Spaces:
Running
Running
salomonsky
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
@@ -16,6 +17,20 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def enable_lora(lora_add, basemodel):
|
20 |
return basemodel if not lora_add else lora_add
|
21 |
|
@@ -41,7 +56,15 @@ def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
|
41 |
print(f"Error upscale image: {e}")
|
42 |
return None
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
46 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
47 |
if image is None:
|
@@ -51,7 +74,10 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
51 |
image.save(image_path, format="JPEG")
|
52 |
|
53 |
if process_upscale:
|
54 |
-
|
|
|
|
|
|
|
55 |
upscale_image_path = "upscale_image.jpg"
|
56 |
upscale_image.save(upscale_image_path, format="JPEG")
|
57 |
return [image_path, upscale_image_path]
|
@@ -74,6 +100,7 @@ with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
|
74 |
process_lora = gr.Checkbox(label="Procesar LORA")
|
75 |
process_upscale = gr.Checkbox(label="Procesar Escalador")
|
76 |
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
|
|
|
77 |
|
78 |
with gr.Accordion(label="Opciones Avanzadas", open=False):
|
79 |
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
|
@@ -90,7 +117,7 @@ with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
|
90 |
queue=False
|
91 |
).then(
|
92 |
fn=gen,
|
93 |
-
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
|
94 |
outputs=[output_res]
|
95 |
)
|
96 |
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import random
|
|
|
17 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
18 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
19 |
|
20 |
+
if not os.path.exists('GFPGANv1.4.pth'):
|
21 |
+
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
|
22 |
+
|
23 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
+
model_path = 'GFPGANv1.4.pth'
|
25 |
+
gfpgan = GFPGANer(
|
26 |
+
model_path=model_path,
|
27 |
+
upscale_factor=4,
|
28 |
+
arch='clean',
|
29 |
+
channel_multiplier=2,
|
30 |
+
model_name='GPFGAN',
|
31 |
+
device=device
|
32 |
+
)
|
33 |
+
|
34 |
def enable_lora(lora_add, basemodel):
|
35 |
return basemodel if not lora_add else lora_add
|
36 |
|
|
|
56 |
print(f"Error upscale image: {e}")
|
57 |
return None
|
58 |
|
59 |
+
def get_upscale_gfpgan(prompt, img_path):
|
60 |
+
try:
|
61 |
+
img = gfpgan.enhance(img_path)
|
62 |
+
return img
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error upscale image: {e}")
|
65 |
+
return None
|
66 |
+
|
67 |
+
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora, upscale_model):
|
68 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
69 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
70 |
if image is None:
|
|
|
74 |
image.save(image_path, format="JPEG")
|
75 |
|
76 |
if process_upscale:
|
77 |
+
if upscale_model == "FineGrain":
|
78 |
+
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
79 |
+
elif upscale_model == "GPFGAN":
|
80 |
+
upscale_image = get_upscale_gfpgan(prompt, image_path)
|
81 |
upscale_image_path = "upscale_image.jpg"
|
82 |
upscale_image.save(upscale_image_path, format="JPEG")
|
83 |
return [image_path, upscale_image_path]
|
|
|
100 |
process_lora = gr.Checkbox(label="Procesar LORA")
|
101 |
process_upscale = gr.Checkbox(label="Procesar Escalador")
|
102 |
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
|
103 |
+
upscale_model = gr.Radio(label="Modelo de Escalado", choices=["FineGrain", "GPFGAN"], value="FineGrain")
|
104 |
|
105 |
with gr.Accordion(label="Opciones Avanzadas", open=False):
|
106 |
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
|
|
|
117 |
queue=False
|
118 |
).then(
|
119 |
fn=gen,
|
120 |
+
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora, upscale_model],
|
121 |
outputs=[output_res]
|
122 |
)
|
123 |
|