Spaces:
Running
on
T4
Running
on
T4
replace MMDetection Visualizer with Supervision Annotators
Browse files- requirements.txt +1 -1
- tools/demo.py +25 -16
requirements.txt
CHANGED
@@ -9,7 +9,7 @@ addict
|
|
9 |
yapf
|
10 |
numpy
|
11 |
opencv-python
|
12 |
-
supervision==0.
|
13 |
ftfy
|
14 |
regex
|
15 |
pot
|
|
|
9 |
yapf
|
10 |
numpy
|
11 |
opencv-python
|
12 |
+
supervision==0.18.0
|
13 |
ftfy
|
14 |
regex
|
15 |
pot
|
tools/demo.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
# Copyright (c) Tencent Inc. All rights reserved.
|
2 |
import os
|
|
|
3 |
import argparse
|
4 |
import os.path as osp
|
5 |
from functools import partial
|
@@ -11,6 +12,7 @@ import onnxsim
|
|
11 |
import torch
|
12 |
import gradio as gr
|
13 |
import numpy as np
|
|
|
14 |
from PIL import Image
|
15 |
from torchvision.ops import nms
|
16 |
from mmengine.config import Config, ConfigDict, DictAction
|
@@ -23,6 +25,8 @@ from mmyolo.registry import RUNNERS
|
|
23 |
|
24 |
from yolo_world.easydeploy.model import DeployModel, MMYOLOBackend
|
25 |
|
|
|
|
|
26 |
|
27 |
def parse_args():
|
28 |
parser = argparse.ArgumentParser(
|
@@ -65,27 +69,32 @@ def run_image(runner,
|
|
65 |
output = runner.model.test_step(data_batch)[0]
|
66 |
pred_instances = output.pred_instances
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
pred_instances = pred_instances[
|
73 |
-
pred_instances.scores.float() > score_thr]
|
74 |
if len(pred_instances.scores) > max_num_boxes:
|
75 |
indices = pred_instances.scores.float().topk(max_num_boxes)[1]
|
76 |
pred_instances = pred_instances[indices]
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
image = np.array(image)
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
draw_gt=False,
|
86 |
-
out_file=image_path,
|
87 |
-
pred_score_thr=score_thr)
|
88 |
-
image = Image.open(image_path)
|
89 |
return image
|
90 |
|
91 |
|
|
|
1 |
# Copyright (c) Tencent Inc. All rights reserved.
|
2 |
import os
|
3 |
+
import cv2
|
4 |
import argparse
|
5 |
import os.path as osp
|
6 |
from functools import partial
|
|
|
12 |
import torch
|
13 |
import gradio as gr
|
14 |
import numpy as np
|
15 |
+
import supervision as sv
|
16 |
from PIL import Image
|
17 |
from torchvision.ops import nms
|
18 |
from mmengine.config import Config, ConfigDict, DictAction
|
|
|
25 |
|
26 |
from yolo_world.easydeploy.model import DeployModel, MMYOLOBackend
|
27 |
|
28 |
+
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
|
29 |
+
LABEL_ANNOTATOR = sv.LabelAnnotator(text_color=sv.Color.BLACK)
|
30 |
|
31 |
def parse_args():
|
32 |
parser = argparse.ArgumentParser(
|
|
|
69 |
output = runner.model.test_step(data_batch)[0]
|
70 |
pred_instances = output.pred_instances
|
71 |
|
72 |
+
keep = nms(pred_instances.bboxes, pred_instances.scores, iou_threshold=nms_thr)
|
73 |
+
pred_instances = pred_instances[keep]
|
74 |
+
pred_instances = pred_instances[pred_instances.scores.float() > score_thr]
|
75 |
+
|
|
|
|
|
76 |
if len(pred_instances.scores) > max_num_boxes:
|
77 |
indices = pred_instances.scores.float().topk(max_num_boxes)[1]
|
78 |
pred_instances = pred_instances[indices]
|
79 |
+
|
80 |
+
pred_instances = pred_instances.cpu().numpy()
|
81 |
+
detections = sv.Detections(
|
82 |
+
xyxy=pred_instances['bboxes'],
|
83 |
+
class_id=pred_instances['labels'],
|
84 |
+
confidence=pred_instances['scores']
|
85 |
+
)
|
86 |
+
labels = [
|
87 |
+
f"{texts[class_id][0]} {confidence:0.2f}"
|
88 |
+
for class_id, confidence
|
89 |
+
in zip(detections.class_id, detections.confidence)
|
90 |
+
]
|
91 |
|
92 |
image = np.array(image)
|
93 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
94 |
+
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections)
|
95 |
+
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels)
|
96 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
97 |
+
image = Image.fromarray(image)
|
|
|
|
|
|
|
|
|
98 |
return image
|
99 |
|
100 |
|