File size: 13,199 Bytes
b1fa23d
466d5bb
 
b1fa23d
466d5bb
b1fa23d
8a07fcd
5c21bed
301ae10
 
 
466d5bb
 
5c21bed
51bde52
b1fa23d
6343686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1fa23d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5976ceb
b1fa23d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc281d5
ec971eb
8b98f16
b1fa23d
f48a49c
 
b1fa23d
5a22824
 
 
 
 
47473dd
5a22824
 
 
 
 
 
 
 
 
 
 
 
47473dd
5a22824
b1fa23d
e9b52b9
 
9078d82
 
b1fa23d
 
 
 
1f1d19b
b1fa23d
 
 
 
 
c65f2f6
cc281d5
 
 
c65f2f6
 
 
 
 
 
6343686
 
 
 
c65f2f6
 
 
 
 
 
 
 
 
 
 
cc281d5
 
c65f2f6
 
 
 
 
 
 
 
 
 
cc281d5
c65f2f6
 
 
 
 
b1fa23d
e261e6f
 
 
6343686
 
 
 
e261e6f
 
 
 
 
 
 
28a7c76
 
 
 
 
 
 
 
 
 
 
6343686
b1fa23d
 
 
 
 
5aac296
 
 
 
 
 
 
 
 
b1fa23d
 
 
 
 
 
 
1f1d19b
9078d82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d9fd73
8a07fcd
 
37e51f9
8a07fcd
 
 
 
 
98f779e
a2e6e86
8b98f16
 
 
 
 
 
 
 
 
 
 
 
 
 
b1fa23d
1f1d19b
8a07fcd
a2e6e86
 
 
 
 
8b98f16
a2e6e86
 
 
b1fa23d
 
98f779e
 
 
 
 
 
 
b1fa23d
 
 
 
5587fb8
 
af68b32
e9b52b9
429f179
5587fb8
 
 
 
 
 
 
 
 
 
 
 
 
8577c1d
5587fb8
9df33fa
5587fb8
 
 
 
 
 
 
 
8a07fcd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# !pip install mistune
import mistune
from mistune.plugins.table import table
from jinja2 import Template
import re
import os
import hrequests
import markdown
from bs4 import BeautifulSoup
from lxml import etree
import markdown

def md_to_html(md_text):
    html_content = markdown.markdown(md_text,extensions=["extra"])
    return html_content.replace('\n', '')

def has_tables(html_string):
    try:
        # Use BeautifulSoup with lxml parser
        soup = BeautifulSoup(html_string, 'lxml')
        
        # First, try BeautifulSoup's find_all method
        if soup.find_all('table'):
            return True
        
        # If no tables found, try a more aggressive search using lxml's XPath
        tree = etree.HTML(str(soup))
        return len(tree.xpath('//table')) > 0
    
    except Exception as e:
        # Log the exception if needed
        print(f"An error occurred: {str(e)}")
        return False

def extract_data_from_tag(input_string, tag):
    # Create the regex pattern
    pattern = f'<{tag}.*?>(.*?)</{tag}>'
    
    # Find all matches
    matches = re.findall(pattern, input_string, re.DOTALL)
    
    # If matches are found, return them joined by newlines
    if matches:
        out = '\n'.join(match.strip() for match in matches)
        # Check for incorrect tagging
        if len(out) > 0.8*len(input_string):
            return out
        else:
            return input_string
    
    # If no matches are found, return the original string
    return input_string

####------------------------------ OPTIONAL--> User id and persistant data storage-------------------------------------####
from datetime import datetime
import psycopg2

from dotenv import load_dotenv, find_dotenv

# Load environment variables from .env file
load_dotenv("keys.env")

TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
BRAVE_API_KEY = os.getenv('BRAVE_API_KEY')
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
HELICON_API_KEY = os.getenv("HELICON_API_KEY")
SUPABASE_USER = os.environ['SUPABASE_USER']
SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD']
OPENROUTER_API_KEY = "sk-or-v1-"+os.environ['OPENROUTER_API_KEY']

def insert_data(user_id, user_query, subtopic_query, response, html_report):
    # Connect to your database
    conn = psycopg2.connect(
    dbname="postgres",
    user=SUPABASE_USER,
    password=SUPABASE_PASSWORD,
    host="aws-0-us-west-1.pooler.supabase.com",
    port="5432"
)
    cur = conn.cursor()
    insert_query = """
    INSERT INTO research_pro_chat_v2 (user_id, user_query, subtopic_query, response, html_report, created_at)
    VALUES (%s, %s, %s, %s, %s, %s);
    """
    cur.execute(insert_query, (user_id,user_query, subtopic_query, response, html_report, datetime.now()))
    conn.commit()
    cur.close()
    conn.close()

####-----------------------------------------------------END----------------------------------------------------------####


import ast
from fpdf import FPDF
import re
import pandas as pd
import nltk
import requests
import json
from retry import retry
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from brave import Brave
from fuzzy_json import loads
from half_json.core import JSONFixer
from openai import OpenAI
from together import Together
from urllib.parse import urlparse
import trafilatura

llm_default_small = "meta-llama/Llama-3-8b-chat-hf"
llm_default_medium = "meta-llama/Llama-3-70b-chat-hf"

# SysPromptData = """You are expert in information extraction from the given context.
#                     Steps to follow:
#                     1. Check if relevant factual data regarding <USER QUERY> is present in the <SCRAPED DATA>.
#                        - IF YES, extract the maximum relevant factual information related to <USER QUERY> from the <SCRAPED DATA>.
#                        - IF NO, then return "N/A"
                    
#                     Rules to follow:
#                     - Return N/A if information is not present in the scraped data.
#                     - FORGET EVERYTHING YOU KNOW, Only output information that is present in the scraped data, DO NOT MAKE UP INFORMATION
#                 """
SysPromptData = """
You are an AI assistant tasked with extracting relevant information from scraped website data based on a given query. Your goal is to provide accurate and concise information that directly relates to the query, using only the data provided.
Guidelines for extraction:
1. Only use information present in the scraped data.
2. Focus on extracting facts, tables, and direct quotes that are relevant to the query.
3. If there is no relevant information in the scraped data, state that clearly.
4. Do not make assumptions or add information not present in the data.
5. If the query is ambiguous, interpret it in the most reasonable way based on the available data.
                """

SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
SysPromptSearch = """You are a search query generator, create a concise Google search query, focusing only on the main topic and omitting additional redundant details, include year if necessory, 2024, Do not add any additional comments. OUTPUT ONLY THE SEARCH QUERY
                        #Additional instructions:
                        ##Use the following search operator if necessory
                        OR #to cover multiple topics"""

import tiktoken # Used to limit tokens
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better

def limit_tokens(input_string, token_limit=7500):
    """
    Limit tokens sent to the model
    """
    return encoding.decode(encoding.encode(input_string)[:token_limit])

together_client = OpenAI(
        api_key=TOGETHER_API_KEY, 
        base_url="https://together.hconeai.com/v1", 
        default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"})

groq_client = OpenAI(
        api_key=GROQ_API_KEY, 
        base_url="https://groq.hconeai.com/openai/v1", 
        default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"})

or_client = OpenAI(
    base_url="https://openrouter.ai/api/v1",
    api_key=OPENROUTER_API_KEY)

# Groq model names
llm_default_small = "llama3-8b-8192"
llm_default_medium = "llama3-70b-8192"

# Together Model names (fallback)
llm_fallback_small = "meta-llama/Llama-3-8b-chat-hf"
llm_fallback_medium = "meta-llama/Llama-3-70b-chat-hf"

### ------END OF LLM CONFIG-------- ###

def together_response(message, model = llm_default_small, SysPrompt = SysPromptDefault, temperature=0.2, frequency_penalty =0.1, max_tokens= 2000):
    
    messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}]
    params = {
      "model": model,
      "messages": messages,
      "temperature": temperature,
      "frequency_penalty": frequency_penalty,
      "max_tokens": max_tokens
    }
    try:
      response = groq_client.chat.completions.create(**params)
      return response.choices[0].message.content
    
    except Exception as e:
      print(f"Error calling GROQ API: {e}")
      params["model"] = llm_fallback_small if model == llm_default_small else llm_fallback_medium 
      response = together_client.chat.completions.create(**params)
      return response.choices[0].message.content

def openrouter_response(messages, model="meta-llama/llama-3-70b-instruct:nitro"):
    try:
        response = or_client.chat.completions.create(
            model=model,
            messages=messages,
            max_tokens=4096,
        )
        
        response_message = response.choices[0].message.content
        return response_message
    except Exception as e:
        print(f"An error occurred: {str(e)}")
        return None

def openrouter_response_stream(messages, model="meta-llama/llama-3-70b-instruct:nitro"):
    response = or_client.chat.completions.create(
        model=model,
        messages=messages,
        max_tokens=4096,
        stream=True
    )
    
    for chunk in response:
        if chunk.choices[0].delta.content is not None:
            yield chunk.choices[0].delta.content

def json_from_text(text):
    """
    Extracts JSON from text using regex and fuzzy JSON loading.
    """
    try:
      return json.loads(text)
    except:
      match = re.search(r'\{[\s\S]*\}', text)
      if match:
        json_out = match.group(0)
      else:
        json_out = text
      # Use Fuzzy JSON loading
      return loads(json_out)

def remove_stopwords(text):
    stop_words = set(stopwords.words('english'))
    words = word_tokenize(text)
    filtered_text = [word for word in words if word.lower() not in stop_words]
    return ' '.join(filtered_text)

def rephrase_content(data_format, content, query):
    try:
        if data_format == "Structured data":
            return together_response(
                f"""return only the relevant information regarding the query: {{{query}}}. Output should be concise chunks of \
                paragraphs or tables or both, extracted from the following scraped context {{{limit_tokens(content,token_limit=2000)}}}""",
                SysPrompt=SysPromptData,
                max_tokens=900,
            )
        elif data_format == "Quantitative data":
            return together_response(
                f"return only the numerical or quantitative data regarding the query: {{{query}}} structured into .md tables, using the scraped context:{{{limit_tokens(content,token_limit=2000)}}}",
                SysPrompt=SysPromptData,
                max_tokens=500,
            )
        else:
            return together_response(
                f"return only the relevant information regarding the query: {{{query}}} using the scraped context:{{{limit_tokens(content,token_limit=2000)}}}",
                SysPrompt=SysPromptData,
                max_tokens=500,
            )
    except Exception as e:
        print(f"An error occurred: {str(e)}")
        return limit_tokens(content,token_limit=500)

def fetch_content(url):
    try:
        response = hrequests.get(url, timeout=5)
        if response.status_code == 200:
            return response.text
    except Exception as e:
        print(f"Error fetching page content for {url}: {e}")
    return None

def extract_main_content(html):
    extracted = trafilatura.extract(
        html,
        output_format="markdown",
        target_language="en",
        include_tables=True,
        include_images=False,
        include_links=False,
        deduplicate=True,
    )
    
    if extracted:
        return trafilatura.utils.sanitize(extracted)
    else:
        return ""

def process_content(data_format, url, query):
    html_content = fetch_content(url)
    if html_content:
        content = extract_main_content(html_content)
        if content:
            rephrased_content = rephrase_content(
                data_format=data_format,
                content=limit_tokens(remove_stopwords(content), token_limit=4000),
                query=query,
            )
            return rephrased_content, url
    return "", url

def fetch_and_extract_content(data_format, urls, query):
    with ThreadPoolExecutor(max_workers=len(urls)) as executor:
        future_to_url = {
            executor.submit(process_content, data_format, url, query): url
            for url in urls
        }
        all_text_with_urls = [future.result() for future in as_completed(future_to_url)]

    return all_text_with_urls

def search_brave(query, num_results=5):
    """Fetch search results from Brave's API."""
    
    cleaned_query = query #re.sub(r'[^a-zA-Z0-9]+', '', query)
    search_query = together_response(cleaned_query, model=llm_default_small, SysPrompt=SysPromptSearch, max_tokens = 25).strip()
    cleaned_search_query = re.sub(r'[^\w\s]', '', search_query).strip() #re.sub(r'[^a-zA-Z0-9*]+', '', search_query)
    
    url = "https://api.search.brave.com/res/v1/web/search"
    headers = {
        "Accept": "application/json",
        "Accept-Encoding": "gzip",
        "X-Subscription-Token": BRAVE_API_KEY 
    }
    params = {"q": cleaned_search_query}
    
    response = requests.get(url, headers=headers, params=params)
    
    if response.status_code == 200:
        result = response.json()  # Return the JSON response if successful
        return [item["url"] for item in result["web"]["results"]][:num_results],cleaned_search_query, result
    else:
        return [],cleaned_search_query  # Return error code if not successful

# #@retry(tries=3, delay=0.25)
# def search_brave(query, num_results=5):
#     cleaned_query = query #re.sub(r'[^a-zA-Z0-9]+', '', query)
#     search_query = together_response(cleaned_query, model=llm_default_small, SysPrompt=SysPromptSearch, max_tokens = 25).strip()
#     cleaned_search_query = re.sub(r'[^\w\s]', '', search_query).strip() #re.sub(r'[^a-zA-Z0-9*]+', '', search_query)
#     brave = Brave(BRAVE_API_KEY)
#     search_results = brave.search(q=cleaned_search_query, count=num_results)
#     return [url.__str__() for url in search_results.urls],cleaned_search_query