File size: 6,738 Bytes
113dc2c
d4fba6d
0dec378
 
27e4a6a
d4fba6d
27e4a6a
2fc432b
 
d95dbe9
32fdddd
219d097
471c590
52a0784
757da8f
481dde5
27e4a6a
 
 
 
d95dbe9
f0f180b
d95dbe9
c79e0ac
f0f180b
 
 
 
 
c79e0ac
f0f180b
 
 
 
 
1a52ee5
68ef0f8
f0f180b
 
 
 
 
 
 
 
 
c79e0ac
f0f180b
 
481dde5
d95dbe9
f0f180b
 
 
c79e0ac
 
 
 
 
 
f0f180b
 
 
 
27e4a6a
f0f180b
 
 
 
c79e0ac
f0f180b
27e4a6a
 
f0f180b
 
 
 
a521e90
5d264e2
f0f180b
f45164e
f0f180b
ac00586
f0f180b
9a11c4c
f0f180b
 
 
757da8f
27e4a6a
 
 
 
 
 
 
 
 
 
 
 
e3be785
32fdddd
e3be785
 
abfc2ce
f0f180b
 
 
27e4a6a
f0f180b
27e4a6a
f0f180b
 
c79e0ac
f0f180b
 
 
 
 
 
 
ac00586
 
 
 
27e4a6a
ac00586
 
 
 
 
 
 
 
 
 
 
 
 
 
27e4a6a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import gradio as gr
import numpy as np
import random
from pathlib import Path
from PIL import Image
from huggingface_hub import AsyncInferenceClient, InferenceClient
from gradio_client import Client, handle_file
from gradio_imageslider import ImageSlider

MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

# Directorio de almacenamiento de imágenes
DATA_PATH = Path("./data")
DATA_PATH.mkdir(exist_ok=True)  # Asegura que el directorio exista

def enable_lora(lora_add, basemodel):
    return basemodel if not lora_add else lora_add

async def generate_image(combined_prompt, model, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)
        image = await client.text_to_image(
            prompt=combined_prompt, height=height, width=width, guidance_scale=scales,
            num_inference_steps=steps, model=model
        )
        return image, seed
    except Exception as e:
        return f"Error al generar imagen: {e}", None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
        result = client.predict(
            input_image=handle_file(img_path), prompt=prompt, negative_prompt="",
            seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6,
            controlnet_decay=1, condition_scale=6, tile_width=112,
            tile_height=144, denoise_strength=0.35, num_inference_steps=18,
            solver="DDIM", api_name="/process"
        )
        return result[1] if isinstance(result, list) and len(result) > 1 else None
    except Exception as e:
        return None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel
    improved_prompt = await improve_prompt(prompt)
    combined_prompt = f"{prompt} {improved_prompt}"
    
    if seed == -1:
        seed = random.randint(0, MAX_SEED)
    seed = int(seed)
    
    image, seed = await generate_image(combined_prompt, model, width, height, scales, steps, seed)

    if isinstance(image, str) and image.startswith("Error"):
        return [image, None]

    image_path = DATA_PATH / f"image_{seed}.jpg"
    image.save(image_path, format="JPEG")

    if process_upscale:
        upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
        if upscale_image_path:
            upscale_image = Image.open(upscale_image_path)
            upscale_image.save(DATA_PATH / f"upscale_image_{seed}.jpg", format="JPEG")
            return [image_path, DATA_PATH / f"upscale_image_{seed}.jpg"]
        else:
            return [image_path, image_path]
    else:
        return [image_path, image_path]

async def improve_prompt(prompt):
    try:
        instruction = ("With this idea, describe in English a detailed img2vid prompt in a single paragraph of up to 200 characters maximum, developing atmosphere, characters, lighting, and cameras.")
        formatted_prompt = f"{prompt}: {instruction}"
        response = llm_client.text_generation(formatted_prompt, max_new_tokens=200)
        improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip()

        return improved_text
    except Exception as e:
        return f"Error mejorando el prompt: {e}"

def get_storage():
    files = [
        {
            "name": str(file.resolve()),  
            "size": file.stat().st_size,
        }
        for file in DATA_PATH.glob("*.jpg") 
        if file.is_file()
    ]
    usage = sum([f['size'] for f in files])
    return [file["name"] for file in files], f"Uso total: {usage/(1024.0 ** 3):.3f}GB"

css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""

with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column(scale=3):
                output_res = ImageSlider(label="Generadas / Escaladas")
            with gr.Column(scale=2):
                prompt = gr.Textbox(label="Descripción de imagen")
                basemodel_choice = gr.Dropdown(
                    label="Modelo", 
                    choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"],
                    value="black-forest-labs/FLUX.1-schnell"
                )
                lora_model_choice = gr.Dropdown(
                    label="LORA Realismo", 
                    choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"],
                    value="XLabs-AI/flux-RealismLora"
                )
                with gr.Row():
                    process_lora = gr.Checkbox(label="Procesar LORA")
                    process_upscale = gr.Checkbox(label="Procesar Escalador")
                improved_prompt = gr.Textbox(label="Prompt Mejorado", interactive=False)
                improve_btn = gr.Button("Mejorar prompt")
                improve_btn.click(fn=improve_prompt, inputs=[prompt], outputs=improved_prompt)
                with gr.Accordion(label="Opciones Avanzadas", open=False):
                    width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
                    upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
                    scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
                    steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20)
                    seed = gr.Number(label="Semilla", value=-1)
                btn = gr.Button("Generar")
                btn.click(
                    fn=gen, 
                    inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], 
                    outputs=output_res
                )
        with gr.Row():
            with gr.Column():
                file_list = gr.Gallery(label="Imágenes Guardadas")  # Usar Gallery en lugar de Files
                storage_info = gr.Text(label="Uso de Almacenamiento")
            refresh_btn = gr.Button("Actualizar Galería")
            refresh_btn.click(fn=get_storage, inputs=None, outputs=[file_list, storage_info])
    demo.launch(allowed_paths=[str(DATA_PATH)])