File size: 19,493 Bytes
8aa3ebb
49e32ea
 
4a190c2
1365c48
8aa3ebb
4a190c2
8aa3ebb
2e536f9
8aa3ebb
2e536f9
1365c48
f301d67
 
 
4a190c2
 
 
 
 
 
 
 
f301d67
8aa3ebb
49e32ea
4a190c2
 
 
 
 
 
 
 
 
 
 
49e32ea
 
 
 
 
 
4a190c2
 
 
49e32ea
275393f
49e32ea
8aa3ebb
49e32ea
ee77123
49e32ea
 
 
 
 
 
 
 
 
 
 
 
f301d67
49e32ea
 
 
 
 
 
 
 
 
 
 
 
 
 
f301d67
114048b
 
2e536f9
114048b
 
 
 
 
 
 
2e536f9
4a190c2
8249fd3
0a7a8db
f301d67
8249fd3
 
 
114048b
f301d67
114048b
 
 
1365c48
2e536f9
f301d67
 
4a190c2
 
f301d67
 
 
994ad90
f301d67
 
 
 
 
4a190c2
 
f301d67
 
 
2e536f9
 
 
4a190c2
2e536f9
4a190c2
2e536f9
 
 
 
 
 
 
4a190c2
2e536f9
4a190c2
2e536f9
 
4a190c2
2e536f9
4a190c2
2e536f9
 
 
 
 
 
 
 
 
 
 
d5a8385
 
 
275393f
2e536f9
1365c48
4a190c2
 
1365c48
4a190c2
114048b
2e536f9
49e32ea
 
 
 
41ed1b7
 
49e32ea
 
bc459f6
49e32ea
 
 
102df35
49e32ea
 
 
4a190c2
 
 
 
 
 
 
102df35
 
 
 
2e536f9
8aa3ebb
4a190c2
 
 
102df35
2e536f9
 
 
102df35
 
 
4a190c2
 
 
 
 
 
 
 
 
 
 
 
 
49e32ea
 
4a190c2
 
 
 
 
9118536
275393f
 
 
49e32ea
 
 
 
d4b0a2c
4a190c2
c2ff47a
f301d67
49e32ea
 
 
c2ff47a
49e32ea
 
30689f9
 
d5a8385
 
49e32ea
71c040a
 
 
49e32ea
 
71c040a
30689f9
8aa3ebb
49e32ea
 
d4b0a2c
49e32ea
 
 
 
ae4a7ec
49e32ea
d4b0a2c
 
 
 
 
 
 
 
4a190c2
 
 
 
49e32ea
1365c48
d53332d
232a079
d5a8385
4a190c2
d5a8385
d53332d
8aa3ebb
7339026
d5a8385
d53332d
2e536f9
49e32ea
4a190c2
49e32ea
 
71c040a
49e32ea
d5a8385
275393f
d5a8385
 
 
2e536f9
49e32ea
9118536
49e32ea
4a190c2
71c040a
49e32ea
 
9118536
49e32ea
4a190c2
71c040a
d4b0a2c
 
 
 
4a190c2
d4b0a2c
49e32ea
 
 
 
4a190c2
49e32ea
4a190c2
49e32ea
 
2e536f9
49e32ea
4a190c2
49e32ea
4a190c2
49e32ea
 
2e536f9
49e32ea
d5a8385
 
 
49e32ea
 
 
 
d4b0a2c
2e536f9
aa0ad5d
4a190c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Load in packages

import os
import socket

from typing import Type
from langchain_huggingface.embeddings import HuggingFaceEmbeddings#, HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import FAISS
import gradio as gr
import pandas as pd

from transformers import AutoTokenizer
import torch

from llama_cpp import Llama
from huggingface_hub import hf_hub_download
from chatfuncs.ingest import embed_faiss_save_to_zip
from chatfuncs.helper_functions import get_or_create_env_var

from chatfuncs.helper_functions import ensure_output_folder_exists, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, wipe_logs
from chatfuncs.aws_functions import upload_file_to_s3
#from chatfuncs.llm_api_call import llm_query
from chatfuncs.auth import authenticate_user

PandasDataFrame = Type[pd.DataFrame]

from datetime import datetime
today_rev = datetime.now().strftime("%Y%m%d")

ensure_output_folder_exists()

host_name = socket.gethostname()

access_logs_data_folder = 'logs/' + today_rev + '/' + host_name + '/'
feedback_data_folder = 'feedback/' + today_rev + '/' + host_name + '/'
usage_data_folder = 'usage/' + today_rev + '/' + host_name + '/'

# Disable cuda devices if necessary
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1' 

#from chatfuncs.chatfuncs import *
import chatfuncs.ingest as ing

###
# Load preset embeddings, vectorstore, and model
###

embeddings_name = "BAAI/bge-base-en-v1.5"

def load_embeddings(embeddings_name = embeddings_name):

    embeddings_func = HuggingFaceEmbeddings(model_name=embeddings_name)

    global embeddings

    embeddings = embeddings_func

    return embeddings

def get_faiss_store(faiss_vstore_folder,embeddings):
    import zipfile
    with zipfile.ZipFile(faiss_vstore_folder + '/' + faiss_vstore_folder + '.zip', 'r') as zip_ref:
        zip_ref.extractall(faiss_vstore_folder)

    faiss_vstore = FAISS.load_local(folder_path=faiss_vstore_folder, embeddings=embeddings, allow_dangerous_deserialization=True)
    os.remove(faiss_vstore_folder + "/index.faiss")
    os.remove(faiss_vstore_folder + "/index.pkl")
    
    global vectorstore

    vectorstore = faiss_vstore

    return vectorstore

import chatfuncs.chatfuncs as chatf

chatf.embeddings = load_embeddings(embeddings_name)
chatf.vectorstore = get_faiss_store(faiss_vstore_folder="faiss_embedding",embeddings=globals()["embeddings"])


def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
    print("Loading model")

    # Default values inside the function
    if gpu_config is None:
        gpu_config = chatf.gpu_config
    if cpu_config is None:
        cpu_config = chatf.cpu_config
    if torch_device is None:
        torch_device = chatf.torch_device

    if model_type == "Phi 3.5 Mini (larger, slow)":
        if torch_device == "cuda":
            gpu_config.update_gpu(gpu_layers)
            print("Loading with", gpu_config.n_gpu_layers, "model layers sent to GPU.")
        else:
            gpu_config.update_gpu(gpu_layers)
            cpu_config.update_gpu(gpu_layers)

            print("Loading with", cpu_config.n_gpu_layers, "model layers sent to GPU.")

        print(vars(gpu_config))
        print(vars(cpu_config))

        try:
            model = Llama(
            model_path=hf_hub_download(
            repo_id=os.environ.get("REPO_ID", "QuantFactory/Phi-3.5-mini-instruct-GGUF"),# "QuantFactory/Phi-3-mini-128k-instruct-GGUF"), # "QuantFactory/Meta-Llama-3-8B-Instruct-GGUF-v2"), #"microsoft/Phi-3-mini-4k-instruct-gguf"),#"TheBloke/Mistral-7B-OpenOrca-GGUF"),
            filename=os.environ.get("MODEL_FILE", "Phi-3.5-mini-instruct.Q4_K_M.gguf") #"Phi-3-mini-128k-instruct.Q4_K_M.gguf")  #"Meta-Llama-3-8B-Instruct-v2.Q6_K.gguf") #"Phi-3-mini-4k-instruct-q4.gguf")#"mistral-7b-openorca.Q4_K_M.gguf"),
        ),
        **vars(gpu_config) # change n_gpu_layers if you have more or less VRAM 
        )
        
        except Exception as e:
            print("GPU load failed")
            print(e)
            model = Llama(
            model_path=hf_hub_download(
            repo_id=os.environ.get("REPO_ID", "QuantFactory/Phi-3.5-mini-instruct-GGUF"), #"QuantFactory/Phi-3-mini-128k-instruct-GGUF"), #, "microsoft/Phi-3-mini-4k-instruct-gguf"),#"QuantFactory/Meta-Llama-3-8B-Instruct-GGUF-v2"), #"microsoft/Phi-3-mini-4k-instruct-gguf"),#"TheBloke/Mistral-7B-OpenOrca-GGUF"),
            filename=os.environ.get("MODEL_FILE", "Phi-3.5-mini-instruct.Q4_K_M.gguf"), # "Phi-3-mini-128k-instruct.Q4_K_M.gguf") # , #"Meta-Llama-3-8B-Instruct-v2.Q6_K.gguf") #"Phi-3-mini-4k-instruct-q4.gguf"),#"mistral-7b-openorca.Q4_K_M.gguf"),
        ),
        **vars(cpu_config)
        )

        tokenizer = []

    if model_type == "Qwen 2 0.5B (small, fast)":
        # Huggingface chat model
        hf_checkpoint = 'Qwen/Qwen2-0.5B-Instruct'# 'declare-lab/flan-alpaca-large'#'declare-lab/flan-alpaca-base' # # # 'Qwen/Qwen1.5-0.5B-Chat' #
        
        def create_hf_model(model_name):

            from transformers import AutoModelForSeq2SeqLM,  AutoModelForCausalLM
            
            if torch_device == "cuda":
                if "flan" in model_name:
                    model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")#, torch_dtype=torch.float16)
                else:
                    model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")#, torch_dtype=torch.float16)
            else:
                if "flan" in model_name:
                    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)#, torch_dtype=torch.float16)
                else: 
                    model = AutoModelForCausalLM.from_pretrained(model_name)#, trust_remote_code=True)#, torch_dtype=torch.float16)

            tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length = chatf.context_length)

            return model, tokenizer, model_type

        model, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)

    chatf.model = model
    chatf.tokenizer = tokenizer
    chatf.model_type = model_type

    load_confirmation = "Finished loading model: " + model_type

    print(load_confirmation)
    return model_type, load_confirmation, model_type

# Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
#model_type = "Phi 3.5 Mini (larger, slow)"
#load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)

model_type = "Qwen 2 0.5B (small, fast)"
load_model(model_type, 0, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)

def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):

    print(f"> Total split documents: {len(docs_out)}")

    print(docs_out)

    vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings)

    chatf.vectorstore = vectorstore_func

    out_message = "Document processing complete"

    return out_message, vectorstore_func
 # Gradio chat


###
# RUN UI
###

app = gr.Blocks(theme = gr.themes.Base())#css=".gradio-container {background-color: black}")

with app:
    ingest_text = gr.State()
    ingest_metadata = gr.State()
    ingest_docs = gr.State()

    model_type_state = gr.State(model_type)
    embeddings_state = gr.State(chatf.embeddings)#globals()["embeddings"])
    vectorstore_state = gr.State(chatf.vectorstore)#globals()["vectorstore"]) 

    relevant_query_state = gr.Checkbox(value=True, visible=False) 

    model_state = gr.State() # chatf.model (gives error)
    tokenizer_state = gr.State() # chatf.tokenizer (gives error)

    chat_history_state = gr.State()
    instruction_prompt_out = gr.State()

    session_hash_state = gr.State()
    s3_output_folder_state = gr.State()

    session_hash_textbox = gr.Textbox(value="", visible=False)
    s3_logs_output_textbox = gr.Textbox(label="S3 logs", visible=False)

    access_logs_state = gr.State(access_logs_data_folder + 'dataset1.csv')
    access_s3_logs_loc_state = gr.State(access_logs_data_folder)
    usage_logs_state = gr.State(usage_data_folder + 'dataset1.csv')
    usage_s3_logs_loc_state = gr.State(usage_data_folder)
    feedback_logs_state = gr.State(feedback_data_folder + 'dataset1.csv')
    feedback_s3_logs_loc_state = gr.State(feedback_data_folder)

    gr.Markdown("<h1><center>Lightweight PDF / web page QA bot</center></h1>")        
    
    gr.Markdown("Chat with PDF, web page or (new) csv/Excel documents. The default is a small model (Qwen 2 0.5B), that can only answer specific questions that are answered in the text. It cannot give overall impressions of, or summarise the document. The alternative (Phi 3.5 Mini (larger, slow)), can reason a little better, but is much slower (See Advanced tab).\n\nBy default the Lambeth Borough Plan '[Lambeth 2030 : Our Future, Our Lambeth](https://www.lambeth.gov.uk/better-fairer-lambeth/projects/lambeth-2030-our-future-our-lambeth)' is loaded. If you want to talk about another document or web page, please select from the second tab. If switching topic, please click the 'Clear chat' button.\n\nCaution: This is a public app. Please ensure that the document you upload is not sensitive is any way as other users may see it! Also, please note that LLM chatbots may give incomplete or incorrect information, so please use with care.")

    with gr.Accordion(label="Use Gemini or AWS Claude model", open=False, visible=False):
        api_model_choice = gr.Dropdown(value = "None", choices = ["gemini-1.5-flash-002", "gemini-1.5-pro-002", "anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-3-sonnet-20240229-v1:0", "None"], label="LLM model to use", multiselect=False, interactive=True, visible=False)
        in_api_key = gr.Textbox(value = "", label="Enter Gemini API key (only if using Google API models)", lines=1, type="password",interactive=True, visible=False)

    with gr.Row():
        current_source = gr.Textbox(label="Current data source(s)", value="Lambeth_2030-Our_Future_Our_Lambeth.pdf", scale = 10)
        current_model = gr.Textbox(label="Current model", value=model_type, scale = 3)

    with gr.Tab("Chatbot"):

        with gr.Row():
            #chat_height = 500
            chatbot = gr.Chatbot(avatar_images=('user.jfif', 'bot.jpg'),bubble_full_width = False, scale = 1, type='tuples') # , height=chat_height
            with gr.Accordion("Open this tab to see the source paragraphs used to generate the answer", open = False):
                sources = gr.HTML(value = "Source paragraphs with the most relevant text will appear here") # , height=chat_height

        with gr.Row():
            message = gr.Textbox(
                label="Enter your question here",
                lines=1,
            )     
        with gr.Row():
            submit = gr.Button(value="Send message", variant="secondary", scale = 1)
            clear = gr.Button(value="Clear chat", variant="secondary", scale=0) 
            stop = gr.Button(value="Stop generating", variant="secondary", scale=0)

        examples_set = gr.Radio(label="Examples for the Lambeth Borough Plan",
            #value = "What were the five pillars of the previous borough plan?",
            choices=["What were the five pillars of the previous borough plan?",
                "What is the vision statement for Lambeth?",
                "What are the commitments for Lambeth?",
                "What are the 2030 outcomes for Lambeth?"])
        
        current_topic = gr.Textbox(label="Feature currently disabled - Keywords related to current conversation topic.", placeholder="Keywords related to the conversation topic will appear here")      


    with gr.Tab("Load in a different file to chat with"):
        with gr.Accordion("PDF file", open = False):
            in_pdf = gr.File(label="Upload pdf", file_count="multiple", file_types=['.pdf'])
            load_pdf = gr.Button(value="Load in file", variant="secondary", scale=0)
        
        with gr.Accordion("Web page", open = False):
            with gr.Row():
                in_web = gr.Textbox(label="Enter web page url")
                in_div = gr.Textbox(label="(Advanced) Web page div for text extraction", value="p", placeholder="p")
            load_web = gr.Button(value="Load in webpage", variant="secondary", scale=0)

        with gr.Accordion("CSV/Excel file", open = False):
            in_csv = gr.File(label="Upload CSV/Excel file", file_count="multiple", file_types=['.csv', '.xlsx'])
            in_text_column = gr.Textbox(label="Enter column name where text is stored")
            load_csv = gr.Button(value="Load in CSV/Excel file", variant="secondary", scale=0)

        with gr.Row():
            ingest_embed_out = gr.Textbox(label="File/web page preparation progress")
            file_out_box = gr.File(file_count='single', file_types=['.zip'])

    with gr.Tab("Advanced features"):
        out_passages = gr.Slider(minimum=1, value = 2, maximum=10, step=1, label="Choose number of passages to retrieve from the document. Numbers greater than 2 may lead to increased hallucinations or input text being truncated.")
        temp_slide = gr.Slider(minimum=0.1, value = 0.5, maximum=1, step=0.1, label="Choose temperature setting for response generation.")
        with gr.Row():
            model_choice = gr.Radio(label="Choose a chat model", value="Qwen 2 0.5B (small, fast)", choices = ["Qwen 2 0.5B (small, fast)", "Phi 3.5 Mini (larger, slow)"])
            change_model_button = gr.Button(value="Load model", scale=0)
        with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you are sure you have a GPU).", open = False):
            gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=100, step = 1, visible=True)
            
        load_text = gr.Text(label="Load status")
        

    gr.HTML(
        "<center>This app is based on the models Qwen 2 0.5B and Phi 3.5 Mini. It powered by Gradio, Transformers, and Llama.cpp.</a></center>"
    )

    examples_set.change(fn=chatf.update_message, inputs=[examples_set], outputs=[message])

    change_model_button.click(fn=chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
    then(fn=load_model, inputs=[model_choice, gpu_layer_choice], outputs = [model_type_state, load_text, current_model]).\
    then(lambda: chatf.restore_interactivity(), None, [message], queue=False).\
    then(chatf.clear_chat, inputs=[chat_history_state, sources, message, current_topic], outputs=[chat_history_state, sources, message, current_topic]).\
    then(lambda: None, None, chatbot, queue=False)

    # Load in a pdf
    load_pdf_click = load_pdf.click(ing.parse_file, inputs=[in_pdf], outputs=[ingest_text, current_source]).\
             then(ing.text_to_docs, inputs=[ingest_text], outputs=[ingest_docs]).\
             then(embed_faiss_save_to_zip, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state, file_out_box]).\
             then(chatf.hide_block, outputs = [examples_set])

    # Load in a webpage
    load_web_click = load_web.click(ing.parse_html, inputs=[in_web, in_div], outputs=[ingest_text, ingest_metadata, current_source]).\
             then(ing.html_text_to_docs, inputs=[ingest_text, ingest_metadata], outputs=[ingest_docs]).\
             then(embed_faiss_save_to_zip, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state, file_out_box]).\
             then(chatf.hide_block, outputs = [examples_set])
    
    # Load in a csv/excel file
    load_csv_click = load_csv.click(ing.parse_csv_or_excel, inputs=[in_csv, in_text_column], outputs=[ingest_text, current_source]).\
             then(ing.csv_excel_text_to_docs, inputs=[ingest_text, in_text_column], outputs=[ingest_docs]).\
             then(embed_faiss_save_to_zip, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state, file_out_box]).\
             then(chatf.hide_block, outputs = [examples_set])

    # Load in a webpage

    # Click/enter to send message action
    response_click = submit.click(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state, out_passages, api_model_choice, in_api_key], outputs=[chat_history_state, sources, instruction_prompt_out, relevant_query_state], queue=False, api_name="retrieval").\
                then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
                then(chatf.produce_streaming_answer_chatbot, inputs=[chatbot, instruction_prompt_out, model_type_state, temp_slide, relevant_query_state], outputs=chatbot)
    response_click.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\
                then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\
                then(lambda: chatf.restore_interactivity(), None, [message], queue=False)

    response_enter = message.submit(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state, out_passages, api_model_choice, in_api_key], outputs=[chat_history_state, sources, instruction_prompt_out, relevant_query_state], queue=False).\
                then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
                then(chatf.produce_streaming_answer_chatbot, [chatbot, instruction_prompt_out, model_type_state, temp_slide, relevant_query_state], chatbot)    
    response_enter.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\
                then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\
                then(lambda: chatf.restore_interactivity(), None, [message], queue=False)
    
    # Stop box
    stop.click(fn=None, inputs=None, outputs=None, cancels=[response_click, response_enter])

    # Clear box
    clear.click(chatf.clear_chat, inputs=[chat_history_state, sources, message, current_topic], outputs=[chat_history_state, sources, message, current_topic])
    clear.click(lambda: None, None, chatbot, queue=False)

    # Thumbs up or thumbs down voting function
    chatbot.like(chatf.vote, [chat_history_state, instruction_prompt_out, model_type_state], None)

    ###
    # LOGGING AND ON APP LOAD FUNCTIONS
    ###    
    app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox])

    # Log usernames and times of access to file (to know who is using the app when running on AWS)
    access_callback = gr.CSVLogger()
    access_callback.setup([session_hash_textbox], access_logs_data_folder)

    session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\
    then(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

# Launch the Gradio app
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}')

if __name__ == "__main__":
    if os.environ['COGNITO_AUTH'] == "1":
        app.queue().launch(show_error=True, auth=authenticate_user, max_file_size='50mb')
    else:
        app.queue().launch(show_error=True, inbrowser=True, max_file_size='50mb')