seanpedrickcase commited on
Commit
4a190c2
β€’
1 Parent(s): 232a079

Updated packages, models, preparing for use with AWS (in background)

Browse files
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🌍
4
  colorFrom: yellow
5
  colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 3.50.2
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
 
4
  colorFrom: yellow
5
  colorTo: yellow
6
  sdk: gradio
7
+ sdk_version: 5.8.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
app.py CHANGED
@@ -1,9 +1,10 @@
1
  # Load in packages
2
 
3
  import os
 
4
 
5
  from typing import Type
6
- from langchain_community.embeddings import HuggingFaceEmbeddings#, HuggingFaceInstructEmbeddings
7
  from langchain_community.vectorstores import FAISS
8
  import gradio as gr
9
  import pandas as pd
@@ -12,17 +13,37 @@ from transformers import AutoTokenizer
12
  import torch
13
 
14
  from llama_cpp import Llama
15
- from huggingface_hub import hf_hub_download
 
 
 
 
 
 
 
16
 
17
  PandasDataFrame = Type[pd.DataFrame]
18
 
 
 
 
 
 
 
 
 
 
 
 
19
  # Disable cuda devices if necessary
20
  #os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
21
 
22
  #from chatfuncs.chatfuncs import *
23
  import chatfuncs.ingest as ing
24
 
25
- ## Load preset embeddings, vectorstore, and model
 
 
26
 
27
  embeddings_name = "BAAI/bge-base-en-v1.5"
28
 
@@ -68,7 +89,7 @@ def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_d
68
  if torch_device is None:
69
  torch_device = chatf.torch_device
70
 
71
- if model_type == "Phi 3 Mini (larger, slow)":
72
  if torch_device == "cuda":
73
  gpu_config.update_gpu(gpu_layers)
74
  print("Loading with", gpu_config.n_gpu_layers, "model layers sent to GPU.")
@@ -84,8 +105,8 @@ def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_d
84
  try:
85
  model = Llama(
86
  model_path=hf_hub_download(
87
- repo_id=os.environ.get("REPO_ID", "QuantFactory/Phi-3-mini-128k-instruct-GGUF"),# "QuantFactory/Phi-3-mini-128k-instruct-GGUF"), # "QuantFactory/Meta-Llama-3-8B-Instruct-GGUF-v2"), #"microsoft/Phi-3-mini-4k-instruct-gguf"),#"TheBloke/Mistral-7B-OpenOrca-GGUF"),
88
- filename=os.environ.get("MODEL_FILE", "Phi-3-mini-128k-instruct.Q4_K_M.gguf") #"Phi-3-mini-128k-instruct.Q4_K_M.gguf") #"Meta-Llama-3-8B-Instruct-v2.Q6_K.gguf") #"Phi-3-mini-4k-instruct-q4.gguf")#"mistral-7b-openorca.Q4_K_M.gguf"),
89
  ),
90
  **vars(gpu_config) # change n_gpu_layers if you have more or less VRAM
91
  )
@@ -95,17 +116,17 @@ def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_d
95
  print(e)
96
  model = Llama(
97
  model_path=hf_hub_download(
98
- repo_id=os.environ.get("REPO_ID", "QuantFactory/Phi-3-mini-128k-instruct-GGUF"), #"QuantFactory/Phi-3-mini-128k-instruct-GGUF"), #, "microsoft/Phi-3-mini-4k-instruct-gguf"),#"QuantFactory/Meta-Llama-3-8B-Instruct-GGUF-v2"), #"microsoft/Phi-3-mini-4k-instruct-gguf"),#"TheBloke/Mistral-7B-OpenOrca-GGUF"),
99
- filename=os.environ.get("MODEL_FILE", "Phi-3-mini-128k-instruct.Q4_K_M.gguf"), # "Phi-3-mini-128k-instruct.Q4_K_M.gguf") # , #"Meta-Llama-3-8B-Instruct-v2.Q6_K.gguf") #"Phi-3-mini-4k-instruct-q4.gguf"),#"mistral-7b-openorca.Q4_K_M.gguf"),
100
  ),
101
  **vars(cpu_config)
102
  )
103
 
104
  tokenizer = []
105
 
106
- if model_type == "Flan Alpaca (small, fast)":
107
  # Huggingface chat model
108
- hf_checkpoint = 'declare-lab/flan-alpaca-large'#'declare-lab/flan-alpaca-base' # # #
109
 
110
  def create_hf_model(model_name):
111
 
@@ -113,14 +134,14 @@ def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_d
113
 
114
  if torch_device == "cuda":
115
  if "flan" in model_name:
116
- model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
117
  else:
118
- model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
119
  else:
120
  if "flan" in model_name:
121
- model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16)
122
  else:
123
- model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16)
124
 
125
  tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length = chatf.context_length)
126
 
@@ -138,10 +159,10 @@ def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_d
138
  return model_type, load_confirmation, model_type
139
 
140
  # Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
141
- model_type = "Phi 3 Mini (larger, slow)"
142
- load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
143
 
144
- model_type = "Flan Alpaca (small, fast)"
145
  load_model(model_type, 0, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
146
 
147
  def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):
@@ -152,25 +173,30 @@ def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):
152
 
153
  vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings)
154
 
155
-
156
  chatf.vectorstore = vectorstore_func
157
 
158
  out_message = "Document processing complete"
159
 
160
  return out_message, vectorstore_func
161
-
162
  # Gradio chat
163
 
164
- block = gr.Blocks(theme = gr.themes.Base())#css=".gradio-container {background-color: black}")
165
 
166
- with block:
 
 
 
 
 
 
167
  ingest_text = gr.State()
168
  ingest_metadata = gr.State()
169
  ingest_docs = gr.State()
170
 
171
  model_type_state = gr.State(model_type)
172
  embeddings_state = gr.State(chatf.embeddings)#globals()["embeddings"])
173
- vectorstore_state = gr.State(chatf.vectorstore)#globals()["vectorstore"])
 
 
174
 
175
  model_state = gr.State() # chatf.model (gives error)
176
  tokenizer_state = gr.State() # chatf.tokenizer (gives error)
@@ -178,9 +204,26 @@ with block:
178
  chat_history_state = gr.State()
179
  instruction_prompt_out = gr.State()
180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
  gr.Markdown("<h1><center>Lightweight PDF / web page QA bot</center></h1>")
182
 
183
- gr.Markdown("Chat with PDF, web page or (new) csv/Excel documents. The default is a small model (Flan Alpaca), that can only answer specific questions that are answered in the text. It cannot give overall impressions of, or summarise the document. The alternative (Phi 3 Mini (larger, slow)), can reason a little better, but is much slower (See Advanced tab).\n\nBy default the Lambeth Borough Plan '[Lambeth 2030 : Our Future, Our Lambeth](https://www.lambeth.gov.uk/better-fairer-lambeth/projects/lambeth-2030-our-future-our-lambeth)' is loaded. If you want to talk about another document or web page, please select from the second tab. If switching topic, please click the 'Clear chat' button.\n\nCaution: This is a public app. Please ensure that the document you upload is not sensitive is any way as other users may see it! Also, please note that LLM chatbots may give incomplete or incorrect information, so please use with care.")
 
 
 
 
184
 
185
  with gr.Row():
186
  current_source = gr.Textbox(label="Current data source(s)", value="Lambeth_2030-Our_Future_Our_Lambeth.pdf", scale = 10)
@@ -190,7 +233,7 @@ with block:
190
 
191
  with gr.Row():
192
  #chat_height = 500
193
- chatbot = gr.Chatbot(avatar_images=('user.jfif', 'bot.jpg'),bubble_full_width = False, scale = 1) # , height=chat_height
194
  with gr.Accordion("Open this tab to see the source paragraphs used to generate the answer", open = False):
195
  sources = gr.HTML(value = "Source paragraphs with the most relevant text will appear here") # , height=chat_height
196
 
@@ -210,7 +253,6 @@ with block:
210
  "What is the vision statement for Lambeth?",
211
  "What are the commitments for Lambeth?",
212
  "What are the 2030 outcomes for Lambeth?"])
213
-
214
 
215
  current_topic = gr.Textbox(label="Feature currently disabled - Keywords related to current conversation topic.", placeholder="Keywords related to the conversation topic will appear here")
216
 
@@ -230,14 +272,16 @@ with block:
230
  in_csv = gr.File(label="Upload CSV/Excel file", file_count="multiple", file_types=['.csv', '.xlsx'])
231
  in_text_column = gr.Textbox(label="Enter column name where text is stored")
232
  load_csv = gr.Button(value="Load in CSV/Excel file", variant="secondary", scale=0)
233
-
234
- ingest_embed_out = gr.Textbox(label="File/web page preparation progress")
 
 
235
 
236
  with gr.Tab("Advanced features"):
237
  out_passages = gr.Slider(minimum=1, value = 2, maximum=10, step=1, label="Choose number of passages to retrieve from the document. Numbers greater than 2 may lead to increased hallucinations or input text being truncated.")
238
  temp_slide = gr.Slider(minimum=0.1, value = 0.5, maximum=1, step=0.1, label="Choose temperature setting for response generation.")
239
  with gr.Row():
240
- model_choice = gr.Radio(label="Choose a chat model", value="Flan Alpaca (small, fast)", choices = ["Flan Alpaca (small, fast)", "Phi 3 Mini (larger, slow)"])
241
  change_model_button = gr.Button(value="Load model", scale=0)
242
  with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you are sure you have a GPU).", open = False):
243
  gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=100, step = 1, visible=True)
@@ -246,7 +290,7 @@ with block:
246
 
247
 
248
  gr.HTML(
249
- "<center>This app is based on the models Flan Alpaca and Phi 3 Mini. It powered by Gradio, Transformers, and Llama.cpp.</a></center>"
250
  )
251
 
252
  examples_set.change(fn=chatf.update_message, inputs=[examples_set], outputs=[message])
@@ -260,34 +304,34 @@ with block:
260
  # Load in a pdf
261
  load_pdf_click = load_pdf.click(ing.parse_file, inputs=[in_pdf], outputs=[ingest_text, current_source]).\
262
  then(ing.text_to_docs, inputs=[ingest_text], outputs=[ingest_docs]).\
263
- then(docs_to_faiss_save, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state]).\
264
  then(chatf.hide_block, outputs = [examples_set])
265
 
266
  # Load in a webpage
267
  load_web_click = load_web.click(ing.parse_html, inputs=[in_web, in_div], outputs=[ingest_text, ingest_metadata, current_source]).\
268
  then(ing.html_text_to_docs, inputs=[ingest_text, ingest_metadata], outputs=[ingest_docs]).\
269
- then(docs_to_faiss_save, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state]).\
270
  then(chatf.hide_block, outputs = [examples_set])
271
 
272
  # Load in a csv/excel file
273
  load_csv_click = load_csv.click(ing.parse_csv_or_excel, inputs=[in_csv, in_text_column], outputs=[ingest_text, current_source]).\
274
  then(ing.csv_excel_text_to_docs, inputs=[ingest_text, in_text_column], outputs=[ingest_docs]).\
275
- then(docs_to_faiss_save, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state]).\
276
  then(chatf.hide_block, outputs = [examples_set])
277
 
278
  # Load in a webpage
279
 
280
  # Click/enter to send message action
281
- response_click = submit.click(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state, out_passages], outputs=[chat_history_state, sources, instruction_prompt_out], queue=False, api_name="retrieval").\
282
  then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
283
- then(chatf.produce_streaming_answer_chatbot, inputs=[chatbot, instruction_prompt_out, model_type_state, temp_slide], outputs=chatbot)
284
  response_click.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\
285
  then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\
286
  then(lambda: chatf.restore_interactivity(), None, [message], queue=False)
287
 
288
- response_enter = message.submit(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state, out_passages], outputs=[chat_history_state, sources, instruction_prompt_out], queue=False).\
289
  then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
290
- then(chatf.produce_streaming_answer_chatbot, [chatbot, instruction_prompt_out, model_type_state, temp_slide], chatbot)
291
  response_enter.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\
292
  then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\
293
  then(lambda: chatf.restore_interactivity(), None, [message], queue=False)
@@ -302,4 +346,24 @@ with block:
302
  # Thumbs up or thumbs down voting function
303
  chatbot.like(chatf.vote, [chat_history_state, instruction_prompt_out, model_type_state], None)
304
 
305
- block.queue().launch(debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Load in packages
2
 
3
  import os
4
+ import socket
5
 
6
  from typing import Type
7
+ from langchain_huggingface.embeddings import HuggingFaceEmbeddings#, HuggingFaceInstructEmbeddings
8
  from langchain_community.vectorstores import FAISS
9
  import gradio as gr
10
  import pandas as pd
 
13
  import torch
14
 
15
  from llama_cpp import Llama
16
+ from huggingface_hub import hf_hub_download
17
+ from chatfuncs.ingest import embed_faiss_save_to_zip
18
+ from chatfuncs.helper_functions import get_or_create_env_var
19
+
20
+ from chatfuncs.helper_functions import ensure_output_folder_exists, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, wipe_logs
21
+ from chatfuncs.aws_functions import upload_file_to_s3
22
+ #from chatfuncs.llm_api_call import llm_query
23
+ from chatfuncs.auth import authenticate_user
24
 
25
  PandasDataFrame = Type[pd.DataFrame]
26
 
27
+ from datetime import datetime
28
+ today_rev = datetime.now().strftime("%Y%m%d")
29
+
30
+ ensure_output_folder_exists()
31
+
32
+ host_name = socket.gethostname()
33
+
34
+ access_logs_data_folder = 'logs/' + today_rev + '/' + host_name + '/'
35
+ feedback_data_folder = 'feedback/' + today_rev + '/' + host_name + '/'
36
+ usage_data_folder = 'usage/' + today_rev + '/' + host_name + '/'
37
+
38
  # Disable cuda devices if necessary
39
  #os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
40
 
41
  #from chatfuncs.chatfuncs import *
42
  import chatfuncs.ingest as ing
43
 
44
+ ###
45
+ # Load preset embeddings, vectorstore, and model
46
+ ###
47
 
48
  embeddings_name = "BAAI/bge-base-en-v1.5"
49
 
 
89
  if torch_device is None:
90
  torch_device = chatf.torch_device
91
 
92
+ if model_type == "Phi 3.5 Mini (larger, slow)":
93
  if torch_device == "cuda":
94
  gpu_config.update_gpu(gpu_layers)
95
  print("Loading with", gpu_config.n_gpu_layers, "model layers sent to GPU.")
 
105
  try:
106
  model = Llama(
107
  model_path=hf_hub_download(
108
+ repo_id=os.environ.get("REPO_ID", "QuantFactory/Phi-3.5-mini-instruct-GGUF"),# "QuantFactory/Phi-3-mini-128k-instruct-GGUF"), # "QuantFactory/Meta-Llama-3-8B-Instruct-GGUF-v2"), #"microsoft/Phi-3-mini-4k-instruct-gguf"),#"TheBloke/Mistral-7B-OpenOrca-GGUF"),
109
+ filename=os.environ.get("MODEL_FILE", "Phi-3.5-mini-instruct.Q4_K_M.gguf") #"Phi-3-mini-128k-instruct.Q4_K_M.gguf") #"Meta-Llama-3-8B-Instruct-v2.Q6_K.gguf") #"Phi-3-mini-4k-instruct-q4.gguf")#"mistral-7b-openorca.Q4_K_M.gguf"),
110
  ),
111
  **vars(gpu_config) # change n_gpu_layers if you have more or less VRAM
112
  )
 
116
  print(e)
117
  model = Llama(
118
  model_path=hf_hub_download(
119
+ repo_id=os.environ.get("REPO_ID", "QuantFactory/Phi-3.5-mini-instruct-GGUF"), #"QuantFactory/Phi-3-mini-128k-instruct-GGUF"), #, "microsoft/Phi-3-mini-4k-instruct-gguf"),#"QuantFactory/Meta-Llama-3-8B-Instruct-GGUF-v2"), #"microsoft/Phi-3-mini-4k-instruct-gguf"),#"TheBloke/Mistral-7B-OpenOrca-GGUF"),
120
+ filename=os.environ.get("MODEL_FILE", "Phi-3.5-mini-instruct.Q4_K_M.gguf"), # "Phi-3-mini-128k-instruct.Q4_K_M.gguf") # , #"Meta-Llama-3-8B-Instruct-v2.Q6_K.gguf") #"Phi-3-mini-4k-instruct-q4.gguf"),#"mistral-7b-openorca.Q4_K_M.gguf"),
121
  ),
122
  **vars(cpu_config)
123
  )
124
 
125
  tokenizer = []
126
 
127
+ if model_type == "Qwen 2 0.5B (small, fast)":
128
  # Huggingface chat model
129
+ hf_checkpoint = 'Qwen/Qwen2-0.5B-Instruct'# 'declare-lab/flan-alpaca-large'#'declare-lab/flan-alpaca-base' # # # 'Qwen/Qwen1.5-0.5B-Chat' #
130
 
131
  def create_hf_model(model_name):
132
 
 
134
 
135
  if torch_device == "cuda":
136
  if "flan" in model_name:
137
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")#, torch_dtype=torch.float16)
138
  else:
139
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")#, torch_dtype=torch.float16)
140
  else:
141
  if "flan" in model_name:
142
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)#, torch_dtype=torch.float16)
143
  else:
144
+ model = AutoModelForCausalLM.from_pretrained(model_name)#, trust_remote_code=True)#, torch_dtype=torch.float16)
145
 
146
  tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length = chatf.context_length)
147
 
 
159
  return model_type, load_confirmation, model_type
160
 
161
  # Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
162
+ #model_type = "Phi 3.5 Mini (larger, slow)"
163
+ #load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
164
 
165
+ model_type = "Qwen 2 0.5B (small, fast)"
166
  load_model(model_type, 0, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
167
 
168
  def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):
 
173
 
174
  vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings)
175
 
 
176
  chatf.vectorstore = vectorstore_func
177
 
178
  out_message = "Document processing complete"
179
 
180
  return out_message, vectorstore_func
 
181
  # Gradio chat
182
 
 
183
 
184
+ ###
185
+ # RUN UI
186
+ ###
187
+
188
+ app = gr.Blocks(theme = gr.themes.Base())#css=".gradio-container {background-color: black}")
189
+
190
+ with app:
191
  ingest_text = gr.State()
192
  ingest_metadata = gr.State()
193
  ingest_docs = gr.State()
194
 
195
  model_type_state = gr.State(model_type)
196
  embeddings_state = gr.State(chatf.embeddings)#globals()["embeddings"])
197
+ vectorstore_state = gr.State(chatf.vectorstore)#globals()["vectorstore"])
198
+
199
+ relevant_query_state = gr.Checkbox(value=True, visible=False)
200
 
201
  model_state = gr.State() # chatf.model (gives error)
202
  tokenizer_state = gr.State() # chatf.tokenizer (gives error)
 
204
  chat_history_state = gr.State()
205
  instruction_prompt_out = gr.State()
206
 
207
+ session_hash_state = gr.State()
208
+ s3_output_folder_state = gr.State()
209
+
210
+ session_hash_textbox = gr.Textbox(value="", visible=False)
211
+ s3_logs_output_textbox = gr.Textbox(label="S3 logs", visible=False)
212
+
213
+ access_logs_state = gr.State(access_logs_data_folder + 'dataset1.csv')
214
+ access_s3_logs_loc_state = gr.State(access_logs_data_folder)
215
+ usage_logs_state = gr.State(usage_data_folder + 'dataset1.csv')
216
+ usage_s3_logs_loc_state = gr.State(usage_data_folder)
217
+ feedback_logs_state = gr.State(feedback_data_folder + 'dataset1.csv')
218
+ feedback_s3_logs_loc_state = gr.State(feedback_data_folder)
219
+
220
  gr.Markdown("<h1><center>Lightweight PDF / web page QA bot</center></h1>")
221
 
222
+ gr.Markdown("Chat with PDF, web page or (new) csv/Excel documents. The default is a small model (Qwen 2 0.5B), that can only answer specific questions that are answered in the text. It cannot give overall impressions of, or summarise the document. The alternative (Phi 3.5 Mini (larger, slow)), can reason a little better, but is much slower (See Advanced tab).\n\nBy default the Lambeth Borough Plan '[Lambeth 2030 : Our Future, Our Lambeth](https://www.lambeth.gov.uk/better-fairer-lambeth/projects/lambeth-2030-our-future-our-lambeth)' is loaded. If you want to talk about another document or web page, please select from the second tab. If switching topic, please click the 'Clear chat' button.\n\nCaution: This is a public app. Please ensure that the document you upload is not sensitive is any way as other users may see it! Also, please note that LLM chatbots may give incomplete or incorrect information, so please use with care.")
223
+
224
+ with gr.Accordion(label="Use Gemini or AWS Claude model", open=False, visible=False):
225
+ api_model_choice = gr.Dropdown(value = "None", choices = ["gemini-1.5-flash-002", "gemini-1.5-pro-002", "anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-3-sonnet-20240229-v1:0", "None"], label="LLM model to use", multiselect=False, interactive=True, visible=False)
226
+ in_api_key = gr.Textbox(value = "", label="Enter Gemini API key (only if using Google API models)", lines=1, type="password",interactive=True, visible=False)
227
 
228
  with gr.Row():
229
  current_source = gr.Textbox(label="Current data source(s)", value="Lambeth_2030-Our_Future_Our_Lambeth.pdf", scale = 10)
 
233
 
234
  with gr.Row():
235
  #chat_height = 500
236
+ chatbot = gr.Chatbot(avatar_images=('user.jfif', 'bot.jpg'),bubble_full_width = False, scale = 1, type='tuples') # , height=chat_height
237
  with gr.Accordion("Open this tab to see the source paragraphs used to generate the answer", open = False):
238
  sources = gr.HTML(value = "Source paragraphs with the most relevant text will appear here") # , height=chat_height
239
 
 
253
  "What is the vision statement for Lambeth?",
254
  "What are the commitments for Lambeth?",
255
  "What are the 2030 outcomes for Lambeth?"])
 
256
 
257
  current_topic = gr.Textbox(label="Feature currently disabled - Keywords related to current conversation topic.", placeholder="Keywords related to the conversation topic will appear here")
258
 
 
272
  in_csv = gr.File(label="Upload CSV/Excel file", file_count="multiple", file_types=['.csv', '.xlsx'])
273
  in_text_column = gr.Textbox(label="Enter column name where text is stored")
274
  load_csv = gr.Button(value="Load in CSV/Excel file", variant="secondary", scale=0)
275
+
276
+ with gr.Row():
277
+ ingest_embed_out = gr.Textbox(label="File/web page preparation progress")
278
+ file_out_box = gr.File(file_count='single', file_types=['.zip'])
279
 
280
  with gr.Tab("Advanced features"):
281
  out_passages = gr.Slider(minimum=1, value = 2, maximum=10, step=1, label="Choose number of passages to retrieve from the document. Numbers greater than 2 may lead to increased hallucinations or input text being truncated.")
282
  temp_slide = gr.Slider(minimum=0.1, value = 0.5, maximum=1, step=0.1, label="Choose temperature setting for response generation.")
283
  with gr.Row():
284
+ model_choice = gr.Radio(label="Choose a chat model", value="Qwen 2 0.5B (small, fast)", choices = ["Qwen 2 0.5B (small, fast)", "Phi 3.5 Mini (larger, slow)"])
285
  change_model_button = gr.Button(value="Load model", scale=0)
286
  with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you are sure you have a GPU).", open = False):
287
  gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=100, step = 1, visible=True)
 
290
 
291
 
292
  gr.HTML(
293
+ "<center>This app is based on the models Qwen 2 0.5B and Phi 3.5 Mini. It powered by Gradio, Transformers, and Llama.cpp.</a></center>"
294
  )
295
 
296
  examples_set.change(fn=chatf.update_message, inputs=[examples_set], outputs=[message])
 
304
  # Load in a pdf
305
  load_pdf_click = load_pdf.click(ing.parse_file, inputs=[in_pdf], outputs=[ingest_text, current_source]).\
306
  then(ing.text_to_docs, inputs=[ingest_text], outputs=[ingest_docs]).\
307
+ then(embed_faiss_save_to_zip, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state, file_out_box]).\
308
  then(chatf.hide_block, outputs = [examples_set])
309
 
310
  # Load in a webpage
311
  load_web_click = load_web.click(ing.parse_html, inputs=[in_web, in_div], outputs=[ingest_text, ingest_metadata, current_source]).\
312
  then(ing.html_text_to_docs, inputs=[ingest_text, ingest_metadata], outputs=[ingest_docs]).\
313
+ then(embed_faiss_save_to_zip, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state, file_out_box]).\
314
  then(chatf.hide_block, outputs = [examples_set])
315
 
316
  # Load in a csv/excel file
317
  load_csv_click = load_csv.click(ing.parse_csv_or_excel, inputs=[in_csv, in_text_column], outputs=[ingest_text, current_source]).\
318
  then(ing.csv_excel_text_to_docs, inputs=[ingest_text, in_text_column], outputs=[ingest_docs]).\
319
+ then(embed_faiss_save_to_zip, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state, file_out_box]).\
320
  then(chatf.hide_block, outputs = [examples_set])
321
 
322
  # Load in a webpage
323
 
324
  # Click/enter to send message action
325
+ response_click = submit.click(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state, out_passages, api_model_choice, in_api_key], outputs=[chat_history_state, sources, instruction_prompt_out, relevant_query_state], queue=False, api_name="retrieval").\
326
  then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
327
+ then(chatf.produce_streaming_answer_chatbot, inputs=[chatbot, instruction_prompt_out, model_type_state, temp_slide, relevant_query_state], outputs=chatbot)
328
  response_click.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\
329
  then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\
330
  then(lambda: chatf.restore_interactivity(), None, [message], queue=False)
331
 
332
+ response_enter = message.submit(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state, out_passages, api_model_choice, in_api_key], outputs=[chat_history_state, sources, instruction_prompt_out, relevant_query_state], queue=False).\
333
  then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
334
+ then(chatf.produce_streaming_answer_chatbot, [chatbot, instruction_prompt_out, model_type_state, temp_slide, relevant_query_state], chatbot)
335
  response_enter.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\
336
  then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\
337
  then(lambda: chatf.restore_interactivity(), None, [message], queue=False)
 
346
  # Thumbs up or thumbs down voting function
347
  chatbot.like(chatf.vote, [chat_history_state, instruction_prompt_out, model_type_state], None)
348
 
349
+ ###
350
+ # LOGGING AND ON APP LOAD FUNCTIONS
351
+ ###
352
+ app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox])
353
+
354
+ # Log usernames and times of access to file (to know who is using the app when running on AWS)
355
+ access_callback = gr.CSVLogger()
356
+ access_callback.setup([session_hash_textbox], access_logs_data_folder)
357
+
358
+ session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\
359
+ then(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
360
+
361
+ # Launch the Gradio app
362
+ COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
363
+ print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}')
364
+
365
+ if __name__ == "__main__":
366
+ if os.environ['COGNITO_AUTH'] == "1":
367
+ app.queue().launch(show_error=True, auth=authenticate_user, max_file_size='50mb')
368
+ else:
369
+ app.queue().launch(show_error=True, inbrowser=True, max_file_size='50mb')
chatfuncs/auth.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import boto3
3
+ from chatfuncs.helper_functions import get_or_create_env_var
4
+
5
+ client_id = get_or_create_env_var('AWS_CLIENT_ID', '') # This client id is borrowed from async gradio app client
6
+ print(f'The value of AWS_CLIENT_ID is {client_id}')
7
+
8
+ user_pool_id = get_or_create_env_var('AWS_USER_POOL_ID', '')
9
+ print(f'The value of AWS_USER_POOL_ID is {user_pool_id}')
10
+
11
+ def authenticate_user(username, password, user_pool_id=user_pool_id, client_id=client_id):
12
+ """Authenticates a user against an AWS Cognito user pool.
13
+
14
+ Args:
15
+ user_pool_id (str): The ID of the Cognito user pool.
16
+ client_id (str): The ID of the Cognito user pool client.
17
+ username (str): The username of the user.
18
+ password (str): The password of the user.
19
+
20
+ Returns:
21
+ bool: True if the user is authenticated, False otherwise.
22
+ """
23
+
24
+ client = boto3.client('cognito-idp') # Cognito Identity Provider client
25
+
26
+ try:
27
+ response = client.initiate_auth(
28
+ AuthFlow='USER_PASSWORD_AUTH',
29
+ AuthParameters={
30
+ 'USERNAME': username,
31
+ 'PASSWORD': password,
32
+ },
33
+ ClientId=client_id
34
+ )
35
+
36
+ # If successful, you'll receive an AuthenticationResult in the response
37
+ if response.get('AuthenticationResult'):
38
+ return True
39
+ else:
40
+ return False
41
+
42
+ except client.exceptions.NotAuthorizedException:
43
+ return False
44
+ except client.exceptions.UserNotFoundException:
45
+ return False
46
+ except Exception as e:
47
+ print(f"An error occurred: {e}")
48
+ return False
chatfuncs/aws_functions.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Type, List
2
+ import pandas as pd
3
+ import boto3
4
+ import tempfile
5
+ import os
6
+ from chatfuncs.helper_functions import get_or_create_env_var
7
+
8
+ PandasDataFrame = Type[pd.DataFrame]
9
+
10
+ # Get AWS credentials if required
11
+ bucket_name=""
12
+
13
+ aws_var_val = get_or_create_env_var("RUN_AWS_FUNCTIONS", "1")
14
+ print(f'The value of RUN_AWS_FUNCTIONS is {aws_var_val}')
15
+
16
+ AWS_REGION = get_or_create_env_var('AWS_REGION', 'eu-west-2')
17
+ print(f'The value of AWS_REGION is {AWS_REGION}')
18
+
19
+ if aws_var_val == "1":
20
+ try:
21
+ bucket_name = os.environ['CONSULTATION_SUMMARY_BUCKET']
22
+ session = boto3.Session() # profile_name="default"
23
+ except Exception as e:
24
+ print(e)
25
+
26
+ def get_assumed_role_info():
27
+ sts_endpoint = 'https://sts.' + AWS_REGION + '.amazonaws.com'
28
+ sts = boto3.client('sts', region_name=AWS_REGION, endpoint_url=sts_endpoint)
29
+ response = sts.get_caller_identity()
30
+
31
+ # Extract ARN of the assumed role
32
+ assumed_role_arn = response['Arn']
33
+
34
+ # Extract the name of the assumed role from the ARN
35
+ assumed_role_name = assumed_role_arn.split('/')[-1]
36
+
37
+ return assumed_role_arn, assumed_role_name
38
+
39
+ try:
40
+ assumed_role_arn, assumed_role_name = get_assumed_role_info()
41
+
42
+ print("Assumed Role ARN:", assumed_role_arn)
43
+ print("Assumed Role Name:", assumed_role_name)
44
+
45
+ except Exception as e:
46
+
47
+ print(e)
48
+
49
+ # Download direct from S3 - requires login credentials
50
+ def download_file_from_s3(bucket_name, key, local_file_path):
51
+
52
+ s3 = boto3.client('s3')
53
+ s3.download_file(bucket_name, key, local_file_path)
54
+ print(f"File downloaded from S3: s3://{bucket_name}/{key} to {local_file_path}")
55
+
56
+ def download_folder_from_s3(bucket_name, s3_folder, local_folder):
57
+ """
58
+ Download all files from an S3 folder to a local folder.
59
+ """
60
+ s3 = boto3.client('s3')
61
+
62
+ # List objects in the specified S3 folder
63
+ response = s3.list_objects_v2(Bucket=bucket_name, Prefix=s3_folder)
64
+
65
+ # Download each object
66
+ for obj in response.get('Contents', []):
67
+ # Extract object key and construct local file path
68
+ object_key = obj['Key']
69
+ local_file_path = os.path.join(local_folder, os.path.relpath(object_key, s3_folder))
70
+
71
+ # Create directories if necessary
72
+ os.makedirs(os.path.dirname(local_file_path), exist_ok=True)
73
+
74
+ # Download the object
75
+ try:
76
+ s3.download_file(bucket_name, object_key, local_file_path)
77
+ print(f"Downloaded 's3://{bucket_name}/{object_key}' to '{local_file_path}'")
78
+ except Exception as e:
79
+ print(f"Error downloading 's3://{bucket_name}/{object_key}':", e)
80
+
81
+ def download_files_from_s3(bucket_name, s3_folder, local_folder, filenames):
82
+ """
83
+ Download specific files from an S3 folder to a local folder.
84
+ """
85
+ s3 = boto3.client('s3')
86
+
87
+ print("Trying to download file: ", filenames)
88
+
89
+ if filenames == '*':
90
+ # List all objects in the S3 folder
91
+ print("Trying to download all files in AWS folder: ", s3_folder)
92
+ response = s3.list_objects_v2(Bucket=bucket_name, Prefix=s3_folder)
93
+
94
+ print("Found files in AWS folder: ", response.get('Contents', []))
95
+
96
+ filenames = [obj['Key'].split('/')[-1] for obj in response.get('Contents', [])]
97
+
98
+ print("Found filenames in AWS folder: ", filenames)
99
+
100
+ for filename in filenames:
101
+ object_key = os.path.join(s3_folder, filename)
102
+ local_file_path = os.path.join(local_folder, filename)
103
+
104
+ # Create directories if necessary
105
+ os.makedirs(os.path.dirname(local_file_path), exist_ok=True)
106
+
107
+ # Download the object
108
+ try:
109
+ s3.download_file(bucket_name, object_key, local_file_path)
110
+ print(f"Downloaded 's3://{bucket_name}/{object_key}' to '{local_file_path}'")
111
+ except Exception as e:
112
+ print(f"Error downloading 's3://{bucket_name}/{object_key}':", e)
113
+
114
+ def load_data_from_aws(in_aws_keyword_file, aws_password="", bucket_name=bucket_name):
115
+
116
+ temp_dir = tempfile.mkdtemp()
117
+ local_address_stub = temp_dir + '/doc-redaction/'
118
+ files = []
119
+
120
+ if not 'LAMBETH_BOROUGH_PLAN_PASSWORD' in os.environ:
121
+ out_message = "Can't verify password for dataset access. Do you have a valid AWS connection? Data not loaded."
122
+ return files, out_message
123
+
124
+ if aws_password:
125
+ if "Lambeth borough plan" in in_aws_keyword_file and aws_password == os.environ['LAMBETH_BOROUGH_PLAN_PASSWORD']:
126
+
127
+ s3_folder_stub = 'example-data/lambeth-borough-plan/latest/'
128
+
129
+ local_folder_path = local_address_stub
130
+
131
+ # Check if folder exists
132
+ if not os.path.exists(local_folder_path):
133
+ print(f"Folder {local_folder_path} does not exist! Making folder.")
134
+
135
+ os.mkdir(local_folder_path)
136
+
137
+ # Check if folder is empty
138
+ if len(os.listdir(local_folder_path)) == 0:
139
+ print(f"Folder {local_folder_path} is empty")
140
+ # Download data
141
+ download_files_from_s3(bucket_name, s3_folder_stub, local_folder_path, filenames='*')
142
+
143
+ print("AWS data downloaded")
144
+
145
+ else:
146
+ print(f"Folder {local_folder_path} is not empty")
147
+
148
+ #files = os.listdir(local_folder_stub)
149
+ #print(files)
150
+
151
+ files = [os.path.join(local_folder_path, f) for f in os.listdir(local_folder_path) if os.path.isfile(os.path.join(local_folder_path, f))]
152
+
153
+ out_message = "Data successfully loaded from AWS"
154
+ print(out_message)
155
+
156
+ else:
157
+ out_message = "Data not loaded from AWS"
158
+ print(out_message)
159
+ else:
160
+ out_message = "No password provided. Please ask the data team for access if you need this."
161
+ print(out_message)
162
+
163
+ return files, out_message
164
+
165
+ def upload_file_to_s3(local_file_paths:List[str], s3_key:str, s3_bucket:str=bucket_name):
166
+ """
167
+ Uploads a file from local machine to Amazon S3.
168
+
169
+ Args:
170
+ - local_file_path: Local file path(s) of the file(s) to upload.
171
+ - s3_key: Key (path) to the file in the S3 bucket.
172
+ - s3_bucket: Name of the S3 bucket.
173
+
174
+ Returns:
175
+ - Message as variable/printed to console
176
+ """
177
+ final_out_message = []
178
+
179
+ s3_client = boto3.client('s3')
180
+
181
+ if isinstance(local_file_paths, str):
182
+ local_file_paths = [local_file_paths]
183
+
184
+ for file in local_file_paths:
185
+ try:
186
+ # Get file name off file path
187
+ file_name = os.path.basename(file)
188
+
189
+ s3_key_full = s3_key + file_name
190
+ print("S3 key: ", s3_key_full)
191
+
192
+ s3_client.upload_file(file, s3_bucket, s3_key_full)
193
+ out_message = "File " + file_name + " uploaded successfully!"
194
+ print(out_message)
195
+
196
+ except Exception as e:
197
+ out_message = f"Error uploading file(s): {e}"
198
+ print(out_message)
199
+
200
+ final_out_message.append(out_message)
201
+ final_out_message_str = '\n'.join(final_out_message)
202
+
203
+ return final_out_message_str
204
+
205
+
chatfuncs/chatfuncs.py CHANGED
@@ -28,20 +28,25 @@ from langchain.docstore.document import Document
28
  from nltk.corpus import stopwords
29
  from nltk.tokenize import RegexpTokenizer
30
  from nltk.stem import WordNetLemmatizer
 
31
  from keybert import KeyBERT
32
 
33
  # For Name Entity Recognition model
34
  #from span_marker import SpanMarkerModel # Not currently used
35
 
 
36
  # For BM25 retrieval
37
- from gensim.corpora import Dictionary
38
- from gensim.models import TfidfModel, OkapiBM25Model
39
- from gensim.similarities import SparseMatrixSimilarity
 
 
 
40
 
41
  from llama_cpp import Llama
42
  from huggingface_hub import hf_hub_download
43
 
44
- from chatfuncs.prompts import instruction_prompt_template_alpaca, instruction_prompt_mistral_orca, instruction_prompt_phi3, instruction_prompt_llama3
45
 
46
  import gradio as gr
47
 
@@ -84,7 +89,7 @@ print("Running on device:", torch_device)
84
  threads = 8 #torch.get_num_threads()
85
  print("CPU threads:", threads)
86
 
87
- # Flan Alpaca (small, fast) Model parameters
88
  temperature: float = 0.1
89
  top_k: int = 3
90
  top_p: float = 1
@@ -182,7 +187,7 @@ def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):
182
 
183
  # Prompt functions
184
 
185
- def base_prompt_templates(model_type = "Flan Alpaca (small, fast)"):
186
 
187
  #EXAMPLE_PROMPT = PromptTemplate(
188
  # template="\nCONTENT:\n\n{page_content}\n\nSOURCE: {source}\n\n",
@@ -196,9 +201,9 @@ def base_prompt_templates(model_type = "Flan Alpaca (small, fast)"):
196
 
197
  # The main prompt:
198
 
199
- if model_type == "Flan Alpaca (small, fast)":
200
- INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_template_alpaca, input_variables=['question', 'summaries'])
201
- elif model_type == "Phi 3 Mini (larger, slow)":
202
  INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_phi3, input_variables=['question', 'summaries'])
203
 
204
  return INSTRUCTION_PROMPT, CONTENT_PROMPT
@@ -207,89 +212,175 @@ def write_out_metadata_as_string(metadata_in):
207
  metadata_string = [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] # ['metadata']
208
  return metadata_string
209
 
210
- def generate_expanded_prompt(inputs: Dict[str, str], instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings, out_passages = 2): # ,
211
-
212
- question = inputs["question"]
213
- chat_history = inputs["chat_history"]
214
 
 
 
215
 
 
 
 
 
216
  new_question_kworded = adapt_q_from_chat_history(question, chat_history, extracted_memory) # new_question_keywords,
217
-
218
-
219
- docs_keep_as_doc, doc_df, docs_keep_out = hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val = 25, out_passages = out_passages,
220
- vec_score_cut_off = 0.85, vec_weight = 1, bm25_weight = 1, svm_weight = 1)#,
221
- #vectorstore=globals()["vectorstore"], embeddings=globals()["embeddings"])
222
-
223
- #print(docs_keep_as_doc)
224
- #print(doc_df)
225
- if (not docs_keep_as_doc) | (doc_df.empty):
226
- sorry_prompt = """Say 'Sorry, there is no relevant information to answer this question.'.
227
- RESPONSE:"""
228
- return sorry_prompt, "No relevant sources found.", new_question_kworded
229
-
230
- # Expand the found passages to the neighbouring context
231
- file_type = determine_file_type(doc_df['meta_url'][0])
232
 
233
- # Only expand passages if not tabular data
234
- if (file_type != ".csv") & (file_type != ".xlsx"):
235
- docs_keep_as_doc, doc_df = get_expanded_passages(vectorstore, docs_keep_out, width=3)
 
236
 
237
-
238
-
239
- # Build up sources content to add to user display
240
- doc_df['meta_clean'] = write_out_metadata_as_string(doc_df["metadata"]) # [f"<b>{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}</b>" for d in doc_df['metadata']]
241
-
242
- # Remove meta text from the page content if it already exists there
243
- doc_df['page_content_no_meta'] = doc_df.apply(lambda row: row['page_content'].replace(row['meta_clean'] + ". ", ""), axis=1)
244
- doc_df['content_meta'] = doc_df['meta_clean'].astype(str) + ".<br><br>" + doc_df['page_content_no_meta'].astype(str)
245
 
246
- #modified_page_content = [f" Document {i+1} - {word}" for i, word in enumerate(doc_df['page_content'])]
247
- modified_page_content = [f" Document {i+1} - {word}" for i, word in enumerate(doc_df['content_meta'])]
248
- docs_content_string = '<br><br>'.join(modified_page_content)
 
 
 
249
 
250
- sources_docs_content_string = '<br><br>'.join(doc_df['content_meta'])#.replace(" "," ")#.strip()
251
-
252
- instruction_prompt_out = instruction_prompt.format(question=new_question_kworded, summaries=docs_content_string)
253
-
254
- print('Final prompt is: ')
255
- print(instruction_prompt_out)
256
-
257
- return instruction_prompt_out, sources_docs_content_string, new_question_kworded
258
 
259
- def create_full_prompt(user_input, history, extracted_memory, vectorstore, embeddings, model_type, out_passages):
260
 
261
- if not user_input.strip():
262
- return history, "", "Respond with 'Please enter a question.' RESPONSE:"
 
 
 
 
263
 
 
 
264
  #if chain_agent is None:
265
  # history.append((user_input, "Please click the button to submit the Huggingface API key before using the chatbot (top right)"))
266
  # return history, history, "", ""
267
  print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
268
- print("User input: " + user_input)
269
 
270
- history = history or []
271
 
 
 
 
 
 
 
 
 
 
 
272
  # Create instruction prompt
273
  instruction_prompt, content_prompt = base_prompt_templates(model_type=model_type)
 
 
 
 
 
 
 
 
 
274
  instruction_prompt_out, docs_content_string, new_question_kworded =\
275
  generate_expanded_prompt({"question": user_input, "chat_history": history}, #vectorstore,
276
- instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings, out_passages)
277
-
278
 
279
  history.append(user_input)
280
 
281
- print("Output history is:")
282
- print(history)
283
-
284
- print("Final prompt to model is:")
285
- print(instruction_prompt_out)
286
 
287
- return history, docs_content_string, instruction_prompt_out
288
 
289
  # Chat functions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290
 
291
- def produce_streaming_answer_chatbot(history, full_prompt, model_type,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292
  temperature=temperature,
 
293
  max_new_tokens=max_new_tokens,
294
  sample=sample,
295
  repetition_penalty=repetition_penalty,
@@ -304,7 +395,16 @@ def produce_streaming_answer_chatbot(history, full_prompt, model_type,
304
 
305
  # return history
306
 
307
- if model_type == "Flan Alpaca (small, fast)":
 
 
 
 
 
 
 
 
 
308
  # Get the model and tokenizer, and tokenize the user text.
309
  model_inputs = tokenizer(text=full_prompt, return_tensors="pt", return_attention_mask=False).to(torch_device)
310
 
@@ -322,7 +422,7 @@ def produce_streaming_answer_chatbot(history, full_prompt, model_type,
322
  top_k=top_k
323
  )
324
 
325
- print(generate_kwargs)
326
 
327
  t = Thread(target=model.generate, kwargs=generate_kwargs)
328
  t.start()
@@ -350,7 +450,7 @@ def produce_streaming_answer_chatbot(history, full_prompt, model_type,
350
  print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
351
  print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
352
 
353
- elif model_type == "Phi 3 Mini (larger, slow)":
354
  #tokens = model.tokenize(full_prompt)
355
 
356
  gen_config = CtransGenGenerationConfig()
@@ -384,6 +484,33 @@ def produce_streaming_answer_chatbot(history, full_prompt, model_type,
384
  print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
385
  print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387
 
388
  # Chat helper functions
389
 
@@ -507,7 +634,7 @@ def hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val, out_p
507
  docs_content = doc_df['page_content'].astype(str)
508
  docs_url = doc_df['meta_url']
509
 
510
- return docs_keep_as_doc, docs_content, docs_url
511
 
512
  # Check for if more docs are removed than the desired output
513
  if out_passages > docs_keep_length:
@@ -519,47 +646,58 @@ def hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val, out_p
519
 
520
  print("Number of documents remaining: ", docs_keep_length)
521
 
522
- # 2nd level check on retrieved docs with BM25
523
-
524
  content_keep=[]
525
  for item in docs_keep:
526
  content_keep.append(item[0].page_content)
527
 
528
- corpus = corpus = [doc.lower().split() for doc in content_keep]
529
- dictionary = Dictionary(corpus)
530
- bm25_model = OkapiBM25Model(dictionary=dictionary)
531
- bm25_corpus = bm25_model[list(map(dictionary.doc2bow, corpus))]
532
- bm25_index = SparseMatrixSimilarity(bm25_corpus, num_docs=len(corpus), num_terms=len(dictionary),
533
- normalize_queries=False, normalize_documents=False)
534
- query = new_question_kworded.lower().split()
535
- tfidf_model = TfidfModel(dictionary=dictionary, smartirs='bnn') # Enforce binary weighting of queries
536
- tfidf_query = tfidf_model[dictionary.doc2bow(query)]
537
- similarities = np.array(bm25_index[tfidf_query])
538
- #print(similarities)
539
- temp = similarities.argsort()
540
- ranks = np.arange(len(similarities))[temp.argsort()][::-1]
541
-
542
- # Pair each index with its corresponding value
543
- pairs = list(zip(ranks, docs_keep_as_doc))
544
- # Sort the pairs by the indices
 
 
 
 
 
 
 
 
 
 
 
 
545
  pairs.sort()
546
- # Extract the values in the new order
547
- bm25_result = [value for ranks, value in pairs]
548
 
549
- bm25_rank=[]
550
- bm25_score = []
551
-
552
- for vec_item in docs_keep:
553
- x = 0
554
- for bm25_item in bm25_result:
555
- x = x + 1
556
- if bm25_item.page_content == vec_item[0].page_content:
557
- bm25_rank.append(x)
558
- bm25_score.append((docs_keep_length/x)*bm25_weight)
559
 
560
  # 3rd level check on retrieved docs with SVM retriever
 
 
 
561
 
562
- svm_retriever = SVMRetriever.from_texts(content_keep, embeddings, k = k_val)
 
 
 
 
 
 
 
563
  svm_result = svm_retriever.invoke(new_question_kworded)
564
 
565
 
@@ -605,6 +743,10 @@ def hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val, out_p
605
  # Make df of best options
606
  doc_df = create_doc_df(docs_keep_out)
607
 
 
 
 
 
608
  return docs_keep_as_doc, doc_df, docs_keep_out
609
 
610
  def get_expanded_passages(vectorstore, docs, width):
 
28
  from nltk.corpus import stopwords
29
  from nltk.tokenize import RegexpTokenizer
30
  from nltk.stem import WordNetLemmatizer
31
+ #from nltk.stem.snowball import SnowballStemmer
32
  from keybert import KeyBERT
33
 
34
  # For Name Entity Recognition model
35
  #from span_marker import SpanMarkerModel # Not currently used
36
 
37
+
38
  # For BM25 retrieval
39
+ import bm25s
40
+ import Stemmer
41
+
42
+ #from gensim.corpora import Dictionary
43
+ #from gensim.models import TfidfModel, OkapiBM25Model
44
+ #from gensim.similarities import SparseMatrixSimilarity
45
 
46
  from llama_cpp import Llama
47
  from huggingface_hub import hf_hub_download
48
 
49
+ from chatfuncs.prompts import instruction_prompt_template_alpaca, instruction_prompt_mistral_orca, instruction_prompt_phi3, instruction_prompt_llama3, instruction_prompt_qwen
50
 
51
  import gradio as gr
52
 
 
89
  threads = 8 #torch.get_num_threads()
90
  print("CPU threads:", threads)
91
 
92
+ # Qwen 2 0.5B (small, fast) Model parameters
93
  temperature: float = 0.1
94
  top_k: int = 3
95
  top_p: float = 1
 
187
 
188
  # Prompt functions
189
 
190
+ def base_prompt_templates(model_type = "Qwen 2 0.5B (small, fast)"):
191
 
192
  #EXAMPLE_PROMPT = PromptTemplate(
193
  # template="\nCONTENT:\n\n{page_content}\n\nSOURCE: {source}\n\n",
 
201
 
202
  # The main prompt:
203
 
204
+ if model_type == "Qwen 2 0.5B (small, fast)":
205
+ INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_qwen, input_variables=['question', 'summaries'])
206
+ elif model_type == "Phi 3.5 Mini (larger, slow)":
207
  INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_phi3, input_variables=['question', 'summaries'])
208
 
209
  return INSTRUCTION_PROMPT, CONTENT_PROMPT
 
212
  metadata_string = [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] # ['metadata']
213
  return metadata_string
214
 
215
+ def generate_expanded_prompt(inputs: Dict[str, str], instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings, relevant_flag = True, out_passages = 2): # ,
 
 
 
216
 
217
+ question = inputs["question"]
218
+ chat_history = inputs["chat_history"]
219
 
220
+ print("relevant_flag in generate_expanded_prompt:", relevant_flag)
221
+
222
+
223
+ if relevant_flag == True:
224
  new_question_kworded = adapt_q_from_chat_history(question, chat_history, extracted_memory) # new_question_keywords,
225
+ docs_keep_as_doc, doc_df, docs_keep_out = hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val = 25, out_passages = out_passages, vec_score_cut_off = 0.85, vec_weight = 1, bm25_weight = 1, svm_weight = 1)
226
+ else:
227
+ new_question_kworded = question
228
+ doc_df = pd.DataFrame()
229
+ docs_keep_as_doc = []
230
+ docs_keep_out = []
231
+
232
+ if (not docs_keep_as_doc) | (doc_df.empty):
233
+ sorry_prompt = """Say 'Sorry, there is no relevant information to answer this question.'"""
234
+ return sorry_prompt, "No relevant sources found.", new_question_kworded
235
+
236
+ # Expand the found passages to the neighbouring context
237
+ print("Doc_df columns:", doc_df.columns)
 
 
238
 
239
+ if 'meta_url' in doc_df.columns:
240
+ file_type = determine_file_type(doc_df['meta_url'][0])
241
+ else:
242
+ file_type = determine_file_type(doc_df['source'][0])
243
 
244
+ # Only expand passages if not tabular data
245
+ if (file_type != ".csv") & (file_type != ".xlsx"):
246
+ docs_keep_as_doc, doc_df = get_expanded_passages(vectorstore, docs_keep_out, width=3)
 
 
 
 
 
247
 
248
+ # Build up sources content to add to user display
249
+ doc_df['meta_clean'] = write_out_metadata_as_string(doc_df["metadata"]) # [f"<b>{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}</b>" for d in doc_df['metadata']]
250
+
251
+ # Remove meta text from the page content if it already exists there
252
+ doc_df['page_content_no_meta'] = doc_df.apply(lambda row: row['page_content'].replace(row['meta_clean'] + ". ", ""), axis=1)
253
+ doc_df['content_meta'] = doc_df['meta_clean'].astype(str) + ".<br><br>" + doc_df['page_content_no_meta'].astype(str)
254
 
255
+ #modified_page_content = [f" Document {i+1} - {word}" for i, word in enumerate(doc_df['page_content'])]
256
+ modified_page_content = [f" Document {i+1} - {word}" for i, word in enumerate(doc_df['content_meta'])]
257
+ docs_content_string = '<br><br>'.join(modified_page_content)
 
 
 
 
 
258
 
259
+ sources_docs_content_string = '<br><br>'.join(doc_df['content_meta'])#.replace(" "," ")#.strip()
260
 
261
+ instruction_prompt_out = instruction_prompt.format(question=new_question_kworded, summaries=docs_content_string)
262
+
263
+ print('Final prompt is: ')
264
+ print(instruction_prompt_out)
265
+
266
+ return instruction_prompt_out, sources_docs_content_string, new_question_kworded
267
 
268
+ def create_full_prompt(user_input, history, extracted_memory, vectorstore, embeddings, model_type, out_passages, api_model_choice=None, api_key=None, relevant_flag = True):
269
+
270
  #if chain_agent is None:
271
  # history.append((user_input, "Please click the button to submit the Huggingface API key before using the chatbot (top right)"))
272
  # return history, history, "", ""
273
  print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
 
274
 
 
275
 
276
+ history = history or []
277
+
278
+ if api_model_choice and api_model_choice != "None":
279
+ print("API model choice detected")
280
+ if api_key:
281
+ print("API key detected")
282
+ return history, "", None, relevant_flag
283
+ else:
284
+ return history, "", None, relevant_flag
285
+
286
  # Create instruction prompt
287
  instruction_prompt, content_prompt = base_prompt_templates(model_type=model_type)
288
+
289
+ if not user_input.strip():
290
+ user_input = "No user input found"
291
+ relevant_flag = False
292
+ else:
293
+ relevant_flag = True
294
+
295
+ print("User input:", user_input)
296
+
297
  instruction_prompt_out, docs_content_string, new_question_kworded =\
298
  generate_expanded_prompt({"question": user_input, "chat_history": history}, #vectorstore,
299
+ instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings, relevant_flag, out_passages)
 
300
 
301
  history.append(user_input)
302
 
303
+ print("Output history is:", history)
304
+ print("Final prompt to model is:",instruction_prompt_out)
 
 
 
305
 
306
+ return history, docs_content_string, instruction_prompt_out, relevant_flag
307
 
308
  # Chat functions
309
+ import boto3
310
+ import json
311
+ from chatfuncs.helper_functions import get_or_create_env_var
312
+
313
+ # ResponseObject class for AWS Bedrock calls
314
+ class ResponseObject:
315
+ def __init__(self, text, usage_metadata):
316
+ self.text = text
317
+ self.usage_metadata = usage_metadata
318
+
319
+ max_tokens = 4096
320
+
321
+ AWS_DEFAULT_REGION = get_or_create_env_var('AWS_DEFAULT_REGION', 'eu-west-2')
322
+ print(f'The value of AWS_DEFAULT_REGION is {AWS_DEFAULT_REGION}')
323
 
324
+ bedrock_runtime = boto3.client('bedrock-runtime', region_name=AWS_DEFAULT_REGION)
325
+
326
+ def call_aws_claude(prompt: str, system_prompt: str, temperature: float, max_tokens: int, model_choice: str) -> ResponseObject:
327
+ """
328
+ This function sends a request to AWS Claude with the following parameters:
329
+ - prompt: The user's input prompt to be processed by the model.
330
+ - system_prompt: A system-defined prompt that provides context or instructions for the model.
331
+ - temperature: A value that controls the randomness of the model's output, with higher values resulting in more diverse responses.
332
+ - max_tokens: The maximum number of tokens (words or characters) in the model's response.
333
+ - model_choice: The specific model to use for processing the request.
334
+
335
+ The function constructs the request configuration, invokes the model, extracts the response text, and returns a ResponseObject containing the text and metadata.
336
+ """
337
+
338
+ prompt_config = {
339
+ "anthropic_version": "bedrock-2023-05-31",
340
+ "max_tokens": max_tokens,
341
+ "top_p": 0.999,
342
+ "temperature":temperature,
343
+ "system": system_prompt,
344
+ "messages": [
345
+ {
346
+ "role": "user",
347
+ "content": [
348
+ {"type": "text", "text": prompt},
349
+ ],
350
+ }
351
+ ],
352
+ }
353
+
354
+ body = json.dumps(prompt_config)
355
+
356
+ modelId = model_choice
357
+ accept = "application/json"
358
+ contentType = "application/json"
359
+
360
+ request = bedrock_runtime.invoke_model(
361
+ body=body, modelId=modelId, accept=accept, contentType=contentType
362
+ )
363
+
364
+ # Extract text from request
365
+ response_body = json.loads(request.get("body").read())
366
+ text = response_body.get("content")[0].get("text")
367
+
368
+ response = ResponseObject(
369
+ text=text,
370
+ usage_metadata=request['ResponseMetadata']
371
+ )
372
+
373
+ # Now you can access both the text and metadata
374
+ #print("Text:", response.text)
375
+ print("Metadata:", response.usage_metadata)
376
+
377
+ return response
378
+
379
+ def produce_streaming_answer_chatbot(history,
380
+ full_prompt,
381
+ model_type,
382
  temperature=temperature,
383
+ relevant_query_bool=True,
384
  max_new_tokens=max_new_tokens,
385
  sample=sample,
386
  repetition_penalty=repetition_penalty,
 
395
 
396
  # return history
397
 
398
+
399
+
400
+ if relevant_query_bool == False:
401
+ out_message = [("","No relevant query found. Please retry your question")]
402
+ history.append(out_message)
403
+
404
+ yield history
405
+ return
406
+
407
+ if model_type == "Qwen 2 0.5B (small, fast)":
408
  # Get the model and tokenizer, and tokenize the user text.
409
  model_inputs = tokenizer(text=full_prompt, return_tensors="pt", return_attention_mask=False).to(torch_device)
410
 
 
422
  top_k=top_k
423
  )
424
 
425
+ #print(generate_kwargs)
426
 
427
  t = Thread(target=model.generate, kwargs=generate_kwargs)
428
  t.start()
 
450
  print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
451
  print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
452
 
453
+ elif model_type == "Phi 3.5 Mini (larger, slow)":
454
  #tokens = model.tokenize(full_prompt)
455
 
456
  gen_config = CtransGenGenerationConfig()
 
484
  print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
485
  print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
486
 
487
+ elif model_type == "anthropic.claude-3-haiku-20240307-v1:0" or model_type == "anthropic.claude-3-sonnet-20240229-v1:0":
488
+ system_prompt = "You are answering questions from the user based on source material. Respond with short, factually correct answers."
489
+
490
+ try:
491
+ print("Calling AWS Claude model")
492
+ response = call_aws_claude(full_prompt, system_prompt, temperature, max_tokens, model_type)
493
+ except Exception as e:
494
+ # If fails, try again after 10 seconds in case there is a throttle limit
495
+ print(e)
496
+ try:
497
+ out_message = "API limit hit - waiting 30 seconds to retry."
498
+ print(out_message)
499
+
500
+ time.sleep(30)
501
+ response = call_aws_claude(full_prompt, system_prompt, temperature, max_tokens, model_type)
502
+
503
+ except Exception as e:
504
+ print(e)
505
+ return "", history
506
+ # Update the conversation history with the new prompt and response
507
+ history.append({'role': 'user', 'parts': [full_prompt]})
508
+ history.append({'role': 'assistant', 'parts': [response.text]})
509
+
510
+ # Print the updated conversation history
511
+ #print("conversation_history:", conversation_history)
512
+
513
+ return response, history
514
 
515
  # Chat helper functions
516
 
 
634
  docs_content = doc_df['page_content'].astype(str)
635
  docs_url = doc_df['meta_url']
636
 
637
+ return docs_keep_as_doc, doc_df, docs_content, docs_url
638
 
639
  # Check for if more docs are removed than the desired output
640
  if out_passages > docs_keep_length:
 
646
 
647
  print("Number of documents remaining: ", docs_keep_length)
648
 
649
+ # 2nd level check using BM25s package to do keyword search on retrieved passages.
650
+
651
  content_keep=[]
652
  for item in docs_keep:
653
  content_keep.append(item[0].page_content)
654
 
655
+ # Prepare Corpus (Tokenized & Optional Stemming)
656
+ corpus = [doc.lower() for doc in content_keep]
657
+ #stemmer = SnowballStemmer("english", ignore_stopwords=True) # NLTK stemming not compatible
658
+ stemmer = Stemmer.Stemmer("english")
659
+ corpus_tokens = bm25s.tokenize(corpus, stopwords="en", stemmer=stemmer)
660
+
661
+ # Create and Index with BM25s
662
+ retriever = bm25s.BM25()
663
+ retriever.index(corpus_tokens)
664
+
665
+ # Query Processing (Stemming applied consistently if used above)
666
+ query_tokens = bm25s.tokenize(new_question_kworded.lower(), stemmer=stemmer)
667
+ results, scores = retriever.retrieve(query_tokens, corpus=corpus, k=len(corpus)) # Retrieve all docs
668
+
669
+ for i in range(results.shape[1]):
670
+ doc, score = results[0, i], scores[0, i]
671
+ print(f"Rank {i+1} (score: {score:.2f}): {doc}")
672
+
673
+ #print("BM25 results:", results)
674
+ #print("BM25 scores:", scores)
675
+
676
+ # Rank Calculation (Custom Logic for Your BM25 Score)
677
+ bm25_rank = list(range(1, len(results[0]) + 1))
678
+ #bm25_rank = results[0]#.tolist()[0] # Since you have a single query
679
+ bm25_score = [(docs_keep_length / (rank + 1)) * bm25_weight for rank in bm25_rank]
680
+ # +1 to avoid division by 0 for rank 0
681
+
682
+ # Result Ordering (Using the calculated ranks)
683
+ pairs = list(zip(bm25_rank, docs_keep_as_doc))
684
  pairs.sort()
685
+ bm25_result = [value for rank, value in pairs]
 
686
 
 
 
 
 
 
 
 
 
 
 
687
 
688
  # 3rd level check on retrieved docs with SVM retriever
689
+ # Check the type of the embeddings object
690
+ embeddings_type = type(embeddings)
691
+ print("Type of embeddings object:", embeddings_type)
692
 
693
+
694
+ print("embeddings:", embeddings)
695
+
696
+ from langchain_huggingface import HuggingFaceEmbeddings
697
+ #hf_embeddings = HuggingFaceEmbeddings(**embeddings)
698
+ hf_embeddings = embeddings
699
+
700
+ svm_retriever = SVMRetriever.from_texts(content_keep, hf_embeddings, k = k_val)
701
  svm_result = svm_retriever.invoke(new_question_kworded)
702
 
703
 
 
743
  # Make df of best options
744
  doc_df = create_doc_df(docs_keep_out)
745
 
746
+ print("doc_df:",doc_df)
747
+ print("docs_keep_as_doc:",docs_keep_as_doc)
748
+ print("docs_keep_out:", docs_keep_out)
749
+
750
  return docs_keep_as_doc, doc_df, docs_keep_out
751
 
752
  def get_expanded_passages(vectorstore, docs, width):
chatfuncs/helper_functions.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import pandas as pd
4
+
5
+ def get_or_create_env_var(var_name, default_value):
6
+ # Get the environment variable if it exists
7
+ value = os.environ.get(var_name)
8
+
9
+ # If it doesn't exist, set it to the default value
10
+ if value is None:
11
+ os.environ[var_name] = default_value
12
+ value = default_value
13
+
14
+ return value
15
+
16
+ # Retrieving or setting output folder
17
+ env_var_name = 'GRADIO_OUTPUT_FOLDER'
18
+ default_value = 'output/'
19
+
20
+ output_folder = get_or_create_env_var(env_var_name, default_value)
21
+ print(f'The value of {env_var_name} is {output_folder}')
22
+
23
+ def get_file_path_with_extension(file_path):
24
+ # First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
25
+ basename = os.path.basename(file_path)
26
+
27
+ # Return the basename with its extension
28
+ return basename
29
+
30
+ def get_file_path_end(file_path):
31
+ # First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
32
+ basename = os.path.basename(file_path)
33
+
34
+ # Then, split the basename and its extension and return only the basename without the extension
35
+ filename_without_extension, _ = os.path.splitext(basename)
36
+
37
+ #print(filename_without_extension)
38
+
39
+ return filename_without_extension
40
+
41
+ def detect_file_type(filename):
42
+ """Detect the file type based on its extension."""
43
+ if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
44
+ return 'csv'
45
+ elif filename.endswith('.xlsx'):
46
+ return 'xlsx'
47
+ elif filename.endswith('.parquet'):
48
+ return 'parquet'
49
+ elif filename.endswith('.pdf'):
50
+ return 'pdf'
51
+ elif filename.endswith('.jpg'):
52
+ return 'jpg'
53
+ elif filename.endswith('.jpeg'):
54
+ return 'jpeg'
55
+ elif filename.endswith('.png'):
56
+ return 'png'
57
+ else:
58
+ raise ValueError("Unsupported file type.")
59
+
60
+ def read_file(filename):
61
+ """Read the file based on its detected type."""
62
+ file_type = detect_file_type(filename)
63
+
64
+ if file_type == 'csv':
65
+ return pd.read_csv(filename, low_memory=False)
66
+ elif file_type == 'xlsx':
67
+ return pd.read_excel(filename)
68
+ elif file_type == 'parquet':
69
+ return pd.read_parquet(filename)
70
+
71
+ def ensure_output_folder_exists():
72
+ """Checks if the 'output/' folder exists, creates it if not."""
73
+
74
+ folder_name = "output/"
75
+
76
+ if not os.path.exists(folder_name):
77
+ # Create the folder if it doesn't exist
78
+ os.makedirs(folder_name)
79
+ print(f"Created the 'output/' folder.")
80
+ else:
81
+ print(f"The 'output/' folder already exists.")
82
+
83
+ def put_columns_in_df(in_file):
84
+ new_choices = []
85
+ concat_choices = []
86
+ all_sheet_names = []
87
+ number_of_excel_files = 0
88
+
89
+ for file in in_file:
90
+ file_name = file.name
91
+ file_type = detect_file_type(file_name)
92
+ #print("File type is:", file_type)
93
+
94
+ file_end = get_file_path_with_extension(file_name)
95
+
96
+ if file_type == 'xlsx':
97
+ number_of_excel_files += 1
98
+ new_choices = []
99
+ print("Running through all xlsx sheets")
100
+ anon_xlsx = pd.ExcelFile(file_name)
101
+ new_sheet_names = anon_xlsx.sheet_names
102
+ # Iterate through the sheet names
103
+ for sheet_name in new_sheet_names:
104
+ # Read each sheet into a DataFrame
105
+ df = pd.read_excel(file_name, sheet_name=sheet_name)
106
+
107
+ # Process the DataFrame (e.g., print its contents)
108
+ print(f"Sheet Name: {sheet_name}")
109
+ print(df.head()) # Print the first few rows
110
+
111
+ new_choices.extend(list(df.columns))
112
+
113
+ all_sheet_names.extend(new_sheet_names)
114
+
115
+ else:
116
+ df = read_file(file_name)
117
+ new_choices = list(df.columns)
118
+
119
+ concat_choices.extend(new_choices)
120
+
121
+ # Drop duplicate columns
122
+ concat_choices = list(set(concat_choices))
123
+
124
+ if number_of_excel_files > 0:
125
+ return gr.Dropdown(choices=concat_choices, value=concat_choices[0]), gr.Dropdown(choices=all_sheet_names, value=all_sheet_names[0], visible=True), file_end
126
+ else:
127
+ return gr.Dropdown(choices=concat_choices, value=concat_choices[0]), gr.Dropdown(visible=False), file_end
128
+
129
+ # Following function is only relevant for locally-created executable files based on this app (when using pyinstaller it creates a _internal folder that contains tesseract and poppler. These need to be added to the system path to enable the app to run)
130
+ def add_folder_to_path(folder_path: str):
131
+ '''
132
+ Check if a folder exists on your system. If so, get the absolute path and then add it to the system Path variable if it doesn't already exist.
133
+ '''
134
+
135
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
136
+ print(folder_path, "folder exists.")
137
+
138
+ # Resolve relative path to absolute path
139
+ absolute_path = os.path.abspath(folder_path)
140
+
141
+ current_path = os.environ['PATH']
142
+ if absolute_path not in current_path.split(os.pathsep):
143
+ full_path_extension = absolute_path + os.pathsep + current_path
144
+ os.environ['PATH'] = full_path_extension
145
+ #print(f"Updated PATH with: ", full_path_extension)
146
+ else:
147
+ print(f"Directory {folder_path} already exists in PATH.")
148
+ else:
149
+ print(f"Folder not found at {folder_path} - not added to PATH")
150
+
151
+ # Upon running a process, the feedback buttons are revealed
152
+ def reveal_feedback_buttons():
153
+ return gr.Radio(visible=True), gr.Textbox(visible=True), gr.Button(visible=True), gr.Markdown(visible=True)
154
+
155
+ def wipe_logs(feedback_logs_loc, usage_logs_loc):
156
+ try:
157
+ os.remove(feedback_logs_loc)
158
+ except Exception as e:
159
+ print("Could not remove feedback logs file", e)
160
+ try:
161
+ os.remove(usage_logs_loc)
162
+ except Exception as e:
163
+ print("Could not remove usage logs file", e)
164
+
165
+
166
+
167
+
168
+ async def get_connection_params(request: gr.Request):
169
+ base_folder = ""
170
+
171
+ if request:
172
+ #print("request user:", request.username)
173
+
174
+ #request_data = await request.json() # Parse JSON body
175
+ #print("All request data:", request_data)
176
+ #context_value = request_data.get('context')
177
+ #if 'context' in request_data:
178
+ # print("Request context dictionary:", request_data['context'])
179
+
180
+ # print("Request headers dictionary:", request.headers)
181
+ # print("All host elements", request.client)
182
+ # print("IP address:", request.client.host)
183
+ # print("Query parameters:", dict(request.query_params))
184
+ # To get the underlying FastAPI items you would need to use await and some fancy @ stuff for a live query: https://fastapi.tiangolo.com/vi/reference/request/
185
+ #print("Request dictionary to object:", request.request.body())
186
+ print("Session hash:", request.session_hash)
187
+
188
+ # Retrieving or setting CUSTOM_CLOUDFRONT_HEADER
189
+ CUSTOM_CLOUDFRONT_HEADER_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER', '')
190
+ #print(f'The value of CUSTOM_CLOUDFRONT_HEADER is {CUSTOM_CLOUDFRONT_HEADER_var}')
191
+
192
+ # Retrieving or setting CUSTOM_CLOUDFRONT_HEADER_VALUE
193
+ CUSTOM_CLOUDFRONT_HEADER_VALUE_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER_VALUE', '')
194
+ #print(f'The value of CUSTOM_CLOUDFRONT_HEADER_VALUE_var is {CUSTOM_CLOUDFRONT_HEADER_VALUE_var}')
195
+
196
+ if CUSTOM_CLOUDFRONT_HEADER_var and CUSTOM_CLOUDFRONT_HEADER_VALUE_var:
197
+ if CUSTOM_CLOUDFRONT_HEADER_var in request.headers:
198
+ supplied_cloudfront_custom_value = request.headers[CUSTOM_CLOUDFRONT_HEADER_var]
199
+ if supplied_cloudfront_custom_value == CUSTOM_CLOUDFRONT_HEADER_VALUE_var:
200
+ print("Custom Cloudfront header found:", supplied_cloudfront_custom_value)
201
+ else:
202
+ raise(ValueError, "Custom Cloudfront header value does not match expected value.")
203
+
204
+ # Get output save folder from 1 - username passed in from direct Cognito login, 2 - Cognito ID header passed through a Lambda authenticator, 3 - the session hash.
205
+
206
+ if request.username:
207
+ out_session_hash = request.username
208
+ base_folder = "user-files/"
209
+ print("Request username found:", out_session_hash)
210
+
211
+ elif 'x-cognito-id' in request.headers:
212
+ out_session_hash = request.headers['x-cognito-id']
213
+ base_folder = "user-files/"
214
+ print("Cognito ID found:", out_session_hash)
215
+
216
+ else:
217
+ out_session_hash = request.session_hash
218
+ base_folder = "temp-files/"
219
+ # print("Cognito ID not found. Using session hash as save folder:", out_session_hash)
220
+
221
+ output_folder = base_folder + out_session_hash + "/"
222
+ #if bucket_name:
223
+ # print("S3 output folder is: " + "s3://" + bucket_name + "/" + output_folder)
224
+
225
+ return out_session_hash, output_folder, out_session_hash
226
+ else:
227
+ print("No session parameters found.")
228
+ return "",""
chatfuncs/ingest.py CHANGED
@@ -573,7 +573,7 @@ def load_embeddings(model_name = "BAAI/bge-base-en-v1.5"):
573
 
574
  return embeddings_func
575
 
576
- def embed_faiss_save_to_zip(docs_out, save_to="faiss_lambeth_census_embedding", model_name = "BAAI/bge-base-en-v1.5"):
577
 
578
  load_embeddings(model_name=model_name)
579
 
@@ -582,7 +582,9 @@ def embed_faiss_save_to_zip(docs_out, save_to="faiss_lambeth_census_embedding",
582
  print(f"> Total split documents: {len(docs_out)}")
583
 
584
  vectorstore = FAISS.from_documents(documents=docs_out, embedding=embeddings)
585
-
 
 
586
 
587
  if Path(save_to).exists():
588
  vectorstore.save_local(folder_path=save_to)
@@ -599,9 +601,13 @@ def embed_faiss_save_to_zip(docs_out, save_to="faiss_lambeth_census_embedding",
599
  os.remove(save_to + "/index.faiss")
600
  os.remove(save_to + "/index.pkl")
601
 
602
- shutil.move(save_to + '.zip', save_to + "/" + save_to + '.zip')
 
 
 
 
603
 
604
- return vectorstore
605
 
606
  def docs_to_chroma_save(embeddings, docs_out:PandasDataFrame, save_to:str):
607
  print(f"> Total split documents: {len(docs_out)}")
 
573
 
574
  return embeddings_func
575
 
576
+ def embed_faiss_save_to_zip(docs_out, save_to="output", model_name = "BAAI/bge-base-en-v1.5"):
577
 
578
  load_embeddings(model_name=model_name)
579
 
 
582
  print(f"> Total split documents: {len(docs_out)}")
583
 
584
  vectorstore = FAISS.from_documents(documents=docs_out, embedding=embeddings)
585
+
586
+ if not Path(save_to).exists():
587
+ os.mkdir(save_to)
588
 
589
  if Path(save_to).exists():
590
  vectorstore.save_local(folder_path=save_to)
 
601
  os.remove(save_to + "/index.faiss")
602
  os.remove(save_to + "/index.pkl")
603
 
604
+ save_zip_out = save_to + "/" + save_to + '.zip'
605
+
606
+ shutil.move(save_to + '.zip', save_zip_out)
607
+
608
+ out_message = "Document processing complete"
609
 
610
+ return out_message, vectorstore, save_zip_out
611
 
612
  def docs_to_chroma_save(embeddings, docs_out:PandasDataFrame, save_to:str):
613
  print(f"> Total split documents: {len(docs_out)}")
chatfuncs/llm_api_call.py ADDED
@@ -0,0 +1,925 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import google.generativeai as ai
3
+ import pandas as pd
4
+ import gradio as gr
5
+ import markdown
6
+ import time
7
+ import boto3
8
+ import json
9
+ import string
10
+ import re
11
+ from gradio import Progress
12
+ from typing import List, Tuple
13
+ from io import StringIO
14
+
15
+ from chatfuncs.prompts import prompt1, prompt2, prompt3, system_prompt, summarise_system_prompt, summarise_prompt
16
+ from chatfuncs.helper_functions import output_folder, detect_file_type, get_file_path_end, read_file, get_or_create_env_var
17
+
18
+ # ResponseObject class for AWS Bedrock calls
19
+ class ResponseObject:
20
+ def __init__(self, text, usage_metadata):
21
+ self.text = text
22
+ self.usage_metadata = usage_metadata
23
+
24
+ max_tokens = 4096
25
+
26
+
27
+ AWS_DEFAULT_REGION = get_or_create_env_var('AWS_DEFAULT_REGION', 'eu-west-2')
28
+ print(f'The value of AWS_DEFAULT_REGION is {AWS_DEFAULT_REGION}')
29
+
30
+ bedrock_runtime = boto3.client('bedrock-runtime', region_name=AWS_DEFAULT_REGION)
31
+
32
+ def normalise_string(text):
33
+ # Replace two or more dashes with a single dash
34
+ text = re.sub(r'-{2,}', '-', text)
35
+
36
+ # Replace two or more spaces with a single space
37
+ text = re.sub(r'\s{2,}', ' ', text)
38
+
39
+ return text
40
+
41
+ def load_in_file(file_path: str, colname:str):
42
+ """
43
+ Loads in a tabular data file and returns data and file name.
44
+
45
+ Parameters:
46
+ - file_path (str): The path to the file to be processed.
47
+ """
48
+ file_type = detect_file_type(file_path)
49
+ print("File type is:", file_type)
50
+
51
+ out_file_part = get_file_path_end(file_path)
52
+ file_data = read_file(file_path)
53
+
54
+ file_data[colname].fillna("", inplace=True)
55
+
56
+ file_data[colname] = file_data[colname].astype(str).str.replace("\bnan\b", "", regex=True)
57
+
58
+
59
+ print(file_data[colname])
60
+
61
+ return file_data, out_file_part
62
+
63
+ def load_in_data_file(file_paths:List[str], in_colnames:List[str], batch_size:int=50, ):
64
+ '''Load in data table, work out how many batches needed.'''
65
+
66
+ try:
67
+ file_data, file_name = load_in_file(file_paths[0], colname=in_colnames)
68
+ num_batches = (len(file_data) // batch_size) + 1
69
+
70
+ except Exception as e:
71
+ print(e)
72
+ file_data = pd.DataFrame()
73
+ file_name = ""
74
+ num_batches = 1
75
+
76
+ return file_data, file_name, num_batches
77
+
78
+ def data_file_to_markdown_table(file_data:pd.DataFrame, file_name:str, chosen_cols: List[str], output_folder: str, batch_number: int, batch_size: int) -> Tuple[str, str, str]:
79
+ """
80
+ Processes a file by simplifying its content based on chosen columns and saves the result to a specified output folder.
81
+
82
+ Parameters:
83
+ - file_data (pd.DataFrame): Tabular data file with responses.
84
+ - file_name (str): File name with extension.
85
+ - chosen_cols (List[str]): A list of column names to include in the simplified file.
86
+ - output_folder (str): The directory where the simplified file will be saved.
87
+ - batch_number (int): The current batch number for processing.
88
+ - batch_size (int): The number of rows to process in each batch.
89
+
90
+ Returns:
91
+ - Tuple[str, str, str]: A tuple containing the path to the simplified CSV file, the simplified markdown table as a string, and the file path end (used for naming the output file).
92
+ """
93
+
94
+ #print("\nfile_data_in_markdown func:", file_data)
95
+ #print("\nBatch size in markdown func:", str(batch_size))
96
+
97
+ normalised_simple_markdown_table = ""
98
+ simplified_csv_table_path = ""
99
+
100
+ # Simplify table to just responses column and the Response reference number
101
+ simple_file = file_data[[chosen_cols]].reset_index(names="Reference")
102
+ simple_file["Reference"] = simple_file["Reference"].astype(int) + 1
103
+ simple_file = simple_file.rename(columns={chosen_cols: "Response"})
104
+ simple_file["Response"] = simple_file["Response"].str.strip()
105
+ file_len = len(simple_file["Reference"])
106
+
107
+
108
+ # Subset the data for the current batch
109
+ start_row = batch_number * batch_size
110
+ if start_row > file_len + 1:
111
+ print("Start row greater than file row length")
112
+ return simplified_csv_table_path, normalised_simple_markdown_table, file_name
113
+
114
+ if (start_row + batch_size) <= file_len + 1:
115
+ end_row = start_row + batch_size
116
+ else:
117
+ end_row = file_len + 1
118
+
119
+ simple_file = simple_file[start_row:end_row] # Select the current batch
120
+
121
+ # Remove problematic characters including ASCII and various quote marks
122
+ # Remove problematic characters including control characters, special characters, and excessive leading/trailing whitespace
123
+ simple_file["Response"] = simple_file["Response"].str.replace(r'[\x00-\x1F\x7F]|["β€œβ€β€˜β€™<>]|\\', '', regex=True) # Remove control and special characters
124
+ simple_file["Response"] = simple_file["Response"].str.strip() # Remove leading and trailing whitespace
125
+ simple_file["Response"] = simple_file["Response"].str.replace(r'\s+', ' ', regex=True) # Replace multiple spaces with a single space
126
+
127
+ # Remove blank and extremely short responses
128
+ simple_file = simple_file.loc[~(simple_file["Response"].isnull()) & ~(simple_file["Response"].str.len() < 5), :]
129
+
130
+ simplified_csv_table_path = output_folder + 'simple_markdown_table_' + file_name + '_row_' + str(start_row) + '_to_' + str(end_row) + '.csv'
131
+ simple_file.to_csv(simplified_csv_table_path, index=None)
132
+
133
+ simple_markdown_table = simple_file.to_markdown(index=None)
134
+
135
+ normalised_simple_markdown_table = normalise_string(simple_markdown_table)
136
+
137
+ return simplified_csv_table_path, normalised_simple_markdown_table, file_name, start_row, end_row
138
+
139
+ def construct_gemini_generative_model(in_api_key: str, temperature: float, model_choice: str, system_prompt: str, max_tokens: int) -> Tuple[object, dict]:
140
+ """
141
+ Constructs a GenerativeModel for Gemini API calls.
142
+
143
+ Parameters:
144
+ - in_api_key (str): The API key for authentication.
145
+ - temperature (float): The temperature parameter for the model, controlling the randomness of the output.
146
+ - model_choice (str): The choice of model to use for generation.
147
+ - system_prompt (str): The system prompt to guide the generation.
148
+ - max_tokens (int): The maximum number of tokens to generate.
149
+
150
+ Returns:
151
+ - Tuple[object, dict]: A tuple containing the constructed GenerativeModel and its configuration.
152
+ """
153
+ # Construct a GenerativeModel
154
+ try:
155
+ if in_api_key:
156
+ #print("Getting API key from textbox")
157
+ api_key = in_api_key
158
+ ai.configure(api_key=api_key)
159
+ elif "GOOGLE_API_KEY" in os.environ:
160
+ #print("Searching for API key in environmental variables")
161
+ api_key = os.environ["GOOGLE_API_KEY"]
162
+ ai.configure(api_key=api_key)
163
+ else:
164
+ print("No API key foound")
165
+ raise gr.Error("No API key found.")
166
+ except Exception as e:
167
+ print(e)
168
+
169
+ config = ai.GenerationConfig(temperature=temperature, max_output_tokens=max_tokens)
170
+
171
+ #model = ai.GenerativeModel.from_cached_content(cached_content=cache, generation_config=config)
172
+ model = ai.GenerativeModel(model_name='models/' + model_choice, system_instruction=system_prompt, generation_config=config)
173
+
174
+ # Upload CSV file (replace with your actual file path)
175
+ #file_id = ai.upload_file(upload_file_path)
176
+
177
+
178
+ # if file_type == 'xlsx':
179
+ # print("Running through all xlsx sheets")
180
+ # #anon_xlsx = pd.ExcelFile(upload_file_path)
181
+ # if not in_excel_sheets:
182
+ # out_message.append("No Excel sheets selected. Please select at least one to anonymise.")
183
+ # continue
184
+
185
+ # anon_xlsx = pd.ExcelFile(upload_file_path)
186
+
187
+ # # Create xlsx file:
188
+ # anon_xlsx_export_file_name = output_folder + out_file_part + "_redacted.xlsx"
189
+
190
+
191
+ ### QUERYING LARGE LANGUAGE MODEL ###
192
+ # Prompt caching the table and system prompt. See here: https://ai.google.dev/gemini-api/docs/caching?lang=python
193
+ # Create a cache with a 5 minute TTL. ONLY FOR CACHES OF AT LEAST 32k TOKENS!
194
+ # cache = ai.caching.CachedContent.create(
195
+ # model='models/' + model_choice,
196
+ # display_name=out_file_part, # used to identify the cache
197
+ # system_instruction=system_prompt_with_table,
198
+ # ttl=datetime.timedelta(minutes=5),
199
+ # )
200
+
201
+ return model, config
202
+
203
+ def call_aws_claude(prompt: str, system_prompt: str, temperature: float, max_tokens: int, model_choice: str) -> ResponseObject:
204
+ """
205
+ This function sends a request to AWS Claude with the following parameters:
206
+ - prompt: The user's input prompt to be processed by the model.
207
+ - system_prompt: A system-defined prompt that provides context or instructions for the model.
208
+ - temperature: A value that controls the randomness of the model's output, with higher values resulting in more diverse responses.
209
+ - max_tokens: The maximum number of tokens (words or characters) in the model's response.
210
+ - model_choice: The specific model to use for processing the request.
211
+
212
+ The function constructs the request configuration, invokes the model, extracts the response text, and returns a ResponseObject containing the text and metadata.
213
+ """
214
+
215
+ prompt_config = {
216
+ "anthropic_version": "bedrock-2023-05-31",
217
+ "max_tokens": max_tokens,
218
+ "top_p": 0.999,
219
+ "temperature":temperature,
220
+ "system": system_prompt,
221
+ "messages": [
222
+ {
223
+ "role": "user",
224
+ "content": [
225
+ {"type": "text", "text": prompt},
226
+ ],
227
+ }
228
+ ],
229
+ }
230
+
231
+ body = json.dumps(prompt_config)
232
+
233
+ modelId = model_choice
234
+ accept = "application/json"
235
+ contentType = "application/json"
236
+
237
+ request = bedrock_runtime.invoke_model(
238
+ body=body, modelId=modelId, accept=accept, contentType=contentType
239
+ )
240
+
241
+ # Extract text from request
242
+ response_body = json.loads(request.get("body").read())
243
+ text = response_body.get("content")[0].get("text")
244
+
245
+ response = ResponseObject(
246
+ text=text,
247
+ usage_metadata=request['ResponseMetadata']
248
+ )
249
+
250
+ # Now you can access both the text and metadata
251
+ #print("Text:", response.text)
252
+ print("Metadata:", response.usage_metadata)
253
+
254
+ return response
255
+
256
+ # Function to send a request and update history
257
+ def send_request(prompt: str, conversation_history: List[dict], model: object, config: dict, model_choice: str, system_prompt: str, temperature: float, progress=Progress(track_tqdm=True)) -> Tuple[str, List[dict]]:
258
+ """
259
+ This function sends a request to a language model with the given prompt, conversation history, model configuration, model choice, system prompt, and temperature.
260
+ It constructs the full prompt by appending the new user prompt to the conversation history, generates a response from the model, and updates the conversation history with the new prompt and response.
261
+ If the model choice is specific to AWS Claude, it calls the `call_aws_claude` function; otherwise, it uses the `model.generate_content` method.
262
+ The function returns the response text and the updated conversation history.
263
+ """
264
+ # Constructing the full prompt from the conversation history
265
+ full_prompt = "Conversation history:\n"
266
+
267
+ for entry in conversation_history:
268
+ role = entry['role'].capitalize() # Assuming the history is stored with 'role' and 'parts'
269
+ message = ' '.join(entry['parts']) # Combining all parts of the message
270
+ full_prompt += f"{role}: {message}\n"
271
+
272
+ # Adding the new user prompt
273
+ full_prompt += f"\nUser: {prompt}"
274
+
275
+ # Print the full prompt for debugging purposes
276
+ #print("full_prompt:", full_prompt)
277
+
278
+ # Generate the model's response
279
+ if model_choice in ["gemini-1.5-flash-002", "gemini-1.5-pro-002"]:
280
+ try:
281
+ response = model.generate_content(contents=full_prompt, generation_config=config)
282
+ except Exception as e:
283
+ # If fails, try again after 10 seconds in case there is a throttle limit
284
+ print(e)
285
+ try:
286
+ print("Calling Gemini model")
287
+ out_message = "API limit hit - waiting 30 seconds to retry."
288
+ print(out_message)
289
+ progress(0.5, desc=out_message)
290
+ time.sleep(30)
291
+ response = model.generate_content(contents=full_prompt, generation_config=config)
292
+ except Exception as e:
293
+ print(e)
294
+ return "", conversation_history
295
+ else:
296
+ try:
297
+ print("Calling AWS Claude model")
298
+ response = call_aws_claude(prompt, system_prompt, temperature, max_tokens, model_choice)
299
+ except Exception as e:
300
+ # If fails, try again after 10 seconds in case there is a throttle limit
301
+ print(e)
302
+ try:
303
+ out_message = "API limit hit - waiting 30 seconds to retry."
304
+ print(out_message)
305
+ progress(0.5, desc=out_message)
306
+ time.sleep(30)
307
+ response = call_aws_claude(prompt, system_prompt, temperature, max_tokens, model_choice)
308
+
309
+ except Exception as e:
310
+ print(e)
311
+ return "", conversation_history
312
+
313
+ # Update the conversation history with the new prompt and response
314
+ conversation_history.append({'role': 'user', 'parts': [prompt]})
315
+ conversation_history.append({'role': 'assistant', 'parts': [response.text]})
316
+
317
+ # Print the updated conversation history
318
+ #print("conversation_history:", conversation_history)
319
+
320
+ return response, conversation_history
321
+
322
+ def process_requests(prompts: List[str], system_prompt_with_table: str, conversation_history: List[dict], whole_conversation: List[str], whole_conversation_metadata: List[str], model: object, config: dict, model_choice: str, temperature: float, batch_no:int = 1, master:bool = False) -> Tuple[List[ResponseObject], List[dict], List[str], List[str]]:
323
+ """
324
+ Processes a list of prompts by sending them to the model, appending the responses to the conversation history, and updating the whole conversation and metadata.
325
+
326
+ Args:
327
+ prompts (List[str]): A list of prompts to be processed.
328
+ system_prompt_with_table (str): The system prompt including a table.
329
+ conversation_history (List[dict]): The history of the conversation.
330
+ whole_conversation (List[str]): The complete conversation including prompts and responses.
331
+ whole_conversation_metadata (List[str]): Metadata about the whole conversation.
332
+ model (object): The model to use for processing the prompts.
333
+ config (dict): Configuration for the model.
334
+ model_choice (str): The choice of model to use.
335
+ temperature (float): The temperature parameter for the model.
336
+ batch_no (int): Batch number of the large language model request.
337
+ master (bool): Is this request for the master table.
338
+
339
+ Returns:
340
+ Tuple[List[ResponseObject], List[dict], List[str], List[str]]: A tuple containing the list of responses, the updated conversation history, the updated whole conversation, and the updated whole conversation metadata.
341
+ """
342
+ responses = []
343
+ for prompt in prompts:
344
+
345
+ response, conversation_history = send_request(prompt, conversation_history, model=model, config=config, model_choice=model_choice, system_prompt=system_prompt_with_table, temperature=temperature)
346
+
347
+ #print(response.text)
348
+ print(response.usage_metadata)
349
+ responses.append(response)
350
+
351
+ # Create conversation txt object
352
+ whole_conversation.append(prompt)
353
+ whole_conversation.append(response.text)
354
+
355
+ # Create conversation metadata
356
+ if master == False:
357
+ whole_conversation_metadata.append(f"Query batch {batch_no} prompt {len(responses)} metadata:")
358
+ else:
359
+ whole_conversation_metadata.append(f"Query summary metadata:")
360
+
361
+ whole_conversation_metadata.append(str(response.usage_metadata))
362
+
363
+ return responses, conversation_history, whole_conversation, whole_conversation_metadata
364
+
365
+ def replace_punctuation_with_underscore(input_string):
366
+ # Create a translation table where each punctuation character maps to '_'
367
+ translation_table = str.maketrans(string.punctuation, '_' * len(string.punctuation))
368
+
369
+ # Translate the input string using the translation table
370
+ return input_string.translate(translation_table)
371
+
372
+ def clean_markdown_table(text: str):
373
+ lines = text.splitlines()
374
+
375
+ # Remove any empty rows or rows with only pipes
376
+ cleaned_lines = [line for line in lines if not re.match(r'^\s*\|?\s*\|?\s*$', line)]
377
+
378
+ # Merge lines that belong to the same row (i.e., don't start with |)
379
+ merged_lines = []
380
+ buffer = ""
381
+
382
+ for line in cleaned_lines:
383
+ if line.lstrip().startswith('|'): # If line starts with |, it's a new row
384
+ if buffer:
385
+ merged_lines.append(buffer) # Append the buffered content
386
+ buffer = line # Start a new buffer with this row
387
+ else:
388
+ # Continuation of the previous row
389
+ buffer += ' ' + line.strip() # Add content to the current buffer
390
+
391
+ # Don't forget to append the last buffer
392
+ if buffer:
393
+ merged_lines.append(buffer)
394
+
395
+ # Ensure consistent number of pipes in each row based on the header
396
+ header_pipes = merged_lines[0].count('|') # Use the first row to count number of pipes
397
+ result = []
398
+
399
+ for line in merged_lines:
400
+ # Strip excessive whitespace around pipes
401
+ line = re.sub(r'\s*\|\s*', '|', line.strip())
402
+
403
+ # Replace numbers between pipes with commas and a space
404
+ line = re.sub(r'(?<=\|)(\s*\d+)(,\s*\d+)+(?=\|)', lambda m: ', '.join(m.group(0).split(',')), line)
405
+
406
+ # Replace groups of numbers separated by spaces with commas and a space
407
+ line = re.sub(r'(?<=\|)(\s*\d+)(\s+\d+)+(?=\|)', lambda m: ', '.join(m.group(0).split()), line)
408
+
409
+ # Fix inconsistent number of pipes by adjusting them to match the header
410
+ pipe_count = line.count('|')
411
+ if pipe_count < header_pipes:
412
+ line += '|' * (header_pipes - pipe_count) # Add missing pipes
413
+ elif pipe_count > header_pipes:
414
+ # If too many pipes, split line and keep the first `header_pipes` columns
415
+ columns = line.split('|')[:header_pipes + 1] # +1 to keep last pipe at the end
416
+ line = '|'.join(columns)
417
+
418
+ result.append(line)
419
+
420
+ # Join lines back into the cleaned markdown text
421
+ cleaned_text = '\n'.join(result)
422
+
423
+ return cleaned_text
424
+
425
+ def write_llm_output_and_logs(responses: List[ResponseObject], whole_conversation: List[str], whole_conversation_metadata: List[str], out_file_part: str, latest_batch_completed: int, start_row:int, end_row:int, model_choice_clean: str, temperature: float, log_files_output_paths: List[str], existing_reference_df:pd.DataFrame, existing_topics_df:pd.DataFrame, first_run: bool = False) -> None:
426
+ """
427
+ Writes the output of the large language model requests and logs to files.
428
+
429
+ Parameters:
430
+ - responses (List[ResponseObject]): A list of ResponseObject instances containing the text and usage metadata of the responses.
431
+ - whole_conversation (List[str]): A list of strings representing the complete conversation including prompts and responses.
432
+ - whole_conversation_metadata (List[str]): A list of strings representing metadata about the whole conversation.
433
+ - out_file_part (str): The base part of the output file name.
434
+ - latest_batch_completed (int): The index of the current batch.
435
+ - start_row (int): Start row of the current batch.
436
+ - end_row (int): End row of the current batch.
437
+ - model_choice_clean (str): The cleaned model choice string.
438
+ - temperature (float): The temperature parameter used in the model.
439
+ - log_files_output_paths (List[str]): A list of paths to the log files.
440
+ - existing_reference_df (pd.DataFrame): The existing reference dataframe mapping response numbers to topics.
441
+ - existing_topics_df (pd.DataFrame): The existing unique topics dataframe
442
+ - first_run (bool): A boolean indicating if this is the first run through this function in this process. Defaults to False.
443
+ """
444
+ unique_topics_df_out_path = []
445
+ topic_table_out_path = "topic_table_error.csv"
446
+ reference_table_out_path = "reference_table_error.csv"
447
+ unique_topics_df_out_path = "unique_topic_table_error.csv"
448
+ topic_with_response_df = pd.DataFrame()
449
+ markdown_table = ""
450
+ out_reference_df = pd.DataFrame()
451
+ out_unique_topics_df = pd.DataFrame()
452
+ batch_out_file_part = "error"
453
+
454
+
455
+ # If there was an error in parsing, return boolean saying error
456
+ is_error = False
457
+
458
+ # Convert conversation to string and add to log outputs
459
+ whole_conversation_str = '\n'.join(whole_conversation)
460
+ whole_conversation_metadata_str = '\n'.join(whole_conversation_metadata)
461
+
462
+ start_row_reported = start_row + 1
463
+
464
+ # Save outputs for each batch. If master file created, label file as master
465
+ if first_run == True:
466
+ batch_out_file_part = f"{out_file_part}_batch_{latest_batch_completed + 1}"
467
+ batch_part = f"Rows {start_row_reported} to {end_row}: "
468
+ else:
469
+ batch_out_file_part = f"{out_file_part}_combined_batch_{latest_batch_completed + 1}"
470
+ batch_part = f"Rows {start_row_reported} to {end_row}: "
471
+
472
+ whole_conversation_path = output_folder + batch_out_file_part + "_full_conversation_" + model_choice_clean + "_temp_" + str(temperature) + ".txt"
473
+ whole_conversation_path_meta = output_folder + batch_out_file_part + "_metadata_" + model_choice_clean + "_temp_" + str(temperature) + ".txt"
474
+
475
+ # print("whole_conversation:", whole_conversation_str)
476
+
477
+ with open(whole_conversation_path, "w", encoding='utf-8', errors='replace') as f:
478
+ f.write(whole_conversation_str)
479
+
480
+ with open(whole_conversation_path_meta, "w", encoding='utf-8', errors='replace') as f:
481
+ f.write(whole_conversation_metadata_str)
482
+
483
+ log_files_output_paths.append(whole_conversation_path)
484
+ log_files_output_paths.append(whole_conversation_path_meta)
485
+
486
+ # Convert output table to markdown and then to a pandas dataframe to csv
487
+ # try:
488
+ cleaned_response = clean_markdown_table(responses[-1].text)
489
+
490
+ markdown_table = markdown.markdown(cleaned_response, extensions=['tables'])
491
+
492
+ #print("markdown_table:", markdown_table)
493
+
494
+ # Remove <p> tags and make sure it has a valid HTML structure
495
+ html_table = re.sub(r'<p>(.*?)</p>', r'\1', markdown_table)
496
+ html_table = html_table.replace('<p>', '').replace('</p>', '').strip()
497
+
498
+ # Now ensure that the HTML structure is correct
499
+ if "<table>" not in html_table:
500
+ html_table = f"""
501
+ <table>
502
+ {html_table}
503
+ </table>
504
+ """
505
+
506
+ # print("Markdown table as HTML:", html_table)
507
+
508
+ html_buffer = StringIO(html_table)
509
+ #print("html_buffer:", html_buffer)
510
+
511
+ try:
512
+ topic_with_response_df = pd.read_html(html_buffer)[0] # Assuming the first table in the HTML is the one you want
513
+ except Exception as e:
514
+ print("Error when trying to parse table:", e)
515
+ is_error = True
516
+ return topic_table_out_path, reference_table_out_path, unique_topics_df_out_path, topic_with_response_df, markdown_table, out_reference_df, out_unique_topics_df, batch_out_file_part, is_error
517
+
518
+
519
+ # Rename columns to ensure consistent use of data frames later in code
520
+ topic_with_response_df.columns = ["General Topic", "Subtopic", "Sentiment", "Summary", "Response References"]
521
+
522
+ # Fill in NA rows with values from above (topics seem to be included only on one row):
523
+ topic_with_response_df = topic_with_response_df.ffill()
524
+
525
+ topic_table_out_path = output_folder + batch_out_file_part + "_topic_table_" + model_choice_clean + "_temp_" + str(temperature) + ".csv"
526
+
527
+ # Table to map references to topics
528
+ reference_data = []
529
+
530
+ # Iterate through each row in the original DataFrame
531
+ for index, row in topic_with_response_df.iterrows():
532
+ references = re.split(r',\s*|\s+', str(row.iloc[4])) # Split the reference numbers
533
+ topic = row.iloc[0]
534
+ subtopic = row.iloc[1]
535
+ sentiment = row.iloc[2]
536
+ summary = row.iloc[3]
537
+
538
+ summary = batch_part + summary
539
+
540
+ # Create a new entry for each reference number
541
+ for ref in references:
542
+ reference_data.append({
543
+ 'Response References': ref,
544
+ 'General Topic': topic,
545
+ 'Subtopic': subtopic,
546
+ 'Sentiment': sentiment,
547
+ 'Summary': summary,
548
+ "Start row of group": start_row_reported
549
+ })
550
+
551
+ # Create a new DataFrame from the reference data
552
+ new_reference_df = pd.DataFrame(reference_data)
553
+
554
+ # Append on old reference data
555
+ out_reference_df = pd.concat([new_reference_df, existing_reference_df])
556
+
557
+ # Remove duplicate Response references for the same topic
558
+ out_reference_df.drop_duplicates(["Response References", "General Topic", "Subtopic", "Sentiment"], inplace=True)
559
+
560
+ out_reference_df.sort_values(["Start row of group", "Response References", "General Topic", "Subtopic", "Sentiment"], inplace=True)
561
+
562
+
563
+ reference_counts = out_reference_df.groupby(["General Topic", "Subtopic", "Sentiment"]).agg({
564
+ 'Response References': 'size', # Count the number of references
565
+ 'Summary': lambda x: '<br>'.join(
566
+ sorted(set(x), key=lambda summary: out_reference_df.loc[out_reference_df['Summary'] == summary, 'Start row of group'].min())
567
+ )
568
+ }).reset_index()
569
+
570
+ # Save the new DataFrame to CSV
571
+ reference_table_out_path = output_folder + batch_out_file_part + "_reference_table_" + model_choice_clean + "_temp_" + str(temperature) + ".csv"
572
+
573
+ # Table of all unique topics with descriptions
574
+ new_unique_topics_df = topic_with_response_df[["General Topic", "Subtopic", "Sentiment"]] # , "Summary"
575
+
576
+ # Join existing and new unique topics
577
+ out_unique_topics_df = pd.concat([new_unique_topics_df, existing_topics_df]).drop_duplicates(["Subtopic"]).drop(["Response References", "Summary"], axis = 1, errors="ignore")
578
+
579
+ # Join the counts to existing_unique_topics_df
580
+ out_unique_topics_df = out_unique_topics_df.merge(reference_counts, how='left', on=["General Topic", "Subtopic", "Sentiment"]).sort_values("Response References", ascending=False)
581
+
582
+ unique_topics_df_out_path = output_folder + batch_out_file_part + "_unique_topics_" + model_choice_clean + "_temp_" + str(temperature) + ".csv"
583
+
584
+ # except Exception as e:
585
+ # print("Error in write_llm_output_and_logs:")
586
+ # print(e)
587
+
588
+ return topic_table_out_path, reference_table_out_path, unique_topics_df_out_path, topic_with_response_df, markdown_table, out_reference_df, out_unique_topics_df, batch_out_file_part, is_error
589
+
590
+ def llm_query(file_data:pd.DataFrame, existing_topics_w_references_table:pd.DataFrame, existing_reference_df:pd.DataFrame, existing_unique_topics_df:pd.DataFrame, display_table:str, file_name:str, num_batches:int, in_api_key:str, temperature:float, chosen_cols:List[str], model_choice:str, candidate_topics: List=[],latest_batch_completed:int=0, out_message:List=[], out_file_paths:List = [], log_files_output_paths:List = [], first_loop_state:bool=False, whole_conversation_metadata_str:str="", prompt1:str=prompt1, prompt2:str=prompt2, prompt3:str=prompt3, system_prompt:str=system_prompt, summarise_system_prompt:str=summarise_system_prompt, summarise_prompt:str=summarise_prompt, number_of_requests:int=1, batch_size:int=50, max_tokens:int=max_tokens, progress=Progress(track_tqdm=True)):
591
+
592
+ '''
593
+ Query an LLM (Gemini or AWS Anthropic-based) with up to three prompts about a table of open text data. Up to 'batch_size' rows will be queried at a time.
594
+
595
+ Parameters:
596
+ - file_data (pd.DataFrame): Pandas dataframe containing the consultation response data.
597
+ - existing_topics_w_references_table (pd.DataFrame): Pandas dataframe containing the latest master topic table that has been iterated through batches.
598
+ - existing_reference_df (pd.DataFrame): Pandas dataframe containing the list of Response reference numbers alongside the derived topics and subtopics.
599
+ - existing_unique_topics_df (pd.DataFrame): Pandas dataframe containing the unique list of topics, subtopics, sentiment and summaries until this point.
600
+ - display_table (str): Table for display in markdown format.
601
+ - file_name (str): File name of the data file.
602
+ - num_batches (int): Number of batches required to go through all the response rows.
603
+ - in_api_key (str): The API key for authentication.
604
+ - temperature (float): The temperature parameter for the model.
605
+ - chosen_cols (List[str]): A list of chosen columns to process.
606
+ - candidate_topics (List): A list of existing candidate topics submitted by the user.
607
+ - model_choice (str): The choice of model to use.
608
+ - latest_batch_completed (int): The index of the latest file completed.
609
+ - out_message (list): A list to store output messages.
610
+ - out_file_paths (list): A list to store output file paths.
611
+ - log_files_output_paths (list): A list to store log file output paths.
612
+ - first_loop_state (bool): A flag indicating the first loop state.
613
+ - whole_conversation_metadata_str (str): A string to store whole conversation metadata.
614
+ - prompt1 (str): The first prompt for the model.
615
+ - prompt2 (str): The second prompt for the model.
616
+ - prompt3 (str): The third prompt for the model.
617
+ - system_prompt (str): The system prompt for the model.
618
+ - summarise_system_prompt (str): The system prompt for the summary part of the model.
619
+ - summarise_prompt (str): The prompt for the model summary.
620
+ - number of requests (int): The number of prompts to send to the model.
621
+ - batch_size (int): The number of data rows to consider in each request.
622
+ - max_tokens (int): The maximum number of tokens for the model.
623
+ - progress (Progress): A progress tracker.
624
+ '''
625
+
626
+ tic = time.perf_counter()
627
+ model = ""
628
+ config = ""
629
+ final_time = 0.0
630
+ whole_conversation_metadata = []
631
+ all_topic_tables_df = []
632
+ all_markdown_topic_tables = []
633
+ is_error = False
634
+
635
+ # Reset output files on each run:
636
+ # out_file_paths = []
637
+
638
+ model_choice_clean = replace_punctuation_with_underscore(model_choice)
639
+
640
+ # If this is the first time around, set variables to 0/blank
641
+ if first_loop_state==True:
642
+ latest_batch_completed = 0
643
+ out_message = []
644
+ out_file_paths = []
645
+
646
+ print("latest_batch_completed:", str(latest_batch_completed))
647
+
648
+ if num_batches > 0:
649
+ progress_measure = round(latest_batch_completed / num_batches, 1)
650
+ progress(progress_measure, desc="Querying large language model")
651
+ else:
652
+ progress(0.1, desc="Querying large language model")
653
+
654
+ # Load file
655
+ # If out message or out_file_paths are blank, change to a list so it can be appended to
656
+ if isinstance(out_message, str):
657
+ out_message = [out_message]
658
+
659
+ if not out_file_paths:
660
+ out_file_paths = []
661
+
662
+ # Check if files and text exist
663
+ if file_data.empty:
664
+ out_message = "Please enter text or a file to redact."
665
+ return out_message, existing_topics_w_references_table, existing_reference_df, out_file_paths, out_file_paths, latest_batch_completed, log_files_output_paths, log_files_output_paths, whole_conversation_metadata_str, final_time, out_message
666
+
667
+ if model_choice == "anthropic.claude-3-sonnet-20240229-v1:0" and file_data.shape[1] > 300:
668
+ out_message = "Your data has more than 300 rows, using the Sonnet model will be too expensive. Please choose the Haiku model instead."
669
+ return out_message, existing_topics_w_references_table, existing_reference_df, out_file_paths, out_file_paths, latest_batch_completed, log_files_output_paths, log_files_output_paths, whole_conversation_metadata_str, final_time, out_message
670
+
671
+ # If we have already redacted the last file, return the input out_message and file list to the relevant components
672
+ if latest_batch_completed >= num_batches:
673
+ print("Last batch reached, returning batch:", str(latest_batch_completed))
674
+ # Set to a very high number so as not to mess with subsequent file processing by the user
675
+ latest_batch_completed = 999
676
+
677
+ toc = time.perf_counter()
678
+ final_time = toc - tic
679
+ #out_time = f"in {final_time} seconds."
680
+ #print(out_time)
681
+
682
+ final_out_message = '\n'.join(out_message)
683
+ return display_table, existing_topics_w_references_table, existing_unique_topics_df, existing_reference_df, out_file_paths, out_file_paths, latest_batch_completed, log_files_output_paths, log_files_output_paths, whole_conversation_metadata_str, final_time, final_out_message
684
+
685
+ #for latest_batch_completed in range(num_batches):
686
+ reported_batch_no = latest_batch_completed + 1
687
+ print("Running query batch", str(reported_batch_no))
688
+
689
+ # Call the function to prepare the input table
690
+ simplified_csv_table_path, normalised_simple_markdown_table, out_file_part, start_row, end_row = data_file_to_markdown_table(file_data, file_name, chosen_cols, output_folder, latest_batch_completed, batch_size)
691
+ log_files_output_paths.append(simplified_csv_table_path)
692
+
693
+
694
+ # Conversation history
695
+ conversation_history = []
696
+
697
+
698
+ # If this is the second batch, the master table will refer back to the current master table when assigning topics to the new table. Also runs if there is an existing list of topics supplied by the user
699
+ if latest_batch_completed >= 1 or candidate_topics:
700
+
701
+ #print("normalised_simple_markdown_table:", normalised_simple_markdown_table)
702
+
703
+ # Prepare Gemini models before query
704
+ if model_choice in ["gemini-1.5-flash-002", "gemini-1.5-pro-002"]:
705
+ print("Using Gemini model:", model_choice)
706
+ model, config = construct_gemini_generative_model(in_api_key=in_api_key, temperature=temperature, model_choice=model_choice, system_prompt=summarise_system_prompt, max_tokens=max_tokens)
707
+ else:
708
+ print("Using AWS Bedrock model:", model_choice)
709
+
710
+ # Merge duplicate topics together to create a big merged summary table
711
+ #all_topic_tables_df_merged = existing_topics_w_references_table#pd.concat(all_topic_tables_df)
712
+
713
+ # Group by the first three columns and concatenate the fourth and fifth columns
714
+ # all_topic_tables_df_merged = existing_topics_w_references_table.groupby(["General Topic", "Subtopic", "Sentiment"], as_index=False).agg({
715
+ # "Summary": '\n'.join, # Concatenate the fourth column
716
+ # "Response References": ', '.join # Concatenate the fifth column
717
+ # })
718
+ # all_topic_tables_df_merged["Response References"] = ""
719
+ #all_topic_tables_df_merged["Summary"] = ""
720
+ #all_topic_tables_str = all_topic_tables_df_merged.to_markdown(index=None)
721
+
722
+ if candidate_topics:
723
+ # 'Zero shot topics' are those supplied by the user
724
+ zero_shot_topics = read_file(candidate_topics.name)
725
+ zero_shot_topics_series = zero_shot_topics.iloc[:, 0]
726
+ # Max 150 topics allowed
727
+ if len(zero_shot_topics_series) > 120:
728
+ print("Maximum 120 topics allowed to fit within large language model context limits.")
729
+ zero_shot_topics_series = zero_shot_topics_series.iloc[:120]
730
+
731
+ zero_shot_topics_list = list(zero_shot_topics_series)
732
+
733
+ print("Zero shot topics are:", zero_shot_topics_list)
734
+
735
+ #all_topic_tables_df_merged = existing_unique_topics_df
736
+ existing_unique_topics_df["Response References"] = ""
737
+
738
+
739
+
740
+
741
+ # Create the most up to date list of topics and subtopics.
742
+ # If there are candidate topics, but the existing_unique_topics_df hasn't yet been constructed, then create.
743
+ if candidate_topics and existing_unique_topics_df.empty:
744
+ existing_unique_topics_df = pd.DataFrame(data={'General Topic':'', 'Subtopic':zero_shot_topics_list, 'Sentiment':''})
745
+
746
+ # This part concatenates all zero shot and new topics together, so that for the next prompt the LLM will have the full list available
747
+ elif candidate_topics and not existing_unique_topics_df.empty:
748
+ zero_shot_topics_df = pd.DataFrame(data={'General Topic':'', 'Subtopic':zero_shot_topics_list, 'Sentiment':''})
749
+ existing_unique_topics_df = pd.concat([existing_unique_topics_df, zero_shot_topics_df]).drop_duplicates("Subtopic")
750
+
751
+ #print("Full topics list with zero shot_dropped:", existing_unique_topics_df)
752
+
753
+ existing_unique_topics_df.to_csv(output_folder + "Existing topics with zero shot dropped.csv")
754
+
755
+
756
+ unique_topics_markdown = existing_unique_topics_df[["General Topic", "Subtopic", "Sentiment"]].drop_duplicates(["General Topic", "Subtopic", "Sentiment"]).to_markdown(index=False)
757
+
758
+ existing_unique_topics_df.to_csv(output_folder + f"{out_file_part}_master_all_topic_tables_df_merged_" + model_choice_clean + "_temp_" + str(temperature) + "_batch_" + str(latest_batch_completed) + ".csv")
759
+
760
+ # Format the summary prompt with the response table and topics
761
+ formatted_summary_prompt = summarise_prompt.format(response_table=normalised_simple_markdown_table, topics=unique_topics_markdown)
762
+
763
+ # Define the output file path for the formatted prompt
764
+ formatted_prompt_output_path = output_folder + out_file_part + "_full_prompt_" + model_choice_clean + "_temp_" + str(temperature) + ".txt"
765
+
766
+ # Write the formatted prompt to the specified file
767
+ try:
768
+ with open(formatted_prompt_output_path, "w", encoding='utf-8', errors='replace') as f:
769
+ f.write(formatted_summary_prompt)
770
+ except Exception as e:
771
+ print(f"Error writing prompt to file {formatted_prompt_output_path}: {e}")
772
+
773
+ summary_prompt_list = [formatted_summary_prompt]
774
+
775
+ print("master_summary_prompt_list:", summary_prompt_list[0])
776
+
777
+ summary_conversation_history = []
778
+ summary_whole_conversation = []
779
+
780
+ # Process requests to large language model
781
+ master_summary_response, summary_conversation_history, whole_summary_conversation, whole_conversation_metadata = process_requests(summary_prompt_list, summarise_system_prompt, summary_conversation_history, summary_whole_conversation, whole_conversation_metadata, model, config, model_choice, temperature, reported_batch_no, master = True)
782
+
783
+ print("master_summary_response:", master_summary_response[-1].text)
784
+ print("Whole conversation metadata:", whole_conversation_metadata)
785
+
786
+ new_topic_table_out_path, new_reference_table_out_path, new_unique_topics_df_out_path, new_topic_df, new_markdown_table, new_reference_df, new_unique_topics_df, master_batch_out_file_part, is_error = write_llm_output_and_logs(master_summary_response, whole_summary_conversation, whole_conversation_metadata, out_file_part, latest_batch_completed, start_row, end_row, model_choice_clean, temperature, log_files_output_paths, existing_reference_df, existing_unique_topics_df, first_run=False)
787
+
788
+ # If error in table parsing, leave function
789
+ if is_error == True:
790
+ final_message_out = "Could not complete summary, error in LLM output."
791
+ display_table, new_topic_df, new_unique_topics_df, new_reference_df, out_file_paths, out_file_paths, latest_batch_completed, log_files_output_paths, log_files_output_paths, whole_conversation_metadata_str, final_time, final_message_out
792
+
793
+ # Write outputs to csv
794
+ ## Topics with references
795
+ new_topic_df.to_csv(new_topic_table_out_path, index=None)
796
+ log_files_output_paths.append(new_topic_table_out_path)
797
+
798
+ ## Reference table mapping response numbers to topics
799
+ new_reference_df.to_csv(new_reference_table_out_path, index=None)
800
+ log_files_output_paths.append(new_reference_table_out_path)
801
+
802
+ ## Unique topic list
803
+ new_unique_topics_df.to_csv(new_unique_topics_df_out_path, index=None)
804
+ out_file_paths.append(new_unique_topics_df_out_path)
805
+
806
+ all_topic_tables_df.append(new_topic_df)
807
+ all_markdown_topic_tables.append(new_markdown_table)
808
+
809
+ #display_table = master_summary_response[-1].text
810
+
811
+ # Show unique topics alongside document counts as output
812
+ display_table = new_unique_topics_df.to_markdown(index=False)
813
+
814
+ whole_conversation_metadata.append(whole_conversation_metadata_str)
815
+ whole_conversation_metadata_str = ' '.join(whole_conversation_metadata)
816
+
817
+
818
+ # Write final output to text file also
819
+ try:
820
+ new_final_table_output_path = output_folder + master_batch_out_file_part + "_full_final_response_" + model_choice_clean + "_temp_" + str(temperature) + ".txt"
821
+
822
+ with open(new_final_table_output_path, "w", encoding='utf-8', errors='replace') as f:
823
+ f.write(display_table)
824
+
825
+ log_files_output_paths.append(new_final_table_output_path)
826
+
827
+ except Exception as e:
828
+ print(e)
829
+
830
+ # If this is the first batch, run this
831
+ else:
832
+ #system_prompt_with_table = system_prompt + normalised_simple_markdown_table
833
+
834
+ # Prepare Gemini models before query
835
+ if model_choice in ["gemini-1.5-flash-002", "gemini-1.5-pro-002"]:
836
+ print("Using Gemini model:", model_choice)
837
+ model, config = construct_gemini_generative_model(in_api_key=in_api_key, temperature=temperature, model_choice=model_choice, system_prompt=system_prompt, max_tokens=max_tokens)
838
+ else:
839
+ print("Using AWS Bedrock model:", model_choice)
840
+
841
+ formatted_prompt1 = prompt1.format(response_table=normalised_simple_markdown_table)
842
+
843
+ if prompt2: formatted_prompt2 = prompt2.format(response_table=normalised_simple_markdown_table)
844
+ else: formatted_prompt2 = prompt2
845
+
846
+ if prompt3: formatted_prompt3 = prompt3.format(response_table=normalised_simple_markdown_table)
847
+ else: formatted_prompt3 = prompt3
848
+
849
+ batch_prompts = [formatted_prompt1, formatted_prompt2, formatted_prompt3][:number_of_requests] # Adjust this list to send fewer requests
850
+
851
+ #whole_conversation = [system_prompt_with_table]
852
+
853
+ whole_conversation = [system_prompt]
854
+
855
+ # Process requests to large language model
856
+ responses, conversation_history, whole_conversation, whole_conversation_metadata = process_requests(batch_prompts, system_prompt, conversation_history, whole_conversation, whole_conversation_metadata, model, config, model_choice, temperature, reported_batch_no)
857
+
858
+ #print("Whole conversation metadata before:", whole_conversation_metadata)
859
+
860
+ print("responses:", responses[-1].text)
861
+ print("Whole conversation metadata:", whole_conversation_metadata)
862
+
863
+ topic_table_out_path, reference_table_out_path, unique_topics_df_out_path, topic_table_df, markdown_table, reference_df, new_unique_topics_df, batch_out_file_part, is_error = write_llm_output_and_logs(responses, whole_conversation, whole_conversation_metadata, out_file_part, latest_batch_completed, start_row, end_row, model_choice_clean, temperature, log_files_output_paths, existing_reference_df, existing_unique_topics_df, first_run=True)
864
+
865
+ # If error in table parsing, leave function
866
+ if is_error == True:
867
+ display_table, new_topic_df, new_unique_topics_df, new_reference_df, out_file_paths, out_file_paths, latest_batch_completed, log_files_output_paths, log_files_output_paths, whole_conversation_metadata_str, final_time, final_message_out
868
+
869
+
870
+ all_topic_tables_df.append(topic_table_df)
871
+
872
+ topic_table_df.to_csv(topic_table_out_path, index=None)
873
+ out_file_paths.append(topic_table_out_path)
874
+
875
+ reference_df.to_csv(reference_table_out_path, index=None)
876
+ log_files_output_paths.append(reference_table_out_path)
877
+
878
+ ## Unique topic list
879
+
880
+ new_unique_topics_df = pd.concat([new_unique_topics_df, existing_unique_topics_df]).drop_duplicates('Subtopic')
881
+
882
+ print("new_unique_topics_df:", new_unique_topics_df)
883
+
884
+ new_unique_topics_df.to_csv(unique_topics_df_out_path, index=None)
885
+ out_file_paths.append(unique_topics_df_out_path)
886
+
887
+ all_markdown_topic_tables.append(markdown_table)
888
+
889
+ whole_conversation_metadata.append(whole_conversation_metadata_str)
890
+ whole_conversation_metadata_str = ' '.join(whole_conversation_metadata)
891
+
892
+ # Write final output to text file also
893
+ try:
894
+ final_table_output_path = output_folder + batch_out_file_part + "_full_final_response_" + model_choice_clean + "_temp_" + str(temperature) + ".txt"
895
+
896
+ with open(final_table_output_path, "w", encoding='utf-8', errors='replace') as f:
897
+ f.write(responses[-1].text)
898
+
899
+ log_files_output_paths.append(final_table_output_path)
900
+
901
+ except Exception as e:
902
+ print(e)
903
+
904
+ display_table = responses[-1].text
905
+ new_topic_df = topic_table_df
906
+ new_reference_df = reference_df
907
+
908
+ # Increase latest file completed count unless we are at the last file
909
+ if latest_batch_completed != num_batches:
910
+ print("Completed file number:", str(latest_batch_completed))
911
+ latest_batch_completed += 1
912
+
913
+ toc = time.perf_counter()
914
+ final_time = toc - tic
915
+ out_time = f"in {final_time:0.1f} seconds."
916
+ print(out_time)
917
+
918
+ out_message.append('All queries successfully completed in')
919
+
920
+ final_message_out = '\n'.join(out_message)
921
+ final_message_out = final_message_out + " " + out_time
922
+
923
+ final_message_out = final_message_out + "\n\nGo to to the LLM settings tab to see redaction logs. Please give feedback on the results below to help improve this app."
924
+
925
+ return display_table, new_topic_df, new_unique_topics_df, new_reference_df, out_file_paths, out_file_paths, latest_batch_completed, log_files_output_paths, log_files_output_paths, whole_conversation_metadata_str, final_time, final_message_out
chatfuncs/prompts.py CHANGED
@@ -64,4 +64,13 @@ You are an AI assistant that follows instruction extremely well. Help as much as
64
  Answer the QUESTION using information from the following CONTENT. Respond with short answers that directly answer the question.\n
65
  CONTENT: {summaries}\n
66
  QUESTION: {question}\n
67
- Answer:<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"""
 
 
 
 
 
 
 
 
 
 
64
  Answer the QUESTION using information from the following CONTENT. Respond with short answers that directly answer the question.\n
65
  CONTENT: {summaries}\n
66
  QUESTION: {question}\n
67
+ Answer:<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"""
68
+
69
+ instruction_prompt_qwen = """<|im_start|>system\n
70
+ You are an AI assistant that follows instruction extremely well. Help as much as you can.
71
+ <|im_start|>user\n
72
+ Answer the QUESTION using information from the following CONTENT. Respond with short answers that directly answer the question.
73
+ CONTENT: {summaries}
74
+ QUESTION: {question}\n
75
+ Answer:<|im_end|>
76
+ <|im_start|>assistant\n"""
requirements.txt CHANGED
@@ -1,19 +1,22 @@
1
  langchain
2
  langchain-community
 
3
  beautifulsoup4
 
4
  pandas
5
- transformers==4.34.0
 
6
  llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121
7
- torch \
8
- --extra-index-url https://download.pytorch.org/whl/cu121
9
- sentence_transformers==2.2.2
10
  faiss-cpu==1.7.4
11
  pypdf
12
  python-docx
13
  keybert
14
  span_marker
15
- gensim
16
- gradio==3.50.2
17
- gradio_client
18
  nltk
19
- scipy<1.13
 
 
 
 
1
  langchain
2
  langchain-community
3
+ langchain-huggingface
4
  beautifulsoup4
5
+ google-generativeai==0.7.2
6
  pandas
7
+ transformers==4.41.2
8
+ torch --extra-index-url https://download.pytorch.org/whl/cu121
9
  llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121
10
+ sentence_transformers==3.0.1
 
 
11
  faiss-cpu==1.7.4
12
  pypdf
13
  python-docx
14
  keybert
15
  span_marker
16
+ #gensim
17
+ gradio
 
18
  nltk
19
+ bm25s
20
+ PyStemmer
21
+ scipy<1.13
22
+ numpy==1.26.4
requirements_cpu.txt CHANGED
@@ -1,18 +1,22 @@
1
  langchain
 
2
  langchain-community
3
  beautifulsoup4
 
4
  pandas
5
- transformers==4.34.0
6
  llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
7
- torch
8
- sentence_transformers==2.2.2
9
  faiss-cpu==1.7.4
10
  pypdf
11
  python-docx
12
  keybert
13
  span_marker
14
- gensim
15
- gradio==3.50.2
16
- gradio_client
17
  nltk
18
- scipy<1.13
 
 
 
 
1
  langchain
2
+ langchain-huggingface
3
  langchain-community
4
  beautifulsoup4
5
+ google-generativeai==0.7.2
6
  pandas
7
+ transformers==4.41.2
8
  llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
9
+ torch==2.3.1
10
+ sentence_transformers==3.0.1
11
  faiss-cpu==1.7.4
12
  pypdf
13
  python-docx
14
  keybert
15
  span_marker
16
+ #gensim
17
+ gradio
 
18
  nltk
19
+ bm25s
20
+ PyStemmer
21
+ scipy<1.13
22
+ numpy==1.26.4