File size: 18,413 Bytes
68394ea
adb504f
d3051c0
 
68394ea
b1c8f17
26e0ddc
d3051c0
68394ea
 
 
 
 
 
2bb5179
768bfff
62ab01b
 
 
4d0ec3e
 
 
 
 
 
 
 
 
 
 
 
26e0ddc
b1c8f17
2e76cf7
adb504f
4bf6be6
adb504f
 
d3051c0
751cd9f
d3051c0
 
 
 
 
 
 
 
b1c8f17
1fc729a
d3051c0
 
 
 
 
68394ea
 
26e0ddc
 
 
 
d3051c0
68394ea
 
 
26e0ddc
 
 
2bb5179
 
2e6b166
751cd9f
2e6b166
 
2bb5179
 
 
2e6b166
751cd9f
2bb5179
 
 
26e0ddc
 
4d0ec3e
26e0ddc
2bb5179
 
26e0ddc
 
d3051c0
 
26e0ddc
68394ea
 
 
 
 
 
 
 
 
 
 
768bfff
68394ea
751cd9f
4d0ec3e
68394ea
 
 
 
 
 
bc4a455
4d0ec3e
f8ac6db
68394ea
26e0ddc
f8ac6db
d3051c0
 
 
 
 
adb504f
68394ea
b4b055b
 
 
 
 
68394ea
 
 
4d0ec3e
26e0ddc
4d0ec3e
d3051c0
 
adb504f
 
4d0ec3e
adb504f
 
 
68394ea
5c4af3f
 
68394ea
4d0ec3e
5c4af3f
 
68394ea
 
 
 
 
 
 
 
 
 
4d0ec3e
68394ea
 
 
 
4d0ec3e
5c4af3f
68394ea
 
 
 
 
4d0ec3e
68394ea
 
 
4d0ec3e
68394ea
 
 
 
 
 
 
 
4d0ec3e
68394ea
 
 
 
4d0ec3e
62ab01b
68394ea
 
d3051c0
68394ea
768bfff
 
 
 
 
 
 
 
 
 
751cd9f
768bfff
 
4d0ec3e
68394ea
 
 
 
 
 
 
 
 
 
 
f8ac6db
68394ea
f8ac6db
68394ea
 
 
4d0ec3e
68394ea
 
2fc91ef
2bb5179
62ab01b
768bfff
4d0ec3e
768bfff
 
 
 
 
2bb5179
 
 
 
 
 
 
 
 
768bfff
4d0ec3e
b66bfbf
768bfff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d0ec3e
768bfff
2bb5179
16ef4d2
768bfff
4d0ec3e
768bfff
 
e7c157d
2bb5179
4d0ec3e
768bfff
2bb5179
 
4d0ec3e
2bb5179
 
 
cbcfc90
 
2bb5179
 
cbcfc90
2bb5179
 
 
4d0ec3e
2bb5179
 
 
 
768bfff
 
 
 
4d0ec3e
2bb5179
 
 
4d0ec3e
2bb5179
337dba1
2bb5179
2e6b166
2bb5179
4d0ec3e
 
dd91c47
 
113e85f
 
 
751cd9f
113e85f
 
 
 
 
 
 
 
 
 
 
4d0ec3e
113e85f
 
 
4d0ec3e
113e85f
 
 
 
 
 
 
 
 
 
4d0ec3e
113e85f
 
 
 
 
 
 
 
4d0ec3e
113e85f
 
 
4d0ec3e
113e85f
 
 
a5175b8
 
113e85f
a5175b8
113e85f
4d0ec3e
a5175b8
113e85f
768bfff
113e85f
effe83d
 
 
 
5d03011
effe83d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9b0058
 
 
 
 
effe83d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9b0058
effe83d
 
 
 
 
 
 
 
 
 
 
 
54210e7
 
4d0ec3e
adb504f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks
from fastapi.security import APIKeyHeader
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from typing import Literal, List, Dict
import os
from functools import lru_cache
from openai import OpenAI
from uuid import uuid4
import tiktoken
import sqlite3
import time
from datetime import datetime, timedelta
import asyncio
import requests
from prompts import CODING_ASSISTANT_PROMPT, NEWS_ASSISTANT_PROMPT, generate_news_prompt, SEARCH_ASSISTANT_PROMPT, generate_search_prompt
from fastapi_cache import FastAPICache
from fastapi_cache.backends.inmemory import InMemoryBackend
from fastapi_cache.decorator import cache
import logging

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("app.log"),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

app = FastAPI()

API_KEY_NAME = "X-API-Key"
API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)

ModelID = Literal[
    "openai/gpt-4o-mini",
    "meta-llama/llama-3-70b-instruct",
    "anthropic/claude-3.5-sonnet",
    "deepseek/deepseek-coder",
    "anthropic/claude-3-haiku",
    "openai/gpt-3.5-turbo-instruct",
    "qwen/qwen-72b-chat",
    "google/gemma-2-27b-it"
]

class QueryModel(BaseModel):
    user_query: str = Field(..., description="User's coding query")
    model_id: ModelID = Field(
        default="meta-llama/llama-3-70b-instruct",
        description="ID of the model to use for response generation"
    )
    conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
    user_id: str = Field(..., description="Unique identifier for the user")

    class Config:
        schema_extra = {
            "example": {
                "user_query": "How do I implement a binary search in Python?",
                "model_id": "meta-llama/llama-3-70b-instruct",
                "conversation_id": "123e4567-e89b-12d3-a456-426614174000",
                "user_id": "user123"
            }
        }

class NewsQueryModel(BaseModel):
    query: str = Field(..., description="News topic to search for")
    model_id: ModelID = Field(
        default="openai/gpt-4o-mini",
        description="ID of the model to use for response generation"
    )
    class Config:
        schema_extra = {
            "example": {
                "query": "Latest developments in AI",
                "model_id": "openai/gpt-4o-mini"
            }
        }

@lru_cache()
def get_api_keys():
    logger.info("Loading API keys")
    return {
        "OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
        "BRAVE_API_KEY": os.environ['BRAVE_API_KEY']
    }

api_keys = get_api_keys()
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")

# In-memory storage for conversations
conversations: Dict[str, List[Dict[str, str]]] = {}
last_activity: Dict[str, float] = {}

# Token encoding
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")

def limit_tokens(input_string, token_limit=6000):
    return encoding.decode(encoding.encode(input_string)[:token_limit])

def calculate_tokens(msgs):
    return sum(len(encoding.encode(str(m))) for m in msgs)

def chat_with_llama_stream(messages, model="openai/gpt-4o-mini", max_llm_history=4, max_output_tokens=2500):
    logger.info(f"Starting chat with model: {model}")
    while calculate_tokens(messages) > (8000 - max_output_tokens):
        if len(messages) > max_llm_history:
            messages = [messages[0]] + messages[-max_llm_history:]
        else:
            max_llm_history -= 1
            if max_llm_history < 2:
                error_message = "Token limit exceeded. Please shorten your input or start a new conversation."
                logger.error(error_message)
                raise HTTPException(status_code=400, detail=error_message)

    try:
        response = or_client.chat.completions.create(
            model=model,
            messages=messages,
            max_tokens=max_output_tokens,
            stream=True
        )
        
        full_response = ""
        for chunk in response:
            if chunk.choices[0].delta.content is not None:
                content = chunk.choices[0].delta.content
                full_response += content
                yield content
        
        # After streaming, add the full response to the conversation history
        messages.append({"role": "assistant", "content": full_response})
        logger.info("Chat completed successfully")
    except Exception as e:
        logger.error(f"Error in model response: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")

async def verify_api_key(api_key: str = Security(api_key_header)):
    if api_key != API_KEY:
        logger.warning("Invalid API key used")
        raise HTTPException(status_code=403, detail="Could not validate credentials")
    return api_key

# SQLite setup
DB_PATH = '/app/data/conversations.db'

def init_db():
    logger.info("Initializing database")
    os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
    conn = sqlite3.connect(DB_PATH)
    c = conn.cursor()
    c.execute('''CREATE TABLE IF NOT EXISTS conversations
                 (id INTEGER PRIMARY KEY AUTOINCREMENT,
                  user_id TEXT,
                  conversation_id TEXT,
                  message TEXT,
                  response TEXT,
                  timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
    conn.commit()
    conn.close()
    logger.info("Database initialized successfully")

init_db()

def update_db(user_id, conversation_id, message, response):
    logger.info(f"Updating database for conversation: {conversation_id}")
    conn = sqlite3.connect(DB_PATH)
    c = conn.cursor()
    c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
                 VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
    conn.commit()
    conn.close()
    logger.info("Database updated successfully")

async def clear_inactive_conversations():
    while True:
        logger.info("Clearing inactive conversations")
        current_time = time.time()
        inactive_convos = [conv_id for conv_id, last_time in last_activity.items() 
                           if current_time - last_time > 1800]  # 30 minutes
        for conv_id in inactive_convos:
            if conv_id in conversations:
                del conversations[conv_id]
            if conv_id in last_activity:
                del last_activity[conv_id]
        logger.info(f"Cleared {len(inactive_convos)} inactive conversations")
        await asyncio.sleep(60)  # Check every minute

@app.on_event("startup")
async def startup_event():
    logger.info("Starting up the application")
    FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache")
    asyncio.create_task(clear_inactive_conversations())

@app.post("/coding-assistant")
async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
    """
    Coding assistant endpoint that provides programming help based on user queries.
    Available models:
    - meta-llama/llama-3-70b-instruct (default)
    - anthropic/claude-3.5-sonnet
    - deepseek/deepseek-coder
    - anthropic/claude-3-haiku
    - openai/gpt-3.5-turbo-instruct
    - qwen/qwen-72b-chat
    - google/gemma-2-27b-it
    - openai/gpt-4o-mini
    Requires API Key authentication via X-API-Key header.
    """
    logger.info(f"Received coding assistant query: {query.user_query}")
    if query.conversation_id not in conversations:
        conversations[query.conversation_id] = [
            {"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."}
        ]
    
    conversations[query.conversation_id].append({"role": "user", "content": query.user_query})
    last_activity[query.conversation_id] = time.time()
    
    # Limit tokens in the conversation history
    limited_conversation = conversations[query.conversation_id]

    def process_response():
        full_response = ""
        for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
            full_response += content
            yield content
        background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response)
        logger.info(f"Completed coding assistant response for query: {query.user_query}")

    return StreamingResponse(process_response(), media_type="text/event-stream")

# New functions for news assistant

def internet_search(query, type = "web", num_results=20):
    logger.info(f"Performing internet search for query: {query}, type: {type}")
    if type == "web":
        url = "https://api.search.brave.com/res/v1/web/search"
    else:
        url = "https://api.search.brave.com/res/v1/news/search"

    headers = {
        "Accept": "application/json",
        "Accept-Encoding": "gzip",
        "X-Subscription-Token": api_keys["BRAVE_API_KEY"]
    }
    params = {"q": query}

    response = requests.get(url, headers=headers, params=params)

    if response.status_code != 200:
        logger.error(f"Failed to fetch search results. Status code: {response.status_code}")
        return []
    
    if type == "web":
        search_data = response.json()["web"]["results"]
    else:
        search_data = response.json()["results"]
    processed_results = []

    for item in search_data:
        if not item.get("extra_snippets"):
            continue
        
        result = {
            "title": item["title"],
            "snippet": item["extra_snippets"][0],
            "last_updated": item.get("age", "")
        }
        processed_results.append(result)

    logger.info(f"Retrieved {len(processed_results)} search results")
    return processed_results[:num_results]

@lru_cache(maxsize=100)
def cached_internet_search(query: str):
    logger.info(f"Performing cached internet search for query: {query}")
    return internet_search(query, type = "news")


def analyze_news(query):
    logger.info(f"Analyzing news for query: {query}")
    news_data = cached_internet_search(query)
    
    if not news_data:
        logger.error("Failed to fetch news data")
        return "Failed to fetch news data.", []

    # Prepare the prompt for the AI
    # Use the imported function to generate the prompt (now includes today's date)
    prompt = generate_news_prompt(query, news_data)

    messages = [
        {"role": "system", "content": NEWS_ASSISTANT_PROMPT},
        {"role": "user", "content": prompt}
    ]

    logger.info("News analysis completed")
    return messages

@app.post("/news-assistant")
async def news_assistant(query: NewsQueryModel, api_key: str = Depends(verify_api_key)):
    """
    News assistant endpoint that provides summaries and analysis of recent news based on user queries.
    Requires API Key authentication via X-API-Key header.
    """
    logger.info(f"Received news assistant query: {query.query}")
    messages = analyze_news(query.query)
    
    if not messages:
        logger.error("Failed to fetch news data")
        raise HTTPException(status_code=500, detail="Failed to fetch news data")
        
    def process_response():
        for content in chat_with_llama_stream(messages, model=query.model_id):
            yield content
        logger.info(f"Completed news assistant response for query: {query.query}")

    return StreamingResponse(process_response(), media_type="text/event-stream")

class SearchQueryModel(BaseModel):
    query: str = Field(..., description="Search query")
    model_id: ModelID = Field(
        default="openai/gpt-4o-mini",
        description="ID of the model to use for response generation"
    )
    class Config:
        schema_extra = {
            "example": {
                "query": "What are the latest advancements in quantum computing?",
                "model_id": "meta-llama/llama-3-70b-instruct"
            }
        }

def analyze_search_results(query):
    logger.info(f"Analyzing search results for query: {query}")
    search_data = internet_search(query, type="web")
    
    if not search_data:
        logger.error("Failed to fetch search data")
        return "Failed to fetch search data.", []

    # Prepare the prompt for the AI
    prompt = generate_search_prompt(query, search_data)

    messages = [
        {"role": "system", "content": SEARCH_ASSISTANT_PROMPT},
        {"role": "user", "content": prompt}
    ]

    logger.info("Search results analysis completed")
    return messages

@app.post("/search-assistant")
async def search_assistant(query: SearchQueryModel, api_key: str = Depends(verify_api_key)):
    """
    Search assistant endpoint that provides summaries and analysis of web search results based on user queries.
    Requires API Key authentication via X-API-Key header.
    """
    logger.info(f"Received search assistant query: {query.query}")
    messages = analyze_search_results(query.query)
    
    if not messages:
        logger.error("Failed to fetch search data")
        raise HTTPException(status_code=500, detail="Failed to fetch search data")
        
    def process_response():
        logger.info(f"Generating response using LLM: {messages}")
        full_response = ""
        for content in chat_with_llama_stream(messages, model=query.model_id):
            full_response+=content
            yield content
        logger.info(f"Completed search assistant response for query: {query.query}")
        logger.info(f"LLM Response: {full_response}")

    return StreamingResponse(process_response(), media_type="text/event-stream")


from pydantic import BaseModel, Field
import yaml
import json
from yaml.loader import SafeLoader

class FollowupQueryModel(BaseModel):
    query: str = Field(..., description="User's query for the followup agent")
    model_id: ModelID = Field(
        default="openai/gpt-4o-mini",
        description="ID of the model to use for response generation"
    )
    conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
    user_id: str = Field(..., description="Unique identifier for the user")

    class Config:
        schema_extra = {
            "example": {
                "query": "How can I improve my productivity?",
                "model_id": "openai/gpt-4o-mini",
                "conversation_id": "123e4567-e89b-12d3-a456-426614174000",
                "user_id": "user123"
            }
        }

FOLLOWUP_AGENT_PROMPT = """
You are a helpful assistant with the following skills, use them, as necessary. If the user request needs further clarification, analyze it and generate clarifying questions with options. Else respond with a helpful answer.  <response>response to user request in markdown</response> <clarification> questions:   - text: [First clarifying question]     options:       - [Option 1]       - [Option 2]       - [Option 3]       - [Option 4 (if needed)]   - text: [Second clarifying question]     options:       - [Option 1]       - [Option 2]       - [Option 3]   # Add more questions as needed    # make sure this section is in valid YAML format </clarification>
"""

def parse_followup_response(response):
    response_parts = response.split("<response>")
    if len(response_parts) > 1:
        response_content = response_parts[1].split("</response>")[0].strip()
    else:
        response_content = ""

    clarification_parts = response.split("<clarification>")
    if len(clarification_parts) > 1:
        clarification_yaml = clarification_parts[1].split("</clarification>")[0].strip()
        try:
            # Add indentation to make it valid YAML
            indented_yaml = "\n".join("  " + line for line in clarification_yaml.split("\n"))
            clarification = yaml.load("questions:\n" + indented_yaml, Loader=SafeLoader)
        except yaml.YAMLError as e:
            logger.error(f"YAML parsing error: {e}")
            clarification = None
    else:
        clarification = None

    return response_content, clarification

@app.post("/followup-agent")
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
    """
    Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
    Requires API Key authentication via X-API-Key header.
    """
    logger.info(f"Received followup agent query: {query.query}")

    if query.conversation_id not in conversations:
        conversations[query.conversation_id] = [
            {"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
        ]
    
    conversations[query.conversation_id].append({"role": "user", "content": query.query})
    last_activity[query.conversation_id] = time.time()
    
    # Limit tokens in the conversation history
    limited_conversation = conversations[query.conversation_id]

    def process_response():
        full_response = ""
        for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
            full_response += content
            yield content
        
        response_content, clarification = parse_followup_response(full_response)
        
        result = {
            "response": response_content,
            "clarification": clarification['questions'] if clarification else None
        }
        
        yield "\n\n" + json.dumps(result)
        
        # Add the assistant's response to the conversation history
        conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
        
        background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
        logger.info(f"Completed followup agent response for query: {query.query}")

    return StreamingResponse(process_response(), media_type="text/event-stream")

if __name__ == "__main__":
    import uvicorn
    logger.info("Starting the application")
    uvicorn.run(app, host="0.0.0.0", port=7860)