Spaces:
Running
Running
File size: 12,561 Bytes
b1fa23d 466d5bb b1fa23d 466d5bb b1fa23d 8a07fcd 5c21bed 466d5bb 5c21bed 51bde52 b1fa23d 6343686 b1fa23d 6343686 b1fa23d cc281d5 ec971eb 8b98f16 b1fa23d f48a49c b1fa23d 5a22824 47473dd 5a22824 47473dd 5a22824 b1fa23d e9b52b9 9078d82 b1fa23d 1f1d19b b1fa23d c65f2f6 cc281d5 c65f2f6 6343686 c65f2f6 cc281d5 c65f2f6 cc281d5 c65f2f6 b1fa23d 6343686 b1fa23d 5aac296 b1fa23d 1f1d19b 9078d82 2d9fd73 8a07fcd 98f779e a2e6e86 8b98f16 b1fa23d 1f1d19b 8a07fcd a2e6e86 8b98f16 a2e6e86 b1fa23d 98f779e b1fa23d 5587fb8 af68b32 e9b52b9 429f179 5587fb8 b67e430 5587fb8 9df33fa 5587fb8 8a07fcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
# !pip install mistune
import mistune
from mistune.plugins.table import table
from jinja2 import Template
import re
import os
import hrequests
import markdown
def md_to_html(md_text):
html_content = markdown.markdown(md_text,extensions=["extra"])
return html_content.replace('\n', '')
def has_tables(html_string):
try:
# Use BeautifulSoup with lxml parser
soup = BeautifulSoup(html_string, 'lxml')
# First, try BeautifulSoup's find_all method
if soup.find_all('table'):
return True
# If no tables found, try a more aggressive search using lxml's XPath
tree = etree.HTML(str(soup))
return len(tree.xpath('//table')) > 0
except Exception as e:
# Log the exception if needed
print(f"An error occurred: {str(e)}")
return False
def extract_data_from_tag(input_string, tag):
# Create the regex pattern
pattern = f'<{tag}.*?>(.*?)</{tag}>'
# Find all matches
matches = re.findall(pattern, input_string, re.DOTALL)
# If matches are found, return them joined by newlines
if matches:
out = '\n'.join(match.strip() for match in matches)
# Check for incorrect tagging
if len(out) > 0.8*len(input_string):
return out
else:
return input_string
# If no matches are found, return the original string
return input_string
####------------------------------ OPTIONAL--> User id and persistant data storage-------------------------------------####
from datetime import datetime
import psycopg2
from dotenv import load_dotenv, find_dotenv
# Load environment variables from .env file
load_dotenv("keys.env")
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
BRAVE_API_KEY = os.getenv('BRAVE_API_KEY')
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
HELICON_API_KEY = os.getenv("HELICON_API_KEY")
SUPABASE_USER = os.environ['SUPABASE_USER']
SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD']
OPENROUTER_API_KEY = os.environ['OPENROUTER_API_KEY']
def insert_data(user_id, user_query, subtopic_query, response, html_report):
# Connect to your database
conn = psycopg2.connect(
dbname="postgres",
user=SUPABASE_USER,
password=SUPABASE_PASSWORD,
host="aws-0-us-west-1.pooler.supabase.com",
port="5432"
)
cur = conn.cursor()
insert_query = """
INSERT INTO research_pro_chat_v2 (user_id, user_query, subtopic_query, response, html_report, created_at)
VALUES (%s, %s, %s, %s, %s, %s);
"""
cur.execute(insert_query, (user_id,user_query, subtopic_query, response, html_report, datetime.now()))
conn.commit()
cur.close()
conn.close()
####-----------------------------------------------------END----------------------------------------------------------####
import ast
from fpdf import FPDF
import re
import pandas as pd
import nltk
import requests
import json
from retry import retry
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from brave import Brave
from fuzzy_json import loads
from half_json.core import JSONFixer
from openai import OpenAI
from together import Together
from urllib.parse import urlparse
import trafilatura
llm_default_small = "meta-llama/Llama-3-8b-chat-hf"
llm_default_medium = "meta-llama/Llama-3-70b-chat-hf"
# SysPromptData = """You are expert in information extraction from the given context.
# Steps to follow:
# 1. Check if relevant factual data regarding <USER QUERY> is present in the <SCRAPED DATA>.
# - IF YES, extract the maximum relevant factual information related to <USER QUERY> from the <SCRAPED DATA>.
# - IF NO, then return "N/A"
# Rules to follow:
# - Return N/A if information is not present in the scraped data.
# - FORGET EVERYTHING YOU KNOW, Only output information that is present in the scraped data, DO NOT MAKE UP INFORMATION
# """
SysPromptData = """
You are an AI assistant tasked with extracting relevant information from scraped website data based on a given query. Your goal is to provide accurate and concise information that directly relates to the query, using only the data provided.
Guidelines for extraction:
1. Only use information present in the scraped data.
2. Focus on extracting facts, tables, and direct quotes that are relevant to the query.
3. If there is no relevant information in the scraped data, state that clearly.
4. Do not make assumptions or add information not present in the data.
5. If the query is ambiguous, interpret it in the most reasonable way based on the available data.
"""
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
SysPromptSearch = """You are a search query generator, create a concise Google search query, focusing only on the main topic and omitting additional redundant details, include year if necessory, 2024, Do not add any additional comments. OUTPUT ONLY THE SEARCH QUERY
#Additional instructions:
##Use the following search operator if necessory
OR #to cover multiple topics"""
import tiktoken # Used to limit tokens
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better
def limit_tokens(input_string, token_limit=7500):
"""
Limit tokens sent to the model
"""
return encoding.decode(encoding.encode(input_string)[:token_limit])
together_client = OpenAI(
api_key=TOGETHER_API_KEY,
base_url="https://together.hconeai.com/v1",
default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"})
groq_client = OpenAI(
api_key=GROQ_API_KEY,
base_url="https://groq.hconeai.com/openai/v1",
default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"})
or_client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=OPENROUTER_API_KEY)
# Groq model names
llm_default_small = "llama3-8b-8192"
llm_default_medium = "llama3-70b-8192"
# Together Model names (fallback)
llm_fallback_small = "meta-llama/Llama-3-8b-chat-hf"
llm_fallback_medium = "meta-llama/Llama-3-70b-chat-hf"
### ------END OF LLM CONFIG-------- ###
def together_response(message, model = llm_default_small, SysPrompt = SysPromptDefault, temperature=0.2, frequency_penalty =0.1, max_tokens= 2000):
messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}]
params = {
"model": model,
"messages": messages,
"temperature": temperature,
"frequency_penalty": frequency_penalty,
"max_tokens": max_tokens
}
try:
response = groq_client.chat.completions.create(**params)
return response.choices[0].message.content
except Exception as e:
print(f"Error calling GROQ API: {e}")
params["model"] = llm_fallback_small if model == llm_default_small else llm_fallback_medium
response = together_client.chat.completions.create(**params)
return response.choices[0].message.content
def openrouter_response(messages,model="meta-llama/llama-3-70b-instruct:nitro"):
response = or_client.chat.completions.create(
model=model,
messages=messages,
max_tokens=4096,
)
return response.choices[0].message.content
def json_from_text(text):
"""
Extracts JSON from text using regex and fuzzy JSON loading.
"""
try:
return json.loads(text)
except:
match = re.search(r'\{[\s\S]*\}', text)
if match:
json_out = match.group(0)
else:
json_out = text
# Use Fuzzy JSON loading
return loads(json_out)
def remove_stopwords(text):
stop_words = set(stopwords.words('english'))
words = word_tokenize(text)
filtered_text = [word for word in words if word.lower() not in stop_words]
return ' '.join(filtered_text)
def rephrase_content(data_format, content, query):
try:
if data_format == "Structured data":
return together_response(
f"""return only the relevant information regarding the query: {{{query}}}. Output should be concise chunks of \
paragraphs or tables or both, extracted from the following scraped context {{{limit_tokens(content,token_limit=2000)}}}""",
SysPrompt=SysPromptData,
max_tokens=900,
)
elif data_format == "Quantitative data":
return together_response(
f"return only the numerical or quantitative data regarding the query: {{{query}}} structured into .md tables, using the scraped context:{{{limit_tokens(content,token_limit=2000)}}}",
SysPrompt=SysPromptData,
max_tokens=500,
)
else:
return together_response(
f"return only the relevant information regarding the query: {{{query}}} using the scraped context:{{{limit_tokens(content,token_limit=2000)}}}",
SysPrompt=SysPromptData,
max_tokens=500,
)
except Exception as e:
print(f"An error occurred: {str(e)}")
return limit_tokens(content,token_limit=500)
def fetch_content(url):
try:
response = hrequests.get(url)
if response.status_code == 200:
return response.text
except Exception as e:
print(f"Error fetching page content for {url}: {e}")
return None
def extract_main_content(html):
extracted = trafilatura.extract(
html,
output_format="markdown",
target_language="en",
include_tables=True,
include_images=False,
include_links=False,
deduplicate=True,
)
if extracted:
return trafilatura.utils.sanitize(extracted)
else:
return ""
def process_content(data_format, url, query):
html_content = fetch_content(url)
if html_content:
content = extract_main_content(html_content)
if content:
rephrased_content = rephrase_content(
data_format=data_format,
content=limit_tokens(remove_stopwords(content), token_limit=4000),
query=query,
)
return rephrased_content, url
return "", url
def fetch_and_extract_content(data_format, urls, query):
with ThreadPoolExecutor(max_workers=len(urls)) as executor:
future_to_url = {
executor.submit(process_content, data_format, url, query): url
for url in urls
}
all_text_with_urls = [future.result() for future in as_completed(future_to_url)]
return all_text_with_urls
def search_brave(query, num_results=5):
"""Fetch search results from Brave's API."""
cleaned_query = query #re.sub(r'[^a-zA-Z0-9]+', '', query)
search_query = together_response(cleaned_query, model=llm_default_small, SysPrompt=SysPromptSearch, max_tokens = 25).strip()
cleaned_search_query = re.sub(r'[^\w\s]', '', search_query).strip() #re.sub(r'[^a-zA-Z0-9*]+', '', search_query)
url = "https://api.search.brave.com/res/v1/web/search"
headers = {
"Accept": "application/json",
"Accept-Encoding": "gzip",
"X-Subscription-Token": BRAVE_API_KEY
}
params = {"q": cleaned_search_query}
response = requests.get(url, headers=headers, params=params)
if response.status_code == 200:
result = response.json() # Return the JSON response if successful
return [item["url"] for item in result["web"]["results"]][:num_results],cleaned_search_query
else:
return [],cleaned_search_query # Return error code if not successful
# #@retry(tries=3, delay=0.25)
# def search_brave(query, num_results=5):
# cleaned_query = query #re.sub(r'[^a-zA-Z0-9]+', '', query)
# search_query = together_response(cleaned_query, model=llm_default_small, SysPrompt=SysPromptSearch, max_tokens = 25).strip()
# cleaned_search_query = re.sub(r'[^\w\s]', '', search_query).strip() #re.sub(r'[^a-zA-Z0-9*]+', '', search_query)
# brave = Brave(BRAVE_API_KEY)
# search_results = brave.search(q=cleaned_search_query, count=num_results)
# return [url.__str__() for url in search_results.urls],cleaned_search_query
|