fromfile('./configs/' + config)
70
+ if cfg.train_cfg.type == 'EpochBasedTrainLoop':
71
+ return cfg.train_cfg.max_epochs
72
+ else:
73
+ return cfg.train_cfg.max_iters
74
+
75
+
76
+ def get_best_epoch_or_iter(exp_dir):
77
+ best_epoch_iter_full_path = list(
78
+ sorted(glob.glob(osp.join(exp_dir, 'best_*.pth'))))[-1]
79
+ best_epoch_or_iter_model_path = best_epoch_iter_full_path.split('/')[-1]
80
+ best_epoch_or_iter = best_epoch_or_iter_model_path. \
81
+ split('_')[-1].split('.')[0]
82
+ return best_epoch_or_iter_model_path, int(best_epoch_or_iter)
83
+
84
+
85
+ def get_real_epoch_or_iter(config):
86
+ cfg = Config.fromfile('./configs/' + config)
87
+ if cfg.train_cfg.type == 'EpochBasedTrainLoop':
88
+ epoch = cfg.train_cfg.max_epochs
89
+ return epoch
90
+ else:
91
+ return cfg.runner.max_iters
92
+
93
+
94
+ def get_final_results(log_json_path,
95
+ epoch_or_iter,
96
+ results_lut='coco/bbox_mAP',
97
+ by_epoch=True):
98
+ result_dict = dict()
99
+ with open(log_json_path) as f:
100
+ r = f.readlines()[-1]
101
+ last_metric = r.split(',')[0].split(': ')[-1].strip()
102
+ result_dict[results_lut] = last_metric
103
+ return result_dict
104
+
105
+
106
+ def get_dataset_name(config):
107
+ # If there are more dataset, add here.
108
+ name_map = dict(
109
+ CityscapesDataset='Cityscapes',
110
+ CocoDataset='COCO',
111
+ PoseCocoDataset='COCO Person',
112
+ YOLOv5CocoDataset='COCO',
113
+ CocoPanopticDataset='COCO',
114
+ YOLOv5DOTADataset='DOTA 1.0',
115
+ DeepFashionDataset='Deep Fashion',
116
+ LVISV05Dataset='LVIS v0.5',
117
+ LVISV1Dataset='LVIS v1',
118
+ VOCDataset='Pascal VOC',
119
+ YOLOv5VOCDataset='Pascal VOC',
120
+ WIDERFaceDataset='WIDER Face',
121
+ OpenImagesDataset='OpenImagesDataset',
122
+ OpenImagesChallengeDataset='OpenImagesChallengeDataset')
123
+ cfg = Config.fromfile('./configs/' + config)
124
+ return name_map[cfg.dataset_type]
125
+
126
+
127
+ def find_last_dir(model_dir):
128
+ dst_times = []
129
+ for time_stamp in os.scandir(model_dir):
130
+ if osp.isdir(time_stamp):
131
+ dst_time = time.mktime(
132
+ time.strptime(time_stamp.name, '%Y%m%d_%H%M%S'))
133
+ dst_times.append([dst_time, time_stamp.name])
134
+ return max(dst_times, key=lambda x: x[0])[1]
135
+
136
+
137
+ def convert_model_info_to_pwc(model_infos):
138
+ pwc_files = {}
139
+ for model in model_infos:
140
+ cfg_folder_name = osp.split(model['config'])[-2]
141
+ pwc_model_info = OrderedDict()
142
+ pwc_model_info['Name'] = osp.split(model['config'])[-1].split('.')[0]
143
+ pwc_model_info['In Collection'] = 'Please fill in Collection name'
144
+ pwc_model_info['Config'] = osp.join('configs', model['config'])
145
+
146
+ # get metadata
147
+ meta_data = OrderedDict()
148
+ if 'epochs' in model:
149
+ meta_data['Epochs'] = get_real_epoch_or_iter(model['config'])
150
+ else:
151
+ meta_data['Iterations'] = get_real_epoch_or_iter(model['config'])
152
+ pwc_model_info['Metadata'] = meta_data
153
+
154
+ # get dataset name
155
+ dataset_name = get_dataset_name(model['config'])
156
+
157
+ # get results
158
+ results = []
159
+ # if there are more metrics, add here.
160
+ if 'bbox_mAP' in model['results']:
161
+ metric = round(model['results']['bbox_mAP'] * 100, 1)
162
+ results.append(
163
+ OrderedDict(
164
+ Task='Object Detection',
165
+ Dataset=dataset_name,
166
+ Metrics={'box AP': metric}))
167
+ if 'segm_mAP' in model['results']:
168
+ metric = round(model['results']['segm_mAP'] * 100, 1)
169
+ results.append(
170
+ OrderedDict(
171
+ Task='Instance Segmentation',
172
+ Dataset=dataset_name,
173
+ Metrics={'mask AP': metric}))
174
+ if 'PQ' in model['results']:
175
+ metric = round(model['results']['PQ'], 1)
176
+ results.append(
177
+ OrderedDict(
178
+ Task='Panoptic Segmentation',
179
+ Dataset=dataset_name,
180
+ Metrics={'PQ': metric}))
181
+ pwc_model_info['Results'] = results
182
+
183
+ link_string = 'https://download.openmmlab.com/mmyolo/v0/'
184
+ link_string += '{}/{}'.format(model['config'].rstrip('.py'),
185
+ osp.split(model['model_path'])[-1])
186
+ pwc_model_info['Weights'] = link_string
187
+ if cfg_folder_name in pwc_files:
188
+ pwc_files[cfg_folder_name].append(pwc_model_info)
189
+ else:
190
+ pwc_files[cfg_folder_name] = [pwc_model_info]
191
+ return pwc_files
192
+
193
+
194
+ def parse_args():
195
+ parser = argparse.ArgumentParser(description='Gather benchmarked models')
196
+ parser.add_argument(
197
+ 'root',
198
+ type=str,
199
+ help='root path of benchmarked models to be gathered')
200
+ parser.add_argument(
201
+ 'out', type=str, help='output path of gathered models to be stored')
202
+ parser.add_argument(
203
+ '--best',
204
+ action='store_true',
205
+ help='whether to gather the best model.')
206
+
207
+ args = parser.parse_args()
208
+ return args
209
+
210
+
211
+ # TODO: Refine
212
+ def main():
213
+ args = parse_args()
214
+ models_root = args.root
215
+ models_out = args.out
216
+ mkdir_or_exist(models_out)
217
+
218
+ # find all models in the root directory to be gathered
219
+ raw_configs = list(scandir('./configs', '.py', recursive=True))
220
+
221
+ # filter configs that is not trained in the experiments dir
222
+ used_configs = []
223
+ for raw_config in raw_configs:
224
+ if osp.exists(osp.join(models_root, raw_config)):
225
+ used_configs.append(raw_config)
226
+ print(f'Find {len(used_configs)} models to be gathered')
227
+
228
+ # find final_ckpt and log file for trained each config
229
+ # and parse the best performance
230
+ model_infos = []
231
+ for used_config in used_configs:
232
+ exp_dir = osp.join(models_root, used_config)
233
+ by_epoch = is_by_epoch(used_config)
234
+ # check whether the exps is finished
235
+ if args.best is True:
236
+ final_model, final_epoch_or_iter = get_best_epoch_or_iter(exp_dir)
237
+ else:
238
+ final_epoch_or_iter = get_final_epoch_or_iter(used_config)
239
+ final_model = '{}_{}.pth'.format('epoch' if by_epoch else 'iter',
240
+ final_epoch_or_iter)
241
+
242
+ model_path = osp.join(exp_dir, final_model)
243
+ # skip if the model is still training
244
+ if not osp.exists(model_path):
245
+ continue
246
+
247
+ # get the latest logs
248
+ latest_exp_name = find_last_dir(exp_dir)
249
+ latest_exp_json = osp.join(exp_dir, latest_exp_name, 'vis_data',
250
+ latest_exp_name + '.json')
251
+
252
+ model_performance = get_final_results(
253
+ latest_exp_json, final_epoch_or_iter, by_epoch=by_epoch)
254
+
255
+ if model_performance is None:
256
+ continue
257
+
258
+ model_info = dict(
259
+ config=used_config,
260
+ results=model_performance,
261
+ final_model=final_model,
262
+ latest_exp_json=latest_exp_json,
263
+ latest_exp_name=latest_exp_name)
264
+ model_info['epochs' if by_epoch else 'iterations'] = \
265
+ final_epoch_or_iter
266
+ model_infos.append(model_info)
267
+
268
+ # publish model for each checkpoint
269
+ publish_model_infos = []
270
+ for model in model_infos:
271
+ model_publish_dir = osp.join(models_out, model['config'].rstrip('.py'))
272
+ mkdir_or_exist(model_publish_dir)
273
+
274
+ model_name = osp.split(model['config'])[-1].split('.')[0]
275
+
276
+ model_name += '_' + model['latest_exp_name']
277
+ publish_model_path = osp.join(model_publish_dir, model_name)
278
+ trained_model_path = osp.join(models_root, model['config'],
279
+ model['final_model'])
280
+
281
+ # convert model
282
+ final_model_path = process_checkpoint(trained_model_path,
283
+ publish_model_path)
284
+
285
+ # copy log
286
+ shutil.copy(model['latest_exp_json'],
287
+ osp.join(model_publish_dir, f'{model_name}.log.json'))
288
+
289
+ # copy config to guarantee reproducibility
290
+ config_path = model['config']
291
+ config_path = osp.join(
292
+ 'configs',
293
+ config_path) if 'configs' not in config_path else config_path
294
+ target_config_path = osp.split(config_path)[-1]
295
+ shutil.copy(config_path, osp.join(model_publish_dir,
296
+ target_config_path))
297
+
298
+ model['model_path'] = final_model_path
299
+ publish_model_infos.append(model)
300
+
301
+ models = dict(models=publish_model_infos)
302
+ print(f'Totally gathered {len(publish_model_infos)} models')
303
+ dump(models, osp.join(models_out, 'model_info.json'))
304
+
305
+ pwc_files = convert_model_info_to_pwc(publish_model_infos)
306
+ for name in pwc_files:
307
+ with open(osp.join(models_out, name + '_metafile.yml'), 'w') as f:
308
+ ordered_yaml_dump(pwc_files[name], f, encoding='utf-8')
309
+
310
+
311
+ if __name__ == '__main__':
312
+ main()
third_party/mmyolo/.dev_scripts/print_registers.py ADDED
@@ -0,0 +1,448 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import argparse
3
+ import importlib
4
+ import os
5
+ import os.path as osp
6
+ import pkgutil
7
+ import sys
8
+ import tempfile
9
+ from multiprocessing import Pool
10
+ from pathlib import Path
11
+
12
+ import numpy as np
13
+ import pandas as pd
14
+
15
+ # host_addr = 'https://gitee.com/open-mmlab'
16
+ host_addr = 'https://github.com/open-mmlab'
17
+ tools_list = ['tools', '.dev_scripts']
18
+ proxy_names = {
19
+ 'mmdet': 'mmdetection',
20
+ 'mmseg': 'mmsegmentation',
21
+ 'mmcls': 'mmclassification'
22
+ }
23
+ merge_module_keys = {'mmcv': ['mmengine']}
24
+ # exclude_prefix = {'mmcv': ['<class \'mmengine.model.']}
25
+ exclude_prefix = {}
26
+ markdown_title = '# MM 系列开源库注册表\n'
27
+ markdown_title += '(注意:本文档是通过 .dev_scripts/print_registers.py 脚本自动生成)'
28
+
29
+
30
+ def capitalize(repo_name):
31
+ lower = repo_name.lower()
32
+ if lower == 'mmcv':
33
+ return repo_name.upper()
34
+ elif lower.startswith('mm'):
35
+ return 'MM' + repo_name[2:]
36
+ return repo_name.capitalize()
37
+
38
+
39
+ def mkdir_or_exist(dir_name, mode=0o777):
40
+ if dir_name == '':
41
+ return
42
+ dir_name = osp.expanduser(dir_name)
43
+ os.makedirs(dir_name, mode=mode, exist_ok=True)
44
+
45
+
46
+ def parse_repo_name(repo_name):
47
+ proxy_names_rev = dict(zip(proxy_names.values(), proxy_names.keys()))
48
+ repo_name = proxy_names.get(repo_name, repo_name)
49
+ module_name = proxy_names_rev.get(repo_name, repo_name)
50
+ return repo_name, module_name
51
+
52
+
53
+ def git_pull_branch(repo_name, branch_name='', pulldir='.'):
54
+ mkdir_or_exist(pulldir)
55
+ exec_str = f'cd {pulldir};git init;git pull '
56
+ exec_str += f'{host_addr}/{repo_name}.git'
57
+ if branch_name:
58
+ exec_str += f' {branch_name}'
59
+ returncode = os.system(exec_str)
60
+ if returncode:
61
+ raise RuntimeError(
62
+ f'failed to get the remote repo, code: {returncode}')
63
+
64
+
65
+ def load_modules_from_dir(module_name, module_root, throw_error=False):
66
+ print(f'loading the {module_name} modules...')
67
+ # # install the dependencies
68
+ # if osp.exists(osp.join(pkg_dir, 'requirements.txt')):
69
+ # os.system('pip install -r requirements.txt')
70
+ # get all module list
71
+ module_list = []
72
+ error_dict = {}
73
+ module_root = osp.join(module_root, module_name)
74
+ assert osp.exists(module_root), \
75
+ f'cannot find the module root: {module_root}'
76
+ for _root, _dirs, _files in os.walk(module_root):
77
+ if (('__init__.py' not in _files)
78
+ and (osp.split(_root)[1] != '__pycache__')):
79
+ # add __init__.py file to the package
80
+ with open(osp.join(_root, '__init__.py'), 'w') as _:
81
+ pass
82
+
83
+ def _onerror(*args, **kwargs):
84
+ pass
85
+
86
+ for _finder, _name, _ispkg in pkgutil.walk_packages([module_root],
87
+ prefix=module_name +
88
+ '.',
89
+ onerror=_onerror):
90
+ try:
91
+ module = importlib.import_module(_name)
92
+ module_list.append(module)
93
+ except Exception as e:
94
+ if throw_error:
95
+ raise e
96
+ _error_msg = f'{type(e)}: {e}.'
97
+ print(f'cannot import the module: {_name} ({_error_msg})')
98
+ assert (_name not in error_dict), \
99
+ f'duplicate error name was found: {_name}'
100
+ error_dict[_name] = _error_msg
101
+ for module in module_list:
102
+ assert module.__file__.startswith(module_root), \
103
+ f'the importing path of package was wrong: {module.__file__}'
104
+ print('modules were loaded...')
105
+ return module_list, error_dict
106
+
107
+
108
+ def get_registries_from_modules(module_list):
109
+ registries = {}
110
+ objects_set = set()
111
+ # import the Registry class,
112
+ # import at the beginning is not allowed
113
+ # because it is not the temp package
114
+ from mmengine.registry import Registry
115
+
116
+ # only get the specific registries in module list
117
+ for module in module_list:
118
+ for obj_name in dir(module):
119
+ _obj = getattr(module, obj_name)
120
+ if isinstance(_obj, Registry):
121
+ objects_set.add(_obj)
122
+ for _obj in objects_set:
123
+ if _obj.scope not in registries:
124
+ registries[_obj.scope] = {}
125
+ registries_scope = registries[_obj.scope]
126
+ assert _obj.name not in registries_scope, \
127
+ f'multiple definition of {_obj.name} in registries'
128
+ registries_scope[_obj.name] = {
129
+ key: str(val)
130
+ for key, val in _obj.module_dict.items()
131
+ }
132
+ print('registries got...')
133
+ return registries
134
+
135
+
136
+ def merge_registries(src_dict, dst_dict):
137
+ assert type(src_dict) == type(dst_dict), \
138
+ (f'merge type is not supported: '
139
+ f'{type(dst_dict)} and {type(src_dict)}')
140
+ if isinstance(src_dict, str):
141
+ return
142
+ for _k, _v in dst_dict.items():
143
+ if (_k not in src_dict):
144
+ src_dict.update({_k: _v})
145
+ else:
146
+ assert isinstance(_v, (dict, str)) and \
147
+ isinstance(src_dict[_k], (dict, str)), \
148
+ 'merge type is not supported: ' \
149
+ f'{type(_v)} and {type(src_dict[_k])}'
150
+ merge_registries(src_dict[_k], _v)
151
+
152
+
153
+ def exclude_registries(registries, exclude_key):
154
+ for _k in list(registries.keys()):
155
+ _v = registries[_k]
156
+ if isinstance(_v, str) and _v.startswith(exclude_key):
157
+ registries.pop(_k)
158
+ elif isinstance(_v, dict):
159
+ exclude_registries(_v, exclude_key)
160
+
161
+
162
+ def get_scripts_from_dir(root):
163
+
164
+ def _recurse(_dict, _chain):
165
+ if len(_chain) <= 1:
166
+ _dict[_chain[0]] = None
167
+ return
168
+ _key, *_chain = _chain
169
+ if _key not in _dict:
170
+ _dict[_key] = {}
171
+ _recurse(_dict[_key], _chain)
172
+
173
+ # find all scripts in the root directory. (not just ('.py', '.sh'))
174
+ # can not use the scandir function in mmengine to scan the dir,
175
+ # because mmengine import is not allowed before git pull
176
+ scripts = {}
177
+ for _subroot, _dirs, _files in os.walk(root):
178
+ for _file in _files:
179
+ _script = osp.join(osp.relpath(_subroot, root), _file)
180
+ _recurse(scripts, Path(_script).parts)
181
+ return scripts
182
+
183
+
184
+ def get_version_from_module_name(module_name, branch):
185
+ branch_str = str(branch) if branch is not None else ''
186
+ version_str = ''
187
+ try:
188
+ exec(f'import {module_name}')
189
+ _module = eval(f'{module_name}')
190
+ if hasattr(_module, '__version__'):
191
+ version_str = str(_module.__version__)
192
+ else:
193
+ version_str = branch_str
194
+ version_str = f' ({version_str})' if version_str else version_str
195
+ except (ImportError, AttributeError) as e:
196
+ print(f'can not get the version of module {module_name}: {e}')
197
+ return version_str
198
+
199
+
200
+ def print_tree(print_dict):
201
+ # recursive print the dict tree
202
+ def _recurse(_dict, _connector='', n=0):
203
+ assert isinstance(_dict, dict), 'recursive type must be dict'
204
+ tree = ''
205
+ for idx, (_key, _val) in enumerate(_dict.items()):
206
+ sub_tree = ''
207
+ _last = (idx == (len(_dict) - 1))
208
+ if isinstance(_val, str):
209
+ _key += f' ({_val})'
210
+ elif isinstance(_val, dict):
211
+ sub_tree = _recurse(_val,
212
+ _connector + (' ' if _last else '│ '),
213
+ n + 1)
214
+ else:
215
+ assert (_val is None), f'unknown print type {_val}'
216
+ tree += ' ' + _connector + \
217
+ ('└─' if _last else '├─') + f'({n}) {_key}' + '\n'
218
+ tree += sub_tree
219
+ return tree
220
+
221
+ for _pname, _pdict in print_dict.items():
222
+ print('-' * 100)
223
+ print(f'{_pname}\n' + _recurse(_pdict))
224
+
225
+
226
+ def divide_list_into_groups(_array, _maxsize_per_group):
227
+ if not _array:
228
+ return _array
229
+ _groups = np.asarray(len(_array) / _maxsize_per_group)
230
+ if len(_array) % _maxsize_per_group:
231
+ _groups = np.floor(_groups) + 1
232
+ _groups = _groups.astype(int)
233
+ return np.array_split(_array, _groups)
234
+
235
+
236
+ def registries_to_html(registries, title=''):
237
+ max_col_per_row = 5
238
+ max_size_per_cell = 20
239
+ html = ''
240
+ table_data = []
241
+ # save repository registries
242
+ for registry_name, registry_dict in registries.items():
243
+ # filter the empty registries
244
+ if not registry_dict:
245
+ continue
246
+ registry_strings = []
247
+ if isinstance(registry_dict, dict):
248
+ registry_dict = list(registry_dict.keys())
249
+ elif isinstance(registry_dict, list):
250
+ pass
251
+ else:
252
+ raise TypeError(
253
+ f'unknown type of registry_dict {type(registry_dict)}')
254
+ for _k in registry_dict:
255
+ registry_strings.append(f'<li>{_k}</li>')
256
+ table_data.append((registry_name, registry_strings))
257
+
258
+ # sort the data list
259
+ table_data = sorted(table_data, key=lambda x: len(x[1]))
260
+ # split multi parts
261
+ table_data_multi_parts = []
262
+ for (registry_name, registry_strings) in table_data:
263
+ multi_parts = False
264
+ if len(registry_strings) > max_size_per_cell:
265
+ multi_parts = True
266
+ for cell_idx, registry_cell in enumerate(
267
+ divide_list_into_groups(registry_strings, max_size_per_cell)):
268
+ registry_str = ''.join(registry_cell.tolist())
269
+ registry_str = f'<ul>{registry_str}</ul>'
270
+ table_data_multi_parts.append([
271
+ registry_name if not multi_parts else
272
+ f'{registry_name} (part {cell_idx + 1})', registry_str
273
+ ])
274
+
275
+ for table_data in divide_list_into_groups(table_data_multi_parts,
276
+ max_col_per_row):
277
+ table_data = list(zip(*table_data.tolist()))
278
+ html += dataframe_to_html(
279
+ pd.DataFrame([table_data[1]], columns=table_data[0]))
280
+ if html:
281
+ html = f'<div align=\'center\'><b>{title}</b></div>\n{html}'
282
+ html = f'<details open>{html}</details>\n'
283
+ return html
284
+
285
+
286
+ def tools_to_html(tools_dict, repo_name=''):
287
+
288
+ def _recurse(_dict, _connector, _result):
289
+ assert isinstance(_dict, dict), \
290
+ f'unknown recurse type: {_dict} ({type(_dict)})'
291
+ for _k, _v in _dict.items():
292
+ if _v is None:
293
+ if _connector not in _result:
294
+ _result[_connector] = []
295
+ _result[_connector].append(_k)
296
+ else:
297
+ _recurse(_v, osp.join(_connector, _k), _result)
298
+
299
+ table_data = {}
300
+ title = f'{capitalize(repo_name)} Tools'
301
+ _recurse(tools_dict, '', table_data)
302
+ return registries_to_html(table_data, title)
303
+
304
+
305
+ def dataframe_to_html(dataframe):
306
+ styler = dataframe.style
307
+ styler = styler.hide(axis='index')
308
+ styler = styler.format(na_rep='-')
309
+ styler = styler.set_properties(**{
310
+ 'text-align': 'left',
311
+ 'align': 'center',
312
+ 'vertical-align': 'top'
313
+ })
314
+ styler = styler.set_table_styles([{
315
+ 'selector':
316
+ 'thead th',
317
+ 'props':
318
+ 'align:center;text-align:center;vertical-align:bottom'
319
+ }])
320
+ html = styler.to_html()
321
+ html = f'<div align=\'center\'>\n{html}</div>'
322
+ return html
323
+
324
+
325
+ def generate_markdown_by_repository(repo_name,
326
+ module_name,
327
+ branch,
328
+ pulldir,
329
+ throw_error=False):
330
+ # add the pull dir to the system path so that it can be found
331
+ if pulldir not in sys.path:
332
+ sys.path.insert(0, pulldir)
333
+ module_list, error_dict = load_modules_from_dir(
334
+ module_name, pulldir, throw_error=throw_error)
335
+ registries_tree = get_registries_from_modules(module_list)
336
+ if error_dict:
337
+ error_dict_name = 'error_modules'
338
+ assert (error_dict_name not in registries_tree), \
339
+ f'duplicate module name was found: {error_dict_name}'
340
+ registries_tree.update({error_dict_name: error_dict})
341
+ # get the tools files
342
+ for tools_name in tools_list:
343
+ assert (tools_name not in registries_tree), \
344
+ f'duplicate tools name was found: {tools_name}'
345
+ tools_tree = osp.join(pulldir, tools_name)
346
+ tools_tree = get_scripts_from_dir(tools_tree)
347
+ registries_tree.update({tools_name: tools_tree})
348
+ # print_tree(registries_tree)
349
+ # get registries markdown string
350
+ module_registries = registries_tree.get(module_name, {})
351
+ for merge_key in merge_module_keys.get(module_name, []):
352
+ merge_dict = registries_tree.get(merge_key, {})
353
+ merge_registries(module_registries, merge_dict)
354
+ for exclude_key in exclude_prefix.get(module_name, []):
355
+ exclude_registries(module_registries, exclude_key)
356
+ markdown_str = registries_to_html(
357
+ module_registries, title=f'{capitalize(repo_name)} Module Components')
358
+ # get tools markdown string
359
+ tools_registries = {}
360
+ for tools_name in tools_list:
361
+ tools_registries.update(
362
+ {tools_name: registries_tree.get(tools_name, {})})
363
+ markdown_str += tools_to_html(tools_registries, repo_name=repo_name)
364
+ version_str = get_version_from_module_name(module_name, branch)
365
+ title_str = f'\n\n## {capitalize(repo_name)}{version_str}\n'
366
+ # remove the pull dir from system path
367
+ if pulldir in sys.path:
368
+ sys.path.remove(pulldir)
369
+ return f'{title_str}{markdown_str}'
370
+
371
+
372
+ def parse_args():
373
+ parser = argparse.ArgumentParser(
374
+ description='print registries in openmmlab repositories')
375
+ parser.add_argument(
376
+ '-r',
377
+ '--repositories',
378
+ nargs='+',
379
+ default=['mmdet', 'mmcls', 'mmseg', 'mmengine', 'mmcv'],
380
+ type=str,
381
+ help='git repositories name in OpenMMLab')
382
+ parser.add_argument(
383
+ '-b',
384
+ '--branches',
385
+ nargs='+',
386
+ default=['3.x', '1.x', '1.x', 'main', '2.x'],
387
+ type=str,
388
+ help='the branch names of git repositories, the length of branches '
389
+ 'must be same as the length of repositories')
390
+ parser.add_argument(
391
+ '-o', '--out', type=str, default='.', help='output path of the file')
392
+ parser.add_argument(
393
+ '--throw-error',
394
+ action='store_true',
395
+ default=False,
396
+ help='whether to throw error when trying to import modules')
397
+ args = parser.parse_args()
398
+ return args
399
+
400
+
401
+ # TODO: Refine
402
+ def main():
403
+ args = parse_args()
404
+ repositories = args.repositories
405
+ branches = args.branches
406
+ assert isinstance(repositories, list), \
407
+ 'Type of repositories must be list'
408
+ if branches is None:
409
+ branches = [None] * len(repositories)
410
+ assert isinstance(branches, list) and \
411
+ len(branches) == len(repositories), \
412
+ 'The length of branches must be same as ' \
413
+ 'that of repositories'
414
+ assert isinstance(args.out, str), \
415
+ 'The type of output path must be string'
416
+ # save path of file
417
+ mkdir_or_exist(args.out)
418
+ save_path = osp.join(args.out, 'registries_info.md')
419
+ with tempfile.TemporaryDirectory() as tmpdir:
420
+ # multi process init
421
+ pool = Pool(processes=len(repositories))
422
+ multi_proc_input_list = []
423
+ multi_proc_output_list = []
424
+ # get the git repositories
425
+ for branch, repository in zip(branches, repositories):
426
+ repo_name, module_name = parse_repo_name(repository)
427
+ pulldir = osp.join(tmpdir, f'tmp_{repo_name}')
428
+ git_pull_branch(
429
+ repo_name=repo_name, branch_name=branch, pulldir=pulldir)
430
+ multi_proc_input_list.append(
431
+ (repo_name, module_name, branch, pulldir, args.throw_error))
432
+ print('starting the multi process to get the registries')
433
+ for multi_proc_input in multi_proc_input_list:
434
+ multi_proc_output_list.append(
435
+ pool.apply_async(generate_markdown_by_repository,
436
+ multi_proc_input))
437
+ pool.close()
438
+ pool.join()
439
+ with open(save_path, 'w', encoding='utf-8') as fw:
440
+ fw.write(f'{markdown_title}\n')
441
+ for multi_proc_output in multi_proc_output_list:
442
+ markdown_str = multi_proc_output.get()
443
+ fw.write(f'{markdown_str}\n')
444
+ print(f'saved registries to the path: {save_path}')
445
+
446
+
447
+ if __name__ == '__main__':
448
+ main()
third_party/mmyolo/.github/CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Contributor Covenant Code of Conduct
2
+
3
+ ## Our Pledge
4
+
5
+ In the interest of fostering an open and welcoming environment, we as
6
+ contributors and maintainers pledge to making participation in our project and
7
+ our community a harassment-free experience for everyone, regardless of age, body
8
+ size, disability, ethnicity, sex characteristics, gender identity and expression,
9
+ level of experience, education, socio-economic status, nationality, personal
10
+ appearance, race, religion, or sexual identity and orientation.
11
+
12
+ ## Our Standards
13
+
14
+ Examples of behavior that contributes to creating a positive environment
15
+ include:
16
+
17
+ - Using welcoming and inclusive language
18
+ - Being respectful of differing viewpoints and experiences
19
+ - Gracefully accepting constructive criticism
20
+ - Focusing on what is best for the community
21
+ - Showing empathy towards other community members
22
+
23
+ Examples of unacceptable behavior by participants include:
24
+
25
+ - The use of sexualized language or imagery and unwelcome sexual attention or
26
+ advances
27
+ - Trolling, insulting/derogatory comments, and personal or political attacks
28
+ - Public or private harassment
29
+ - Publishing others' private information, such as a physical or electronic
30
+ address, without explicit permission
31
+ - Other conduct which could reasonably be considered inappropriate in a
32
+ professional setting
33
+
34
+ ## Our Responsibilities
35
+
36
+ Project maintainers are responsible for clarifying the standards of acceptable
37
+ behavior and are expected to take appropriate and fair corrective action in
38
+ response to any instances of unacceptable behavior.
39
+
40
+ Project maintainers have the right and responsibility to remove, edit, or
41
+ reject comments, commits, code, wiki edits, issues, and other contributions
42
+ that are not aligned to this Code of Conduct, or to ban temporarily or
43
+ permanently any contributor for other behaviors that they deem inappropriate,
44
+ threatening, offensive, or harmful.
45
+
46
+ ## Scope
47
+
48
+ This Code of Conduct applies both within project spaces and in public spaces
49
+ when an individual is representing the project or its community. Examples of
50
+ representing a project or community include using an official project e-mail
51
+ address, posting via an official social media account, or acting as an appointed
52
+ representative at an online or offline event. Representation of a project may be
53
+ further defined and clarified by project maintainers.
54
+
55
+ ## Enforcement
56
+
57
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
58
+ reported by contacting the project team at chenkaidev@gmail.com. All
59
+ complaints will be reviewed and investigated and will result in a response that
60
+ is deemed necessary and appropriate to the circumstances. The project team is
61
+ obligated to maintain confidentiality with regard to the reporter of an incident.
62
+ Further details of specific enforcement policies may be posted separately.
63
+
64
+ Project maintainers who do not follow or enforce the Code of Conduct in good
65
+ faith may face temporary or permanent repercussions as determined by other
66
+ members of the project's leadership.
67
+
68
+ ## Attribution
69
+
70
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
71
+ available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
72
+
73
+ For answers to common questions about this code of conduct, see
74
+ https://www.contributor-covenant.org/faq
75
+
76
+ [homepage]: https://www.contributor-covenant.org
third_party/mmyolo/.github/CONTRIBUTING.md ADDED
@@ -0,0 +1 @@
 
 
1
+ We appreciate all contributions to improve MMYOLO. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) in MMCV for more details about the contributing guideline.
third_party/mmyolo/.github/ISSUE_TEMPLATE/1-bug-report.yml ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: "🐞 Bug report"
2
+ description: "Create a report to help us reproduce and fix the bug"
3
+
4
+
5
+ body:
6
+ - type: markdown
7
+ attributes:
8
+ value: |
9
+ Thank you for reporting this issue to help us improve!
10
+ If you have already identified the reason, we strongly appreciate you creating a new PR to fix it [here](https://github.com/open-mmlab/mmyolo/pulls)!
11
+ If this issue is about installing MMCV, please file an issue at [MMCV](https://github.com/open-mmlab/mmcv/issues/new/choose).
12
+ If you need our help, please fill in as much of the following form as you're able.
13
+
14
+ - type: checkboxes
15
+ attributes:
16
+ label: Prerequisite
17
+ description: Please check the following items before creating a new issue.
18
+ options:
19
+ - label: I have searched [the existing and past issues](https://github.com/open-mmlab/mmyolo/issues) but cannot get the expected help.
20
+ required: true
21
+ - label: I have read the [FAQ documentation](https://mmyolo.readthedocs.io/en/latest/faq.html) but cannot get the expected help.
22
+ required: true
23
+ - label: The bug has not been fixed in the [latest version](https://github.com/open-mmlab/mmyolo).
24
+ required: true
25
+
26
+ - type: textarea
27
+ attributes:
28
+ label: 🐞 Describe the bug
29
+ description: |
30
+ Please provide a clear and concise description of what the bug is.
31
+ Preferably a simple and minimal code snippet that we can reproduce the error by running the code.
32
+ placeholder: |
33
+ A clear and concise description of what the bug is.
34
+
35
+ ```python
36
+ # Sample code to reproduce the problem
37
+ ```
38
+
39
+ ```shell
40
+ The command or script you run.
41
+ ```
42
+
43
+ ```
44
+ The error message or logs you got, with the full traceback.
45
+ ```
46
+ validations:
47
+ required: true
48
+
49
+ - type: textarea
50
+ attributes:
51
+ label: Environment
52
+ description: |
53
+ Please run `python mmyolo/utils/collect_env.py` to collect necessary environment information and paste it here.
54
+ You may add addition that may be helpful for locating the problem, such as
55
+ - How you installed PyTorch \[e.g., pip, conda, source\]
56
+ - Other environment variables that may be related (such as `$PATH`, `$LD_LIBRARY_PATH`, `$PYTHONPATH`, etc.)
57
+ validations:
58
+ required: true
59
+
60
+ - type: textarea
61
+ attributes:
62
+ label: Additional information
63
+ description: Tell us anything else you think we should know.
64
+ placeholder: |
65
+ 1. Did you make any modifications on the code or config? Did you understand what you have modified?
66
+ 2. What dataset did you use?
67
+ 3. What do you think might be the reason?
third_party/mmyolo/.github/ISSUE_TEMPLATE/2-feature-request.yml ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: 🚀 Feature request
2
+ description: Suggest an idea for this project
3
+ labels: [feature request]
4
+
5
+ body:
6
+ - type: markdown
7
+ attributes:
8
+ value: |
9
+ Thank you for suggesting an idea to make MMYOLO better.
10
+ We strongly appreciate you creating a PR to implete this feature [here](https://github.com/open-mmlab/mmyolo/pulls)!
11
+
12
+ If you need our help, please fill in as much of the following form as you're able.
13
+
14
+ - type: textarea
15
+ attributes:
16
+ label: What is the problem this feature will solve?
17
+ placeholder: |
18
+ E.g., It is inconvenient when \[....\].
19
+ validations:
20
+ required: true
21
+
22
+ - type: textarea
23
+ attributes:
24
+ label: What is the feature you are proposing to solve the problem?
25
+ validations:
26
+ required: true
27
+
28
+ - type: textarea
29
+ attributes:
30
+ label: What alternatives have you considered?
31
+ description: |
32
+ Add any other context or screenshots about the feature request here.
third_party/mmyolo/.github/ISSUE_TEMPLATE/3-new-model.yml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: "\U0001F31F New model/dataset addition"
2
+ description: Submit a proposal/request to implement a new model / dataset
3
+ labels: [ "New model/dataset" ]
4
+
5
+ body:
6
+ - type: textarea
7
+ id: description-request
8
+ validations:
9
+ required: true
10
+ attributes:
11
+ label: Model/Dataset description
12
+ description: |
13
+ Put any and all important information relative to the model/dataset
14
+
15
+ - type: checkboxes
16
+ attributes:
17
+ label: Open source status
18
+ description: |
19
+ Please provide the open-source status, which would be very helpful
20
+ options:
21
+ - label: "The model implementation is available"
22
+ - label: "The model weights are available."
23
+
24
+ - type: textarea
25
+ id: additional-info
26
+ attributes:
27
+ label: Provide useful links for the implementation
28
+ description: |
29
+ Please provide information regarding the implementation, the weights, and the authors.
30
+ Please mention the authors by @gh-username if you're aware of their usernames.
third_party/mmyolo/.github/ISSUE_TEMPLATE/4-documentation.yml ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: 📚 Documentation
2
+ description: Report an issue related to https://mmyolo.readthedocs.io/en/latest/.
3
+
4
+ body:
5
+ - type: textarea
6
+ attributes:
7
+ label: 📚 The doc issue
8
+ description: >
9
+ A clear and concise description of what content in https://mmyolo.readthedocs.io/en/latest/ is an issue.
10
+ validations:
11
+ required: true
12
+
13
+ - type: textarea
14
+ attributes:
15
+ label: Suggest a potential alternative/fix
16
+ description: >
17
+ Tell us how we could improve the documentation in this regard.
18
+
19
+ - type: markdown
20
+ attributes:
21
+ value: >
22
+ Thanks for contributing 🎉!
third_party/mmyolo/.github/ISSUE_TEMPLATE/5-reimplementation.yml ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: "💥 Reimplementation Questions"
2
+ description: "Ask about questions during model reimplementation"
3
+
4
+
5
+ body:
6
+ - type: markdown
7
+ attributes:
8
+ value: |
9
+ If you have already identified the reason, we strongly appreciate you creating a new PR to fix it [here](https://github.com/open-mmlab/mmyolo/pulls)!
10
+
11
+ - type: checkboxes
12
+ attributes:
13
+ label: Prerequisite
14
+ description: Please check the following items before creating a new issue.
15
+ options:
16
+ - label: I have searched [the existing and past issues](https://github.com/open-mmlab/mmyolo/issues) but cannot get the expected help.
17
+ required: true
18
+ - label: I have read the [FAQ documentation](https://mmyolo.readthedocs.io/en/latest/faq.html) but cannot get the expected help.
19
+ required: true
20
+ - label: The bug has not been fixed in the [latest version](https://github.com/open-mmlab/mmyolo).
21
+ required: true
22
+ validations:
23
+ required: true
24
+
25
+ - type: textarea
26
+ attributes:
27
+ label: 💬 Describe the reimplementation questions
28
+ description: |
29
+ A clear and concise description of what the problem you meet and what have you done.
30
+ There are several common situations in the reimplementation issues as below
31
+
32
+ 1. Reimplement a model in the model zoo using the provided configs
33
+ 2. Reimplement a model in the model zoo on other dataset (e.g., custom datasets)
34
+ 3. Reimplement a custom model but all the components are implemented in MMDetection
35
+ 4. Reimplement a custom model with new modules implemented by yourself
36
+
37
+ There are several things to do for different cases as below.
38
+
39
+ - For case 1 & 3, please follow the steps in the following sections thus we could help to quick identify the issue.
40
+ - For case 2 & 4, please understand that we are not able to do much help here because we usually do not know the full code and the users should be responsible to the code they write.
41
+ - One suggestion for case 2 & 4 is that the users should first check whether the bug lies in the self-implemented code or the original code. For example, users can first make sure that the same model runs well on supported datasets. If you still need help, please describe what you have done and what you obtain in the issue, and follow the steps in the following sections and try as clear as possible so that we can better help you.
42
+ placeholder: |
43
+ A clear and concise description of what the bug is.
44
+ What config dir you run?
45
+
46
+ ```none
47
+ A placeholder for the config.
48
+ ```
49
+
50
+ ```shell
51
+ The command or script you run.
52
+ ```
53
+
54
+ ```
55
+ The error message or logs you got, with the full traceback.
56
+ ```
57
+ validations:
58
+ required: true
59
+
60
+ - type: textarea
61
+ attributes:
62
+ label: Environment
63
+ description: |
64
+ Please run `python mmyolo/utils/collect_env.py` to collect necessary environment information and paste it here.
65
+ You may add addition that may be helpful for locating the problem, such as
66
+ - How you installed PyTorch \[e.g., pip, conda, source\]
67
+ - Other environment variables that may be related (such as `$PATH`, `$LD_LIBRARY_PATH`, `$PYTHONPATH`, etc.)
68
+ validations:
69
+ required: true
70
+
71
+ - type: textarea
72
+ attributes:
73
+ label: Expected results
74
+ description: If applicable, paste the related results here, e.g., what you expect and what you get.
75
+ placeholder: |
76
+ ```none
77
+ A placeholder for results comparison
78
+ ```
79
+
80
+ - type: textarea
81
+ attributes:
82
+ label: Additional information
83
+ description: Tell us anything else you think we should know.
84
+ placeholder: |
85
+ 1. Did you make any modifications on the code or config? Did you understand what you have modified?
86
+ 2. What dataset did you use?
87
+ 3. What do you think might be the reason?
third_party/mmyolo/.github/ISSUE_TEMPLATE/config.yml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ blank_issues_enabled: true
2
+
3
+ contact_links:
4
+ - name: 💬 Forum
5
+ url: https://github.com/open-mmlab/mmyolo/discussions
6
+ about: Ask general usage questions and discuss with other MMYOLO community members
7
+ - name: 🌐 Explore OpenMMLab
8
+ url: https://openmmlab.com/
9
+ about: Get know more about OpenMMLab
third_party/mmyolo/.github/pull_request_template.md ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers.
2
+
3
+ ## Motivation
4
+
5
+ Please describe the motivation for this PR and the goal you want to achieve through this PR.
6
+
7
+ ## Modification
8
+
9
+ Please briefly describe what modification is made in this PR.
10
+
11
+ ## BC-breaking (Optional)
12
+
13
+ Does the modification introduce changes that break the backward compatibility of the downstream repos?
14
+ If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR.
15
+
16
+ ## Use cases (Optional)
17
+
18
+ If this PR introduces a new feature, it is better to list some use cases here and update the documentation.
19
+
20
+ ## Checklist
21
+
22
+ 1. Pre-commit or other linting tools are used to fix potential lint issues.
23
+ 2. The modification is covered by complete unit tests. If not, please add more unit tests to ensure the correctness.
24
+ 3. If the modification has a potential influence on downstream projects, this PR should be tested with downstream projects, like MMDetection or MMClassification.
25
+ 4. The documentation has been modified accordingly, like docstring or example tutorials.
third_party/mmyolo/.github/workflows/deploy.yml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: deploy
2
+
3
+ on: push
4
+
5
+ concurrency:
6
+ group: ${{ github.workflow }}-${{ github.ref }}
7
+ cancel-in-progress: true
8
+
9
+ jobs:
10
+ build-n-publish:
11
+ runs-on: ubuntu-latest
12
+ if: startsWith(github.event.ref, 'refs/tags')
13
+ steps:
14
+ - uses: actions/checkout@v2
15
+ - name: Set up Python 3.7
16
+ uses: actions/setup-python@v2
17
+ with:
18
+ python-version: 3.7
19
+ - name: Install torch
20
+ run: pip install torch
21
+ - name: Install wheel
22
+ run: pip install wheel
23
+ - name: Build MMYOLO
24
+ run: python setup.py sdist bdist_wheel
25
+ - name: Publish distribution to PyPI
26
+ run: |
27
+ pip install twine
28
+ twine upload dist/* -u __token__ -p ${{ secrets.pypi_password }}
third_party/mmyolo/.gitignore ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ *.egg-info/
24
+ .installed.cfg
25
+ *.egg
26
+ MANIFEST
27
+
28
+ # PyInstaller
29
+ # Usually these files are written by a python script from a template
30
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
31
+ *.manifest
32
+ *.spec
33
+
34
+ # Installer logs
35
+ pip-log.txt
36
+ pip-delete-this-directory.txt
37
+
38
+ # Unit test / coverage reports
39
+ htmlcov/
40
+ .tox/
41
+ .coverage
42
+ .coverage.*
43
+ .cache
44
+ nosetests.xml
45
+ coverage.xml
46
+ *.cover
47
+ .hypothesis/
48
+ .pytest_cache/
49
+
50
+ # Translations
51
+ *.mo
52
+ *.pot
53
+
54
+ # Django stuff:
55
+ *.log
56
+ local_settings.py
57
+ db.sqlite3
58
+
59
+ # Flask stuff:
60
+ instance/
61
+ .webassets-cache
62
+
63
+ # Scrapy stuff:
64
+ .scrapy
65
+
66
+ # Sphinx documentation
67
+ docs/en/_build/
68
+ docs/zh_cn/_build/
69
+
70
+ # PyBuilder
71
+ target/
72
+
73
+ # Jupyter Notebook
74
+ .ipynb_checkpoints
75
+
76
+ # pyenv
77
+ .python-version
78
+
79
+ # celery beat schedule file
80
+ celerybeat-schedule
81
+
82
+ # SageMath parsed files
83
+ *.sage.py
84
+
85
+ # Environments
86
+ .env
87
+ .venv
88
+ env/
89
+ venv/
90
+ ENV/
91
+ env.bak/
92
+ venv.bak/
93
+
94
+ # Spyder project settings
95
+ .spyderproject
96
+ .spyproject
97
+
98
+ # Rope project settings
99
+ .ropeproject
100
+
101
+ # mkdocs documentation
102
+ /site
103
+
104
+ # mypy
105
+ .mypy_cache/
106
+ data/
107
+ data
108
+ .vscode
109
+ .idea
110
+ .DS_Store
111
+
112
+ # custom
113
+ *.pkl
114
+ *.pkl.json
115
+ *.log.json
116
+ docs/modelzoo_statistics.md
117
+ mmyolo/.mim
118
+ output/
119
+ work_dirs
120
+ yolov5-6.1/
121
+
122
+ # Pytorch
123
+ *.pth
124
+ *.pt
125
+ *.py~
126
+ *.sh~