Spaces:
Running
Running
File size: 9,638 Bytes
68394ea adb504f d3051c0 68394ea b1c8f17 26e0ddc d3051c0 68394ea 2bb5179 cbcfc90 62ab01b 26e0ddc b1c8f17 2e76cf7 adb504f 4bf6be6 adb504f d3051c0 b1c8f17 1fc729a d3051c0 68394ea 26e0ddc d3051c0 68394ea 26e0ddc 2bb5179 26e0ddc 2bb5179 26e0ddc d3051c0 26e0ddc 68394ea f8ac6db 68394ea bc4a455 f8ac6db 68394ea 26e0ddc f8ac6db d3051c0 adb504f 68394ea f8ac6db d3051c0 68394ea 26e0ddc d3051c0 adb504f 68394ea 5c4af3f 68394ea 5c4af3f 68394ea 5c4af3f 68394ea 62ab01b 68394ea d3051c0 68394ea d3051c0 adb504f d3051c0 68394ea f8ac6db 68394ea f8ac6db 68394ea 2fc91ef 2bb5179 62ab01b 2bb5179 16ef4d2 d1d878f e7c157d 2bb5179 e7c157d 2bb5179 cbcfc90 2bb5179 cbcfc90 2bb5179 337dba1 2bb5179 1e480e3 2bb5179 54210e7 adb504f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks
from fastapi.security import APIKeyHeader
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from typing import Literal, List, Dict
import os
from functools import lru_cache
from openai import OpenAI
from uuid import uuid4
import tiktoken
import sqlite3
import time
from datetime import datetime, timedelta
import asyncio
import requests
from prompts import CODING_ASSISTANT_PROMPT, NEWS_ASSISTANT_PROMPT, generate_news_prompt
from fastapi_cache import FastAPICache
from fastapi_cache.backends.inmemory import InMemoryBackend
from fastapi_cache.decorator import cache
app = FastAPI()
API_KEY_NAME = "X-API-Key"
API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
ModelID = Literal[
"meta-llama/llama-3-70b-instruct",
"anthropic/claude-3.5-sonnet",
"deepseek/deepseek-coder",
"anthropic/claude-3-haiku",
"openai/gpt-3.5-turbo-instruct",
"qwen/qwen-72b-chat",
"google/gemma-2-27b-it"
]
class QueryModel(BaseModel):
user_query: str = Field(..., description="User's coding query")
model_id: ModelID = Field(
default="meta-llama/llama-3-70b-instruct",
description="ID of the model to use for response generation"
)
conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
user_id: str = Field(..., description="Unique identifier for the user")
class Config:
schema_extra = {
"example": {
"user_query": "How do I implement a binary search in Python?",
"model_id": "meta-llama/llama-3-70b-instruct",
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
"user_id": "user123"
}
}
class NewsQueryModel(BaseModel):
query: str = Field(..., description="News topic to search for")
class Config:
schema_extra = {
"example": {
"query": "Latest developments in AI"
}
}
@lru_cache()
def get_api_keys():
return {
"OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
"BRAVE_API_KEY": os.environ['BRAVE_API_KEY']
}
api_keys = get_api_keys()
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")
# In-memory storage for conversations
conversations: Dict[str, List[Dict[str, str]]] = {}
last_activity: Dict[str, float] = {}
# Token encoding
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
def limit_tokens(input_string, token_limit=6000):
return encoding.decode(encoding.encode(input_string)[:token_limit])
def calculate_tokens(msgs):
return sum(len(encoding.encode(str(m))) for m in msgs)
def chat_with_llama_stream(messages, model="gpt-3.5-turbo", max_llm_history=4, max_output_tokens=2500):
while calculate_tokens(messages) > (8000 - max_output_tokens):
if len(messages) > max_llm_history:
messages = [messages[0]] + messages[-max_llm_history:]
else:
max_llm_history -= 1
if max_llm_history < 2:
error_message = "Token limit exceeded. Please shorten your input or start a new conversation."
raise HTTPException(status_code=400, detail=error_message)
try:
response = or_client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_output_tokens,
stream=True
)
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
full_response += content
yield content
# After streaming, add the full response to the conversation history
messages.append({"role": "assistant", "content": full_response})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")
async def verify_api_key(api_key: str = Security(api_key_header)):
if api_key != API_KEY:
raise HTTPException(status_code=403, detail="Could not validate credentials")
return api_key
# SQLite setup
DB_PATH = '/app/data/conversations.db'
def init_db():
os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS conversations
(id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id TEXT,
conversation_id TEXT,
message TEXT,
response TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
conn.commit()
conn.close()
init_db()
def update_db(user_id, conversation_id, message, response):
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
conn.commit()
conn.close()
async def clear_inactive_conversations():
while True:
current_time = time.time()
inactive_convos = [conv_id for conv_id, last_time in last_activity.items()
if current_time - last_time > 1800] # 30 minutes
for conv_id in inactive_convos:
if conv_id in conversations:
del conversations[conv_id]
if conv_id in last_activity:
del last_activity[conv_id]
await asyncio.sleep(60) # Check every minute
@app.on_event("startup")
async def startup_event():
FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache")
asyncio.create_task(clear_inactive_conversations())
@app.post("/coding-assistant")
async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Coding assistant endpoint that provides programming help based on user queries.
Available models:
- meta-llama/llama-3-70b-instruct (default)
- anthropic/claude-3.5-sonnet
- deepseek/deepseek-coder
- anthropic/claude-3-haiku
- openai/gpt-3.5-turbo-instruct
- qwen/qwen-72b-chat
- google/gemma-2-27b-it
Requires API Key authentication via X-API-Key header.
"""
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."}
]
conversations[query.conversation_id].append({"role": "user", "content": query.user_query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response)
return StreamingResponse(process_response(), media_type="text/event-stream")
# New functions for news assistant
def fetch_news(query, num_results=20):
url = "https://api.search.brave.com/res/v1/news/search"
headers = {
"Accept": "application/json",
"Accept-Encoding": "gzip",
"X-Subscription-Token": api_keys["BRAVE_API_KEY"]
}
params = {"q": query}
response = requests.get(url, headers=headers, params=params)
if response.status_code == 200:
news_data = response.json()
return [
{
"title": item["title"],
"snippet": item["extra_snippets"][0] if "extra_snippets" in item and item["extra_snippets"] else "",
"last_updated": item.get("age", ""),
}
for item in news_data['results']
if "extra_snippets" in item and item["extra_snippets"]
][:num_results]
else:
return []
@lru_cache(maxsize=100)
def cached_fetch_news(query: str):
return fetch_news(query)
def analyze_news(query):
news_data = cached_fetch_news(query)
if not news_data:
return "Failed to fetch news data.", []
# Prepare the prompt for the AI
# Use the imported function to generate the prompt (now includes today's date)
prompt = generate_news_prompt(query, news_data)
messages = [
{"role": "system", "content": NEWS_ASSISTANT_PROMPT},
{"role": "user", "content": prompt}
]
return messages
@app.post("/news-assistant")
async def news_assistant(query: NewsQueryModel, api_key: str = Depends(verify_api_key)):
"""
News assistant endpoint that provides summaries and analysis of recent news based on user queries.
Requires API Key authentication via X-API-Key header.
"""
messages = analyze_news(query.query)
if not messages:
raise HTTPException(status_code=500, detail="Failed to fetch news data")
def process_response():
for content in chat_with_llama_stream(messages, model="google/gemini-pro-1.5"):
yield content
return StreamingResponse(process_response(), media_type="text/event-stream")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |