Sean-Case commited on
Commit
d53332d
·
1 Parent(s): ee77123

Added slider for changing number of passages out

Browse files
Files changed (2) hide show
  1. app.py +5 -3
  2. chatfuncs/chatfuncs.py +4 -4
app.py CHANGED
@@ -236,13 +236,15 @@ with block:
236
  ingest_embed_out = gr.Textbox(label="File/web page preparation progress")
237
 
238
  with gr.Tab("Advanced features"):
 
239
  with gr.Row():
240
  model_choice = gr.Radio(label="Choose a chat model", value="Flan Alpaca (small, fast)", choices = ["Flan Alpaca (small, fast)", "Mistral Open Orca (larger, slow)"])
241
  change_model_button = gr.Button(value="Load model", scale=0)
242
- with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you have a GPU).", open = False):
243
  gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=5, step = 1, visible=True)
244
 
245
  load_text = gr.Text(label="Load status")
 
246
 
247
  gr.HTML(
248
  "<center>This app is based on the models Flan Alpaca and Mistral Open Orca. It powered by Gradio, Transformers, Ctransformers, and Langchain.</a></center>"
@@ -277,14 +279,14 @@ with block:
277
  # Load in a webpage
278
 
279
  # Click/enter to send message action
280
- response_click = submit.click(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state], outputs=[chat_history_state, sources, instruction_prompt_out], queue=False, api_name="retrieval").\
281
  then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
282
  then(chatf.produce_streaming_answer_chatbot, inputs=[chatbot, instruction_prompt_out, model_type_state], outputs=chatbot)
283
  response_click.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\
284
  then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\
285
  then(lambda: chatf.restore_interactivity(), None, [message], queue=False)
286
 
287
- response_enter = message.submit(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state], outputs=[chat_history_state, sources, instruction_prompt_out], queue=False).\
288
  then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
289
  then(chatf.produce_streaming_answer_chatbot, [chatbot, instruction_prompt_out, model_type_state], chatbot)
290
  response_enter.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\
 
236
  ingest_embed_out = gr.Textbox(label="File/web page preparation progress")
237
 
238
  with gr.Tab("Advanced features"):
239
+ out_passages = gr.Slider(minimum=1, value = 2, maximum=10, step=1, label="Choose number of passages to retrieve from the document. Numbers greater than 2 may lead to increased hallucinations or input text being truncated.")
240
  with gr.Row():
241
  model_choice = gr.Radio(label="Choose a chat model", value="Flan Alpaca (small, fast)", choices = ["Flan Alpaca (small, fast)", "Mistral Open Orca (larger, slow)"])
242
  change_model_button = gr.Button(value="Load model", scale=0)
243
+ with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you are sure you have a GPU).", open = False):
244
  gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=5, step = 1, visible=True)
245
 
246
  load_text = gr.Text(label="Load status")
247
+
248
 
249
  gr.HTML(
250
  "<center>This app is based on the models Flan Alpaca and Mistral Open Orca. It powered by Gradio, Transformers, Ctransformers, and Langchain.</a></center>"
 
279
  # Load in a webpage
280
 
281
  # Click/enter to send message action
282
+ response_click = submit.click(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state, out_passages], outputs=[chat_history_state, sources, instruction_prompt_out], queue=False, api_name="retrieval").\
283
  then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
284
  then(chatf.produce_streaming_answer_chatbot, inputs=[chatbot, instruction_prompt_out, model_type_state], outputs=chatbot)
285
  response_click.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\
286
  then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\
287
  then(lambda: chatf.restore_interactivity(), None, [message], queue=False)
288
 
289
+ response_enter = message.submit(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state, out_passages], outputs=[chat_history_state, sources, instruction_prompt_out], queue=False).\
290
  then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
291
  then(chatf.produce_streaming_answer_chatbot, [chatbot, instruction_prompt_out, model_type_state], chatbot)
292
  response_enter.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\
chatfuncs/chatfuncs.py CHANGED
@@ -312,7 +312,7 @@ def write_out_metadata_as_string(metadata_in):
312
  metadata_string = [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] # ['metadata']
313
  return metadata_string
314
 
315
- def generate_expanded_prompt(inputs: Dict[str, str], instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings): # ,
316
 
317
  question = inputs["question"]
318
  chat_history = inputs["chat_history"]
@@ -321,7 +321,7 @@ def generate_expanded_prompt(inputs: Dict[str, str], instruction_prompt, content
321
  new_question_kworded = adapt_q_from_chat_history(question, chat_history, extracted_memory) # new_question_keywords,
322
 
323
 
324
- docs_keep_as_doc, doc_df, docs_keep_out = hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val = 25, out_passages = 2,
325
  vec_score_cut_off = 1, vec_weight = 1, bm25_weight = 1, svm_weight = 1)#,
326
  #vectorstore=globals()["vectorstore"], embeddings=globals()["embeddings"])
327
 
@@ -356,7 +356,7 @@ def generate_expanded_prompt(inputs: Dict[str, str], instruction_prompt, content
356
 
357
  return instruction_prompt_out, sources_docs_content_string, new_question_kworded
358
 
359
- def create_full_prompt(user_input, history, extracted_memory, vectorstore, embeddings, model_type):
360
 
361
  if not user_input.strip():
362
  return history, "", "Respond with 'Please enter a question.' RESPONSE:"
@@ -373,7 +373,7 @@ def create_full_prompt(user_input, history, extracted_memory, vectorstore, embed
373
  instruction_prompt, content_prompt = base_prompt_templates(model_type=model_type)
374
  instruction_prompt_out, docs_content_string, new_question_kworded =\
375
  generate_expanded_prompt({"question": user_input, "chat_history": history}, #vectorstore,
376
- instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings)
377
 
378
 
379
  history.append(user_input)
 
312
  metadata_string = [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] # ['metadata']
313
  return metadata_string
314
 
315
+ def generate_expanded_prompt(inputs: Dict[str, str], instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings, out_passages = 2): # ,
316
 
317
  question = inputs["question"]
318
  chat_history = inputs["chat_history"]
 
321
  new_question_kworded = adapt_q_from_chat_history(question, chat_history, extracted_memory) # new_question_keywords,
322
 
323
 
324
+ docs_keep_as_doc, doc_df, docs_keep_out = hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val = 25, out_passages = out_passages,
325
  vec_score_cut_off = 1, vec_weight = 1, bm25_weight = 1, svm_weight = 1)#,
326
  #vectorstore=globals()["vectorstore"], embeddings=globals()["embeddings"])
327
 
 
356
 
357
  return instruction_prompt_out, sources_docs_content_string, new_question_kworded
358
 
359
+ def create_full_prompt(user_input, history, extracted_memory, vectorstore, embeddings, model_type, out_passages):
360
 
361
  if not user_input.strip():
362
  return history, "", "Respond with 'Please enter a question.' RESPONSE:"
 
373
  instruction_prompt, content_prompt = base_prompt_templates(model_type=model_type)
374
  instruction_prompt_out, docs_content_string, new_question_kworded =\
375
  generate_expanded_prompt({"question": user_input, "chat_history": history}, #vectorstore,
376
+ instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings, out_passages)
377
 
378
 
379
  history.append(user_input)