Spaces:
Running
Running
salomonsky
commited on
Commit
•
68ef0f8
1
Parent(s):
2d91a5c
Update app.py
Browse files
app.py
CHANGED
@@ -22,17 +22,7 @@ if not os.path.exists('GFPGANv1.4.pth'):
|
|
22 |
|
23 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
model_path = 'GFPGANv1.4.pth'
|
25 |
-
gfpgan = GFPGANer(
|
26 |
-
model_path=model_path,
|
27 |
-
upscale_factor=4,
|
28 |
-
arch='clean',
|
29 |
-
channel_multiplier=2,
|
30 |
-
model_name='GPFGAN',
|
31 |
-
device=device
|
32 |
-
)
|
33 |
-
|
34 |
-
def enable_lora(lora_add, basemodel):
|
35 |
-
return basemodel if not lora_add else lora_add
|
36 |
|
37 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
38 |
try:
|
@@ -47,19 +37,19 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
47 |
print(f"Error generating image: {e}")
|
48 |
return None, None
|
49 |
|
50 |
-
def
|
51 |
try:
|
52 |
-
|
53 |
-
|
54 |
-
return result[1]
|
55 |
except Exception as e:
|
56 |
print(f"Error upscale image: {e}")
|
57 |
return None
|
58 |
|
59 |
-
def
|
60 |
try:
|
61 |
-
|
62 |
-
|
|
|
63 |
except Exception as e:
|
64 |
print(f"Error upscale image: {e}")
|
65 |
return None
|
@@ -74,10 +64,10 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
74 |
image.save(image_path, format="JPEG")
|
75 |
|
76 |
if process_upscale:
|
77 |
-
if upscale_model == "
|
78 |
-
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
79 |
-
elif upscale_model == "GPFGAN":
|
80 |
upscale_image = get_upscale_gfpgan(prompt, image_path)
|
|
|
|
|
81 |
upscale_image_path = "upscale_image.jpg"
|
82 |
upscale_image.save(upscale_image_path, format="JPEG")
|
83 |
return [image_path, upscale_image_path]
|
@@ -100,25 +90,20 @@ with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
|
100 |
process_lora = gr.Checkbox(label="Procesar LORA")
|
101 |
process_upscale = gr.Checkbox(label="Procesar Escalador")
|
102 |
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
|
103 |
-
upscale_model = gr.Radio(label="Modelo de Escalado", choices=["
|
104 |
|
105 |
with gr.Accordion(label="Opciones Avanzadas", open=False):
|
106 |
-
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=
|
107 |
-
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=
|
108 |
-
scales = gr.Slider(label="
|
109 |
-
steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=
|
110 |
-
seed = gr.
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
fn=lambda: None,
|
115 |
-
inputs=None,
|
116 |
-
outputs=[output_res],
|
117 |
-
queue=False
|
118 |
-
).then(
|
119 |
fn=gen,
|
120 |
-
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora, upscale_model],
|
121 |
-
outputs=
|
122 |
)
|
123 |
|
124 |
demo.launch()
|
|
|
22 |
|
23 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
model_path = 'GFPGANv1.4.pth'
|
25 |
+
gfpgan = GFPGANer(model_path=model_path, upscale_factor=4, arch='clean', channel_multiplier=2, model_name='GPFGAN', device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
28 |
try:
|
|
|
37 |
print(f"Error generating image: {e}")
|
38 |
return None, None
|
39 |
|
40 |
+
def get_upscale_gfpgan(prompt, img_path):
|
41 |
try:
|
42 |
+
img = gfpgan.enhance(img_path)
|
43 |
+
return img
|
|
|
44 |
except Exception as e:
|
45 |
print(f"Error upscale image: {e}")
|
46 |
return None
|
47 |
|
48 |
+
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
49 |
try:
|
50 |
+
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
51 |
+
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
52 |
+
return result[1]
|
53 |
except Exception as e:
|
54 |
print(f"Error upscale image: {e}")
|
55 |
return None
|
|
|
64 |
image.save(image_path, format="JPEG")
|
65 |
|
66 |
if process_upscale:
|
67 |
+
if upscale_model == "GPFGAN":
|
|
|
|
|
68 |
upscale_image = get_upscale_gfpgan(prompt, image_path)
|
69 |
+
elif upscale_model == "Finegrain":
|
70 |
+
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
71 |
upscale_image_path = "upscale_image.jpg"
|
72 |
upscale_image.save(upscale_image_path, format="JPEG")
|
73 |
return [image_path, upscale_image_path]
|
|
|
90 |
process_lora = gr.Checkbox(label="Procesar LORA")
|
91 |
process_upscale = gr.Checkbox(label="Procesar Escalador")
|
92 |
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
|
93 |
+
upscale_model = gr.Radio(label="Modelo de Escalado", choices=["GPFGAN", "Finegrain"], value="GPFGAN")
|
94 |
|
95 |
with gr.Accordion(label="Opciones Avanzadas", open=False):
|
96 |
+
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=512)
|
97 |
+
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=512)
|
98 |
+
scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
|
99 |
+
steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20)
|
100 |
+
seed = gr.Number(label="Semilla", value=-1)
|
101 |
+
|
102 |
+
btn = gr.Button("Generar")
|
103 |
+
btn.click(
|
|
|
|
|
|
|
|
|
|
|
104 |
fn=gen,
|
105 |
+
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora, upscale_model,],
|
106 |
+
outputs=output_res,
|
107 |
)
|
108 |
|
109 |
demo.launch()
|