File size: 4,565 Bytes
0cfb4a5
d4fba6d
0dec378
 
de6051a
0dec378
0a67e9a
 
a484b84
d4fba6d
2fc432b
 
 
d95dbe9
32fdddd
219d097
471c590
52a0784
481dde5
d95dbe9
 
 
2fc432b
32fdddd
 
 
 
 
 
 
 
d95dbe9
52a0784
1a52ee5
68ef0f8
481dde5
68ef0f8
 
 
481dde5
d95dbe9
481dde5
 
d95dbe9
32fdddd
2f35681
52a0784
32fdddd
52a0784
32fdddd
 
 
e3be785
 
d95dbe9
 
 
 
 
 
 
 
e3be785
32fdddd
2fc432b
e3be785
32fdddd
e3be785
 
32fdddd
e3be785
3b4ee8c
32fdddd
3b4ee8c
32fdddd
 
 
 
 
 
 
5e03798
32fdddd
d95dbe9
 
68ef0f8
 
 
d95dbe9
68ef0f8
52a0784
d95dbe9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider

MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
client = AsyncInferenceClient()

def enable_lora(lora_add, basemodel):
    return basemodel if not lora_add else lora_add

async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)
        text = str(Translator().translate(prompt, 'English')) + "," + lora_word
        image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
        return image, seed
    except Exception as e:
        print(f"Error generando imagen: {e}")
        return f"Error al generar imagen: {e}", None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
        result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
        return result[1]
    except Exception as e:
        print(f"Error escalando imagen: {e}")
        return None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel
    image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
    
    if image is None:
        return [f"Error generando imagen con el modelo {model}", None]
    
    image_path = "temp_image.jpg"
    image.save(image_path, format="JPEG")
    
    if process_upscale:
        upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
        if upscale_image_path is not None:
            upscale_image = Image.open(upscale_image_path)
            upscale_image.save("upscale_image.jpg", format="JPEG")
            return [image_path, "upscale_image.jpg"]
        else:
            print("Error: La ruta de la imagen escalada es None")
            return [image_path, image_path]
    else:
        return [image_path, image_path]

css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""

with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column(scale=3):
                output_res = ImageSlider(label="Flux / Upscaled")
            with gr.Column(scale=2):
                prompt = gr.Textbox(label="Descripción de imágen")
                basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
                lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
                process_lora = gr.Checkbox(label="Procesar LORA")
                process_upscale = gr.Checkbox(label="Procesar Escalador")
                upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
                
                with gr.Accordion(label="Opciones Avanzadas", open=False):
                    width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
                    scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
                    steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20)
                    seed = gr.Number(label="Semilla", value=-1)
    
                btn = gr.Button("Generar")
                btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res)
    demo.launch()