Spaces:
Running
Running
File size: 9,484 Bytes
b1fa23d 466d5bb b1fa23d 466d5bb b1fa23d 466d5bb b1fa23d cc281d5 ec971eb 8b98f16 b1fa23d f48a49c b1fa23d 47473dd b1fa23d e9b52b9 b1fa23d 1f1d19b b1fa23d c65f2f6 cc281d5 c65f2f6 cc281d5 c65f2f6 cc281d5 c65f2f6 b1fa23d 5aac296 b1fa23d 1f1d19b b1fa23d 1f1d19b 47473dd 1f1d19b 47473dd 1f1d19b 5aac296 98f779e 47473dd 98f779e a2e6e86 8b98f16 b1fa23d 1f1d19b a2e6e86 8b98f16 a2e6e86 b1fa23d 98f779e b1fa23d 1f1d19b 9fa0fe5 b1fa23d af68b32 e9b52b9 129b060 b1fa23d e9b52b9 5909acd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# !pip install mistune
import mistune
from mistune.plugins.table import table
from jinja2 import Template
import re
import os
def md_to_html(md_text):
renderer = mistune.HTMLRenderer()
markdown_renderer = mistune.Markdown(renderer, plugins=[table])
html_content = markdown_renderer(md_text)
return html_content.replace('\n', '')
####------------------------------ OPTIONAL--> User id and persistant data storage-------------------------------------####
from datetime import datetime
import psycopg2
from dotenv import load_dotenv, find_dotenv
# Load environment variables from .env file
load_dotenv("keys.env")
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
BRAVE_API_KEY = os.getenv('BRAVE_API_KEY')
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
HELICON_API_KEY = os.getenv("HELICON_API_KEY")
SUPABASE_USER = os.environ['SUPABASE_USER']
SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD']
def insert_data(user_id, user_query, subtopic_query, response, html_report):
# Connect to your database
conn = psycopg2.connect(
dbname="postgres",
user=SUPABASE_USER,
password=SUPABASE_PASSWORD,
host="aws-0-us-west-1.pooler.supabase.com",
port="5432"
)
cur = conn.cursor()
insert_query = """
INSERT INTO research_pro_chat_v2 (user_id, user_query, subtopic_query, response, html_report, created_at)
VALUES (%s, %s, %s, %s, %s, %s);
"""
cur.execute(insert_query, (user_id,user_query, subtopic_query, response, html_report, datetime.now()))
conn.commit()
cur.close()
conn.close()
####-----------------------------------------------------END----------------------------------------------------------####
import ast
from fpdf import FPDF
import re
import pandas as pd
import nltk
import requests
import json
from retry import retry
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from brave import Brave
from fuzzy_json import loads
from half_json.core import JSONFixer
from openai import OpenAI
from together import Together
from urllib.parse import urlparse
import trafilatura
llm_default_small = "meta-llama/Llama-3-8b-chat-hf"
llm_default_medium = "meta-llama/Llama-3-70b-chat-hf"
SysPromptData = """You are expert in information extraction from the given context.
Steps to follow:
1. Check if relevant factual data regarding <USER QUERY> is present in the <SCRAPED DATA>.
- IF YES, extract the maximum relevant factual information related to <USER QUERY> from the <SCRAPED DATA>.
- IF NO, then return "N/A"
Rules to follow:
- Return N/A if information is not present in the scraped data.
- FORGET EVERYTHING YOU KNOW, Only output information that is present in the scraped data, DO NOT MAKE UP INFORMATION
"""
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
SysPromptSearch = """You are a search query generator, create a concise Google search query, focusing only on the main topic and omitting additional redundant details, include year if necessory, 2024, Do not add any additional comments. OUTPUT ONLY THE SEARCH QUERY
#Additional instructions:
##Use the following search operators if necessory
OR #to cover multiple topics
* #wildcard to match any word or phrase
AND #to include specific topics."""
import tiktoken # Used to limit tokens
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better
def limit_tokens(input_string, token_limit=7500):
"""
Limit tokens sent to the model
"""
return encoding.decode(encoding.encode(input_string)[:token_limit])
together_client = OpenAI(
api_key=TOGETHER_API_KEY,
base_url="https://together.hconeai.com/v1",
default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"})
groq_client = OpenAI(
api_key=GROQ_API_KEY,
base_url="https://groq.hconeai.com/openai/v1",
default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"})
# Groq model names
llm_default_small = "llama3-8b-8192"
llm_default_medium = "llama3-70b-8192"
# Together Model names (fallback)
llm_fallback_small = "meta-llama/Llama-3-8b-chat-hf"
llm_fallback_medium = "meta-llama/Llama-3-70b-chat-hf"
### ------END OF LLM CONFIG-------- ###
def together_response(message, model = llm_default_small, SysPrompt = SysPromptDefault, temperature=0.2, frequency_penalty =0.1, max_tokens= 2000):
messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}]
params = {
"model": model,
"messages": messages,
"temperature": temperature,
"frequency_penalty": frequency_penalty,
"max_tokens": max_tokens
}
try:
response = groq_client.chat.completions.create(**params)
return response.choices[0].message.content
except Exception as e:
print(f"Error calling GROQ API: {e}")
params["model"] = llm_fallback_small if model == llm_default_small else llm_fallback_medium
response = together_client.chat.completions.create(**params)
return response.choices[0].message.content
def json_from_text(text):
"""
Extracts JSON from text using regex and fuzzy JSON loading.
"""
try:
return json.loads(text)
except:
match = re.search(r'\{[\s\S]*\}', text)
if match:
json_out = match.group(0)
else:
json_out = text
# Use Fuzzy JSON loading
return loads(json_out)
def remove_stopwords(text):
stop_words = set(stopwords.words('english'))
words = word_tokenize(text)
filtered_text = [word for word in words if word.lower() not in stop_words]
return ' '.join(filtered_text)
def rephrase_content(data_format, content, query):
if data_format == "Structured data":
return together_response(f"""
<SCRAPED DATA>{content}</SCRAPED DATA>
extract the maximum relevant factual information covering all aspects of <USER QUERY>{query}</USER QUERY> ONLY IF AVAILABLE in the scraped data.""",
SysPrompt=SysPromptData,
max_tokens=900,
)
elif data_format == "Quantitative data":
return together_response(
f"return only the numerical or quantitative data regarding the query: {{{query}}} structured into .md tables, using the scraped context:{{{limit_tokens(content,token_limit=1000)}}}",
SysPrompt=SysPromptData,
max_tokens=500,
)
else:
return together_response(
f"return only the factual information regarding the query: {{{query}}} using the scraped context:{{{limit_tokens(content,token_limit=1000)}}}",
SysPrompt=SysPromptData,
max_tokens=500,
)
class Scraper:
def __init__(self, user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"):
self.session = requests.Session()
self.session.headers.update({"User-Agent": user_agent})
@retry(tries=3, delay=1)
def fetch_content(self, url):
try:
response = self.session.get(url, timeout=2)
if response.status_code == 200:
return response.text
except requests.exceptions.RequestException as e:
print(f"Error fetching page content for {url}: {e}")
return None
def extract_main_content(html):
extracted = trafilatura.extract(
html,
output_format="markdown",
target_language="en",
include_tables=True,
include_images=False,
include_links=False,
deduplicate=True,
)
if extracted:
return trafilatura.utils.sanitize(extracted)
else:
return ""
def process_content(data_format, url, query):
scraper = Scraper()
html_content = scraper.fetch_content(url)
if html_content:
content = extract_main_content(html_content)
if content:
rephrased_content = rephrase_content(
data_format=data_format,
content=limit_tokens(remove_stopwords(content), token_limit=4000),
query=query,
)
return rephrased_content, url
return "", url
def fetch_and_extract_content(data_format, urls, query):
with ThreadPoolExecutor(max_workers=len(urls)) as executor:
future_to_url = {
executor.submit(process_content, data_format, url, query): url
for url in urls
}
all_text_with_urls = [future.result() for future in as_completed(future_to_url)]
return all_text_with_urls
#@retry(tries=3, delay=0.25)
def search_brave(query, num_results=5):
cleaned_query = query #re.sub(r'[^a-zA-Z0-9]+', '', query)
search_query = together_response(cleaned_query, model=llm_default_small, SysPrompt=SysPromptSearch, max_tokens = 25).strip()
cleaned_search_query = search_query #re.sub(r'[^a-zA-Z0-9*]+', '', search_query)
brave = Brave(BRAVE_API_KEY)
search_results = brave.search(q=cleaned_search_query, count=num_results)
return [url.__str__() for url in search_results.urls],cleaned_search_query
|