File size: 9,638 Bytes
68394ea
adb504f
d3051c0
 
68394ea
b1c8f17
26e0ddc
d3051c0
68394ea
 
 
 
 
 
2bb5179
cbcfc90
62ab01b
 
 
26e0ddc
b1c8f17
2e76cf7
adb504f
4bf6be6
adb504f
 
d3051c0
 
 
 
 
 
 
 
 
b1c8f17
1fc729a
d3051c0
 
 
 
 
68394ea
 
26e0ddc
 
 
 
d3051c0
68394ea
 
 
26e0ddc
 
 
2bb5179
 
 
 
 
 
 
 
 
 
26e0ddc
 
 
2bb5179
 
26e0ddc
 
d3051c0
 
26e0ddc
68394ea
 
 
 
 
 
 
 
 
 
 
 
 
f8ac6db
68394ea
 
 
 
 
 
bc4a455
f8ac6db
68394ea
26e0ddc
f8ac6db
d3051c0
 
 
 
 
adb504f
68394ea
f8ac6db
d3051c0
68394ea
 
 
 
 
 
26e0ddc
d3051c0
 
adb504f
 
 
 
 
68394ea
5c4af3f
 
68394ea
5c4af3f
 
68394ea
 
 
 
 
 
 
 
 
 
 
 
 
 
5c4af3f
68394ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ab01b
68394ea
 
d3051c0
68394ea
d3051c0
 
 
 
 
 
 
 
 
 
adb504f
d3051c0
68394ea
 
 
 
 
 
 
 
 
 
 
f8ac6db
68394ea
f8ac6db
68394ea
 
 
 
 
2fc91ef
2bb5179
62ab01b
2bb5179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16ef4d2
 
d1d878f
e7c157d
 
2bb5179
e7c157d
2bb5179
 
 
 
 
cbcfc90
 
2bb5179
 
cbcfc90
2bb5179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337dba1
2bb5179
1e480e3
2bb5179
 
 
 
54210e7
 
adb504f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks
from fastapi.security import APIKeyHeader
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from typing import Literal, List, Dict
import os
from functools import lru_cache
from openai import OpenAI
from uuid import uuid4
import tiktoken
import sqlite3
import time
from datetime import datetime, timedelta
import asyncio
import requests
from prompts import CODING_ASSISTANT_PROMPT, NEWS_ASSISTANT_PROMPT, generate_news_prompt
from fastapi_cache import FastAPICache
from fastapi_cache.backends.inmemory import InMemoryBackend
from fastapi_cache.decorator import cache

app = FastAPI()

API_KEY_NAME = "X-API-Key"
API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)

ModelID = Literal[
    "meta-llama/llama-3-70b-instruct",
    "anthropic/claude-3.5-sonnet",
    "deepseek/deepseek-coder",
    "anthropic/claude-3-haiku",
    "openai/gpt-3.5-turbo-instruct",
    "qwen/qwen-72b-chat",
    "google/gemma-2-27b-it"
]

class QueryModel(BaseModel):
    user_query: str = Field(..., description="User's coding query")
    model_id: ModelID = Field(
        default="meta-llama/llama-3-70b-instruct",
        description="ID of the model to use for response generation"
    )
    conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
    user_id: str = Field(..., description="Unique identifier for the user")

    class Config:
        schema_extra = {
            "example": {
                "user_query": "How do I implement a binary search in Python?",
                "model_id": "meta-llama/llama-3-70b-instruct",
                "conversation_id": "123e4567-e89b-12d3-a456-426614174000",
                "user_id": "user123"
            }
        }

class NewsQueryModel(BaseModel):
    query: str = Field(..., description="News topic to search for")

    class Config:
        schema_extra = {
            "example": {
                "query": "Latest developments in AI"
            }
        }

@lru_cache()
def get_api_keys():
    return {
        "OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
        "BRAVE_API_KEY": os.environ['BRAVE_API_KEY']
    }

api_keys = get_api_keys()
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")

# In-memory storage for conversations
conversations: Dict[str, List[Dict[str, str]]] = {}
last_activity: Dict[str, float] = {}

# Token encoding
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")

def limit_tokens(input_string, token_limit=6000):
    return encoding.decode(encoding.encode(input_string)[:token_limit])

def calculate_tokens(msgs):
    return sum(len(encoding.encode(str(m))) for m in msgs)

def chat_with_llama_stream(messages, model="gpt-3.5-turbo", max_llm_history=4, max_output_tokens=2500):
    while calculate_tokens(messages) > (8000 - max_output_tokens):
        if len(messages) > max_llm_history:
            messages = [messages[0]] + messages[-max_llm_history:]
        else:
            max_llm_history -= 1
            if max_llm_history < 2:
                error_message = "Token limit exceeded. Please shorten your input or start a new conversation."
                raise HTTPException(status_code=400, detail=error_message)

    try:
        response = or_client.chat.completions.create(
            model=model,
            messages=messages,
            max_tokens=max_output_tokens,
            stream=True
        )
        
        full_response = ""
        for chunk in response:
            if chunk.choices[0].delta.content is not None:
                content = chunk.choices[0].delta.content
                full_response += content
                yield content
        
        # After streaming, add the full response to the conversation history
        messages.append({"role": "assistant", "content": full_response})
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")

async def verify_api_key(api_key: str = Security(api_key_header)):
    if api_key != API_KEY:
        raise HTTPException(status_code=403, detail="Could not validate credentials")
    return api_key

# SQLite setup
DB_PATH = '/app/data/conversations.db'

def init_db():
    os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
    conn = sqlite3.connect(DB_PATH)
    c = conn.cursor()
    c.execute('''CREATE TABLE IF NOT EXISTS conversations
                 (id INTEGER PRIMARY KEY AUTOINCREMENT,
                  user_id TEXT,
                  conversation_id TEXT,
                  message TEXT,
                  response TEXT,
                  timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
    conn.commit()
    conn.close()

init_db()

def update_db(user_id, conversation_id, message, response):
    conn = sqlite3.connect(DB_PATH)
    c = conn.cursor()
    c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
                 VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
    conn.commit()
    conn.close()

async def clear_inactive_conversations():
    while True:
        current_time = time.time()
        inactive_convos = [conv_id for conv_id, last_time in last_activity.items() 
                           if current_time - last_time > 1800]  # 30 minutes
        for conv_id in inactive_convos:
            if conv_id in conversations:
                del conversations[conv_id]
            if conv_id in last_activity:
                del last_activity[conv_id]
        await asyncio.sleep(60)  # Check every minute

@app.on_event("startup")
async def startup_event():
    FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache")
    asyncio.create_task(clear_inactive_conversations())

@app.post("/coding-assistant")
async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
    """
    Coding assistant endpoint that provides programming help based on user queries.
    Available models:
    - meta-llama/llama-3-70b-instruct (default)
    - anthropic/claude-3.5-sonnet
    - deepseek/deepseek-coder
    - anthropic/claude-3-haiku
    - openai/gpt-3.5-turbo-instruct
    - qwen/qwen-72b-chat
    - google/gemma-2-27b-it
    Requires API Key authentication via X-API-Key header.
    """
    if query.conversation_id not in conversations:
        conversations[query.conversation_id] = [
            {"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."}
        ]
    
    conversations[query.conversation_id].append({"role": "user", "content": query.user_query})
    last_activity[query.conversation_id] = time.time()
    
    # Limit tokens in the conversation history
    limited_conversation = conversations[query.conversation_id]

    def process_response():
        full_response = ""
        for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
            full_response += content
            yield content
        background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response)

    return StreamingResponse(process_response(), media_type="text/event-stream")

# New functions for news assistant

def fetch_news(query, num_results=20):
    url = "https://api.search.brave.com/res/v1/news/search"
    headers = {
        "Accept": "application/json",
        "Accept-Encoding": "gzip",
        "X-Subscription-Token": api_keys["BRAVE_API_KEY"]
    }
    params = {"q": query}

    response = requests.get(url, headers=headers, params=params)

    if response.status_code == 200:
        news_data = response.json()
        return [
            {
                "title": item["title"],
                "snippet": item["extra_snippets"][0] if "extra_snippets" in item and item["extra_snippets"] else "",
                "last_updated": item.get("age", ""),
            }
            for item in news_data['results']
            if "extra_snippets" in item and item["extra_snippets"]
        ][:num_results]
    else:
        return []

@lru_cache(maxsize=100)
def cached_fetch_news(query: str):
    return fetch_news(query)


def analyze_news(query):
    news_data = cached_fetch_news(query)
    
    if not news_data:
        return "Failed to fetch news data.", []

    # Prepare the prompt for the AI
    # Use the imported function to generate the prompt (now includes today's date)
    prompt = generate_news_prompt(query, news_data)

    messages = [
        {"role": "system", "content": NEWS_ASSISTANT_PROMPT},
        {"role": "user", "content": prompt}
    ]

    return messages

@app.post("/news-assistant")
async def news_assistant(query: NewsQueryModel, api_key: str = Depends(verify_api_key)):
    """
    News assistant endpoint that provides summaries and analysis of recent news based on user queries.
    Requires API Key authentication via X-API-Key header.
    """
    messages = analyze_news(query.query)
    
    if not messages:
        raise HTTPException(status_code=500, detail="Failed to fetch news data")
        
    def process_response():
        for content in chat_with_llama_stream(messages, model="google/gemini-pro-1.5"):
            yield content

    return StreamingResponse(process_response(), media_type="text/event-stream")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)