File size: 6,572 Bytes
2768728
 
 
 
647e0d3
 
2768728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03932b3
2768728
03932b3
 
2768728
03932b3
2768728
 
 
 
 
 
 
 
 
 
 
54ed4cd
03932b3
2768728
7b33c74
2768728
 
 
 
7b33c74
2768728
54ed4cd
2768728
 
 
 
54ed4cd
2768728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03932b3
 
2768728
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import sys
import spaces
from typing import Iterable
import gradio as gr
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, Florence2ForConditionalGeneration
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

colors.steel_blue = colors.Color(
    name="steel_blue",
    c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2",
    c400="#529AC3", c500="#4682B4", c600="#3E72A0", c700="#36638C",
    c800="#2E5378", c900="#264364", c950="#1E3450",
)

class SteelBlueTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.steel_blue,
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue,
            text_size=text_size, font=font, font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )

steel_blue_theme = SteelBlueTheme()

css = """
#main-title h1 {
    font-size: 2.3em !important;
}
#output-title h2 {
    font-size: 2.1em !important;
}
"""

MODEL_IDS = {
    "Florence-2-base": "florence-community/Florence-2-base",
    "Florence-2-base-ft": "florence-community/Florence-2-base-ft",
    "Florence-2-large": "florence-community/Florence-2-large",
    "Florence-2-large-ft": "florence-community/Florence-2-large-ft",
}

models = {}
processors = {}

print("Loading Florence-2 models... This may take a while.")
for name, repo_id in MODEL_IDS.items():
    print(f"Loading {name}...")
    model = Florence2ForConditionalGeneration.from_pretrained(
        repo_id,
        dtype=torch.bfloat16,
        device_map="auto",
        trust_remote_code=True
    )
    processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
    models[name] = model
    processors[name] = processor
    print(f"✅ Finished loading {name}.")

print("\n🎉 All models loaded successfully!")

@spaces.GPU(duration=30)
def run_florence2_inference(model_name: str, image: Image.Image, task_prompt: str,
                            max_new_tokens: int = 1024, num_beams: int = 3):
    """
    Runs inference using the selected Florence-2 model.
    """
    if image is None:
        return "Please upload an image to get started."

    model = models[model_name]
    processor = processors[model_name]

    inputs = processor(text=task_prompt, images=image, return_tensors="pt").to(model.device, torch.bfloat16)

    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=max_new_tokens,
        num_beams=num_beams,
        do_sample=False
    )

    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]

    image_size = image.size
    parsed_answer = processor.post_process_generation(
        generated_text, task=task_prompt, image_size=image_size
    )

    return parsed_answer

florence_tasks = [
    "<OD>", "<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>",
    "<DENSE_REGION_CAPTION>", "<REGION_PROPOSAL>", "<OCR>", "<OCR_WITH_REGION>"
]

url = "https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/venice.jpg?download=true"
example_image = Image.open(requests.get(url, stream=True).raw).convert("RGB")

with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
    gr.Markdown("# **Florence-2 Vision Models**", elem_id="main-title")
    gr.Markdown("Select a model, upload an image, choose a task, and click Submit to see the results.")

    with gr.Row():
        with gr.Column(scale=2):
            image_upload = gr.Image(type="pil", label="Upload Image", value=example_image, height=290)
            task_prompt = gr.Dropdown(
                label="Select Task",
                choices=florence_tasks,
                value="<MORE_DETAILED_CAPTION>"
            )
            model_choice = gr.Radio(
                choices=list(MODEL_IDS.keys()),
                label="Select Model",
                value="Florence-2-base"
            )
            image_submit = gr.Button("Submit", variant="primary")

            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(
                    label="Max New Tokens", minimum=128, maximum=2048, step=128, value=1024
                )
                num_beams = gr.Slider(
                    label="Number of Beams", minimum=1, maximum=10, step=1, value=3
                )

        with gr.Column(scale=3):
            gr.Markdown("## Output", elem_id="output-title")
            parsed_output = gr.JSON(label="Parsed Answer")

    image_submit.click(
        fn=run_florence2_inference,
        inputs=[model_choice, image_upload, task_prompt, max_new_tokens, num_beams],
        outputs=[parsed_output]
    )

if __name__ == "__main__":
    demo.queue().launch(debug=True, mcp_server=True, ssr_mode=False, show_error=True)