Spaces:
Running
Running
File size: 10,037 Bytes
b1fa23d 466d5bb b1fa23d 466d5bb b1fa23d 466d5bb b1fa23d 19d925a c21e8e6 b1fa23d 5e64525 b1fa23d 5e64525 b1fa23d 5e64525 b1fa23d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# !pip install mistune
import mistune
from mistune.plugins.table import table
from jinja2 import Template
import re
import os
def md_to_html(md_text):
renderer = mistune.HTMLRenderer()
markdown_renderer = mistune.Markdown(renderer, plugins=[table])
html_content = markdown_renderer(md_text)
return html_content.replace('\n', '')
####------------------------------ OPTIONAL--> User id and persistant data storage-------------------------------------####
from datetime import datetime
import psycopg2
from dotenv import load_dotenv, find_dotenv
# Load environment variables from .env file
load_dotenv("keys.env")
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
BRAVE_API_KEY = os.getenv('BRAVE_API_KEY')
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
HELICON_API_KEY = os.getenv("HELICON_API_KEY")
SUPABASE_USER = os.environ['SUPABASE_USER']
SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD']
def insert_data(user_id, user_query, subtopic_query, response, html_report):
# Connect to your database
conn = psycopg2.connect(
dbname="postgres",
user=SUPABASE_USER,
password=SUPABASE_PASSWORD,
host="aws-0-us-west-1.pooler.supabase.com",
port="5432"
)
cur = conn.cursor()
insert_query = """
INSERT INTO research_pro_chat_v2 (user_id, user_query, subtopic_query, response, html_report, created_at)
VALUES (%s, %s, %s, %s, %s, %s);
"""
cur.execute(insert_query, (user_id,user_query, subtopic_query, response, html_report, datetime.now()))
conn.commit()
cur.close()
conn.close()
####-----------------------------------------------------END----------------------------------------------------------####
import ast
from fpdf import FPDF
import re
import pandas as pd
import nltk
import requests
import json
from retry import retry
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from brave import Brave
from fuzzy_json import loads
from half_json.core import JSONFixer
from openai import OpenAI
llm_default_small = "llama3-8b-8192"
llm_default_medium = "llama3-70b-8192"
SysPromptJson = "You are now in the role of an expert AI who can extract structured information from user request. Both key and value pairs must be in double quotes. You must respond ONLY with a valid JSON file. Do not add any additional comments."
SysPromptList = "You are now in the role of an expert AI who can extract structured information from user request. All elements must be in double quotes. You must respond ONLY with a valid python List. Do not add any additional comments."
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
import tiktoken # Used to limit tokens
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better
def limit_tokens(input_string, token_limit=8000):
"""
Limit tokens sent to the model
"""
return encoding.decode(encoding.encode(input_string)[:token_limit])
def together_response(message, model=llm_default_small, SysPrompt = SysPromptDefault,temperature=0.2):
client = OpenAI(
api_key=GROQ_API_KEY,
base_url="https://gateway.hconeai.com/openai/v1",
default_headers={
"Helicone-Auth": f"Bearer {HELICON_API_KEY}",
"Helicone-Target-Url": "https://api.groq.com"
}
)
messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
)
return response.choices[0].message.content
def json_from_text(text):
"""
Extracts JSON from text using regex and fuzzy JSON loading.
"""
match = re.search(r'\{[\s\S]*\}', text)
if match:
json_out = match.group(0)
else:
json_out = text
try:
# Using fuzzy json loader
return loads(json_out)
except Exception:
# Using JSON fixer/ Fixes even half json/ Remove if you need an exception
fix_json = JSONFixer()
return loads(fix_json.fix(json_out).line)
def remove_stopwords(text):
stop_words = set(stopwords.words('english'))
words = word_tokenize(text)
filtered_text = [word for word in words if word.lower() not in stop_words]
return ' '.join(filtered_text)
def rephrase_content(content, query):
return together_response(f"You are an information retriever and summarizer,ignore everything you know, return only the\
factual information regarding the query: {{{query}}} into a maximum of {500} words. Output should be concise chunks of \
paragraphs or tables or both, ignore links, using the scraped context:{{{content}}}")
class Scraper:
def __init__(self, user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"):
self.session = requests.Session()
self.session.headers.update({"User-Agent": user_agent})
@retry(tries=3, delay=1)
def fetch_content(self, url):
try:
response = self.session.get(url, timeout=2)
if response.status_code == 200:
return response.text
except requests.exceptions.RequestException as e:
print(f"Error fetching page content for {url}: {e}")
return None
def extract_main_content(html):
if html:
plain_text = ""
soup = BeautifulSoup(html, 'lxml')
for element in soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'table']):
plain_text += element.get_text(separator=" ", strip=True) + "\n"
return plain_text
return ""
def process_content(url, query):
scraper = Scraper()
html_content = scraper.fetch_content(url)
if html_content:
content = extract_main_content(html_content)
if content:
rephrased_content = rephrase_content(limit_tokens(remove_stopwords(content)), query)
return rephrased_content, url
return "", url
def fetch_and_extract_content(urls, query):
with ThreadPoolExecutor(max_workers=len(urls)) as executor:
future_to_url = {executor.submit(process_content, url, query): url for url in urls}
all_text_with_urls = [future.result() for future in as_completed(future_to_url)]
return all_text_with_urls
def search_brave(query, num_results=5):
brave = Brave(BRAVE_API_KEY)
search_results = brave.search(q=query, count=num_results)
return [url.__str__() for url in search_results.urls]
def generate_report_with_reference(full_data):
"""
Generate HTML report with references and saves pdf report to "generated_pdf_report.pdf"
"""
pdf = FPDF()
with open("report_with_references_template.html") as f: # src/research-pro/app_v1.5_online/
html_template = f.read()
# Loop through each row in your dataset
html_report = ''
idx = 1
for subtopic_data in full_data:
md_report = md_to_html(subtopic_data['md_report'])
# Convert the string representation of a list of tuples back to a list of tuples
references = ast.literal_eval(subtopic_data['text_with_urls'])
collapsible_blocks = []
for ref_idx, reference in enumerate(references):
ref_text = md_to_html(reference[0])
ref_url = reference[1]
urls_html = ''.join(f'<a href="{ref_url}"> {ref_url}</a>')
collapsible_block = '''
<details>
<summary>Reference {}: {}</summary>
<div>
<p>{}</p>
<ul>{}</ul>
</div>
</details>
'''.format(ref_idx+1, urls_html, ref_text, urls_html)
collapsible_blocks.append(collapsible_block)
references_html = '\n'.join(collapsible_blocks)
template = Template(html_template)
html_page = template.render(md_report=md_report, references=references_html)
pdf.add_page()
pdf_report = f"<h1><strong>Report {idx}</strong></h1>"+md_report+f"<h1><strong>References for Report {idx}</strong></h1>"+references_html
pdf.write_html(pdf_report.encode('ascii', 'ignore').decode('ascii')) # Filter non-asci characters
html_report += html_page
idx+=1
pdf.output("generated_pdf_report.pdf")
return html_report
def write_dataframes_to_excel(dataframes_list, filename):
"""
input: [df_list1, df_list2, ..]
saves filename.xlsx
"""
try:
with pd.ExcelWriter(filename, engine="openpyxl") as writer:
for idx, dataframes in enumerate(dataframes_list):
startrow = 0
for idx2, df in enumerate(dataframes):
df.to_excel(writer, sheet_name=f"Sheet{idx+1}", startrow=startrow, index=False)
startrow += len(df) + 2
except:
# Empty dataframe due to no tables found, file is not written
pass
def extract_tables_from_html(html_file):
"""
input: html_file
output: [df1,df2,df3,..]
"""
# Initialize an empty list to store the dataframes
dataframes = []
# Open the HTML file and parse it with BeautifulSoup
soup = BeautifulSoup(html_file, 'html.parser')
# Find all the tables in the HTML file
tables = soup.find_all('table')
# Iterate through each table
for table in tables:
# Extract the table headers
headers = [th.text for th in table.find_all('th')]
# Extract the table data
rows = table.find_all('tr')
data = []
for row in rows:
row_data = [td.text for td in row.find_all('td')]
data.append(row_data)
# Create a dataframe from the headers and data
df = pd.DataFrame(data, columns=headers)
# Append the dataframe to the list of dataframes
dataframes.append(df)
# Return the list of dataframes
return dataframes
|