Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,572 Bytes
2768728 647e0d3 2768728 03932b3 2768728 03932b3 2768728 03932b3 2768728 54ed4cd 03932b3 2768728 7b33c74 2768728 7b33c74 2768728 54ed4cd 2768728 54ed4cd 2768728 03932b3 2768728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
import sys
import spaces
from typing import Iterable
import gradio as gr
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, Florence2ForConditionalGeneration
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2",
c400="#529AC3", c500="#4682B4", c600="#3E72A0", c700="#36638C",
c800="#2E5378", c900="#264364", c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue,
text_size=text_size, font=font, font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
css = """
#main-title h1 {
font-size: 2.3em !important;
}
#output-title h2 {
font-size: 2.1em !important;
}
"""
MODEL_IDS = {
"Florence-2-base": "florence-community/Florence-2-base",
"Florence-2-base-ft": "florence-community/Florence-2-base-ft",
"Florence-2-large": "florence-community/Florence-2-large",
"Florence-2-large-ft": "florence-community/Florence-2-large-ft",
}
models = {}
processors = {}
print("Loading Florence-2 models... This may take a while.")
for name, repo_id in MODEL_IDS.items():
print(f"Loading {name}...")
model = Florence2ForConditionalGeneration.from_pretrained(
repo_id,
dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
models[name] = model
processors[name] = processor
print(f"✅ Finished loading {name}.")
print("\n🎉 All models loaded successfully!")
@spaces.GPU(duration=30)
def run_florence2_inference(model_name: str, image: Image.Image, task_prompt: str,
max_new_tokens: int = 1024, num_beams: int = 3):
"""
Runs inference using the selected Florence-2 model.
"""
if image is None:
return "Please upload an image to get started."
model = models[model_name]
processor = processors[model_name]
inputs = processor(text=task_prompt, images=image, return_tensors="pt").to(model.device, torch.bfloat16)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=max_new_tokens,
num_beams=num_beams,
do_sample=False
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
image_size = image.size
parsed_answer = processor.post_process_generation(
generated_text, task=task_prompt, image_size=image_size
)
return parsed_answer
florence_tasks = [
"<OD>", "<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>",
"<DENSE_REGION_CAPTION>", "<REGION_PROPOSAL>", "<OCR>", "<OCR_WITH_REGION>"
]
url = "https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/venice.jpg?download=true"
example_image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
gr.Markdown("# **Florence-2 Vision Models**", elem_id="main-title")
gr.Markdown("Select a model, upload an image, choose a task, and click Submit to see the results.")
with gr.Row():
with gr.Column(scale=2):
image_upload = gr.Image(type="pil", label="Upload Image", value=example_image, height=290)
task_prompt = gr.Dropdown(
label="Select Task",
choices=florence_tasks,
value="<MORE_DETAILED_CAPTION>"
)
model_choice = gr.Radio(
choices=list(MODEL_IDS.keys()),
label="Select Model",
value="Florence-2-base"
)
image_submit = gr.Button("Submit", variant="primary")
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(
label="Max New Tokens", minimum=128, maximum=2048, step=128, value=1024
)
num_beams = gr.Slider(
label="Number of Beams", minimum=1, maximum=10, step=1, value=3
)
with gr.Column(scale=3):
gr.Markdown("## Output", elem_id="output-title")
parsed_output = gr.JSON(label="Parsed Answer")
image_submit.click(
fn=run_florence2_inference,
inputs=[model_choice, image_upload, task_prompt, max_new_tokens, num_beams],
outputs=[parsed_output]
)
if __name__ == "__main__":
demo.queue().launch(debug=True, mcp_server=True, ssr_mode=False, show_error=True) |