Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,18 @@
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
import gradio as gr
|
| 6 |
-
import torch
|
| 7 |
import requests
|
|
|
|
|
|
|
| 8 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
|
|
|
| 9 |
from transformers import AutoProcessor, Florence2ForConditionalGeneration
|
| 10 |
from gradio.themes import Soft
|
| 11 |
from gradio.themes.utils import colors, fonts, sizes
|
| 12 |
|
|
|
|
| 13 |
colors.steel_blue = colors.Color(
|
| 14 |
name="steel_blue",
|
| 15 |
c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2",
|
|
@@ -69,6 +72,7 @@ css = """
|
|
| 69 |
}
|
| 70 |
"""
|
| 71 |
|
|
|
|
| 72 |
MODEL_IDS = {
|
| 73 |
"Florence-2-base": "florence-community/Florence-2-base",
|
| 74 |
"Florence-2-base-ft": "florence-community/Florence-2-base-ft",
|
|
@@ -76,15 +80,15 @@ MODEL_IDS = {
|
|
| 76 |
"Florence-2-large-ft": "florence-community/Florence-2-large-ft",
|
| 77 |
}
|
| 78 |
|
| 79 |
-
models = {}
|
| 80 |
-
processors = {}
|
| 81 |
|
| 82 |
print("Loading Florence-2 models... This may take a while.")
|
| 83 |
for name, repo_id in MODEL_IDS.items():
|
| 84 |
print(f"Loading {name}...")
|
| 85 |
model = Florence2ForConditionalGeneration.from_pretrained(
|
| 86 |
repo_id,
|
| 87 |
-
|
| 88 |
device_map="auto",
|
| 89 |
trust_remote_code=True
|
| 90 |
)
|
|
@@ -95,86 +99,201 @@ for name, repo_id in MODEL_IDS.items():
|
|
| 95 |
|
| 96 |
print("\n🎉 All models loaded successfully!")
|
| 97 |
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
"""
|
| 100 |
-
|
|
|
|
|
|
|
| 101 |
"""
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
return image
|
| 108 |
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
try:
|
| 111 |
-
font = ImageFont.truetype("
|
| 112 |
-
except
|
| 113 |
font = ImageFont.load_default()
|
| 114 |
|
| 115 |
-
for
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
-
return
|
| 129 |
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
| 132 |
def run_florence2_inference(model_name: str, image: Image.Image, task_prompt: str,
|
| 133 |
max_new_tokens: int = 1024, num_beams: int = 3):
|
| 134 |
"""
|
| 135 |
Runs inference using the selected Florence-2 model.
|
|
|
|
| 136 |
"""
|
| 137 |
if image is None:
|
| 138 |
-
return "Please upload an image to get started.", None
|
| 139 |
|
| 140 |
model = models[model_name]
|
| 141 |
processor = processors[model_name]
|
| 142 |
|
| 143 |
-
inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
|
|
|
| 145 |
generated_ids = model.generate(
|
| 146 |
-
input_ids=inputs
|
| 147 |
-
pixel_values=inputs
|
| 148 |
max_new_tokens=max_new_tokens,
|
| 149 |
num_beams=num_beams,
|
| 150 |
do_sample=False
|
| 151 |
)
|
| 152 |
|
|
|
|
| 153 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 154 |
|
|
|
|
|
|
|
| 155 |
image_size = image.size
|
| 156 |
parsed_answer = processor.post_process_generation(
|
| 157 |
generated_text, task=task_prompt, image_size=image_size
|
| 158 |
)
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
|
|
|
|
|
|
| 166 |
|
|
|
|
| 167 |
florence_tasks = [
|
| 168 |
"<OD>", "<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>",
|
| 169 |
"<DENSE_REGION_CAPTION>", "<REGION_PROPOSAL>", "<OCR>", "<OCR_WITH_REGION>"
|
| 170 |
]
|
| 171 |
|
|
|
|
| 172 |
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
| 173 |
example_image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
| 174 |
|
| 175 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 176 |
gr.Markdown("# **Florence-2 Vision Models**", elem_id="main-title")
|
| 177 |
-
gr.Markdown("Select a model, upload an image, choose a task, and click Submit to see the
|
| 178 |
|
| 179 |
with gr.Row():
|
| 180 |
with gr.Column(scale=2):
|
|
@@ -182,7 +301,7 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 182 |
task_prompt = gr.Dropdown(
|
| 183 |
label="Select Task",
|
| 184 |
choices=florence_tasks,
|
| 185 |
-
value="<
|
| 186 |
)
|
| 187 |
model_choice = gr.Radio(
|
| 188 |
choices=list(MODEL_IDS.keys()),
|
|
@@ -202,13 +321,13 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 202 |
with gr.Column(scale=3):
|
| 203 |
gr.Markdown("## Output", elem_id="output-title")
|
| 204 |
parsed_output = gr.JSON(label="Parsed Answer")
|
| 205 |
-
|
| 206 |
|
| 207 |
image_submit.click(
|
| 208 |
fn=run_florence2_inference,
|
| 209 |
inputs=[model_choice, image_upload, task_prompt, max_new_tokens, num_beams],
|
| 210 |
-
outputs=[
|
| 211 |
)
|
| 212 |
|
| 213 |
if __name__ == "__main__":
|
| 214 |
-
demo.queue().launch(debug=True, mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
+
import io
|
| 4 |
+
import json
|
|
|
|
|
|
|
| 5 |
import requests
|
| 6 |
+
from typing import Iterable, List, Tuple, Dict, Any
|
| 7 |
+
|
| 8 |
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import torch
|
| 11 |
from transformers import AutoProcessor, Florence2ForConditionalGeneration
|
| 12 |
from gradio.themes import Soft
|
| 13 |
from gradio.themes.utils import colors, fonts, sizes
|
| 14 |
|
| 15 |
+
# ---------- Theme (kept from your original) ----------
|
| 16 |
colors.steel_blue = colors.Color(
|
| 17 |
name="steel_blue",
|
| 18 |
c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2",
|
|
|
|
| 72 |
}
|
| 73 |
"""
|
| 74 |
|
| 75 |
+
# ---------- Models ----------
|
| 76 |
MODEL_IDS = {
|
| 77 |
"Florence-2-base": "florence-community/Florence-2-base",
|
| 78 |
"Florence-2-base-ft": "florence-community/Florence-2-base-ft",
|
|
|
|
| 80 |
"Florence-2-large-ft": "florence-community/Florence-2-large-ft",
|
| 81 |
}
|
| 82 |
|
| 83 |
+
models: Dict[str, Florence2ForConditionalGeneration] = {}
|
| 84 |
+
processors: Dict[str, AutoProcessor] = {}
|
| 85 |
|
| 86 |
print("Loading Florence-2 models... This may take a while.")
|
| 87 |
for name, repo_id in MODEL_IDS.items():
|
| 88 |
print(f"Loading {name}...")
|
| 89 |
model = Florence2ForConditionalGeneration.from_pretrained(
|
| 90 |
repo_id,
|
| 91 |
+
dtype=torch.bfloat16,
|
| 92 |
device_map="auto",
|
| 93 |
trust_remote_code=True
|
| 94 |
)
|
|
|
|
| 99 |
|
| 100 |
print("\n🎉 All models loaded successfully!")
|
| 101 |
|
| 102 |
+
# ---------- Utilities ----------
|
| 103 |
+
def _safe_parse_json_like(text: Any) -> Any:
|
| 104 |
+
"""
|
| 105 |
+
If text is a dict already, return it. If it's a JSON-like string, try to json.loads it.
|
| 106 |
+
Otherwise return the original text.
|
| 107 |
+
"""
|
| 108 |
+
if isinstance(text, dict):
|
| 109 |
+
return text
|
| 110 |
+
if isinstance(text, str):
|
| 111 |
+
text_str = text.strip()
|
| 112 |
+
# try to decode if it looks like JSON
|
| 113 |
+
if (text_str.startswith("{") and text_str.endswith("}")) or (text_str.startswith("[") and text_str.endswith("]")):
|
| 114 |
+
try:
|
| 115 |
+
return json.loads(text_str)
|
| 116 |
+
except Exception:
|
| 117 |
+
# fallback to returning original string
|
| 118 |
+
return text
|
| 119 |
+
return text
|
| 120 |
+
|
| 121 |
+
def _find_bboxes_and_labels(obj: Any) -> List[Tuple[List[int], str]]:
|
| 122 |
"""
|
| 123 |
+
Recursively search `obj` (dict/list) for pairs of 'bboxes' and 'labels' (or region entries).
|
| 124 |
+
Returns list of tuples: (bbox, label)
|
| 125 |
+
bbox assumed as [x1,y1,x2,y2] (integers/floats)
|
| 126 |
"""
|
| 127 |
+
found: List[Tuple[List[int], str]] = []
|
| 128 |
+
|
| 129 |
+
def recurse(o: Any):
|
| 130 |
+
if isinstance(o, dict):
|
| 131 |
+
# direct pair case
|
| 132 |
+
if "bboxes" in o:
|
| 133 |
+
bboxes = o.get("bboxes", [])
|
| 134 |
+
labels = o.get("labels", [])
|
| 135 |
+
# if labels length mismatch, fill with empty strings
|
| 136 |
+
for i, bx in enumerate(bboxes):
|
| 137 |
+
lbl = labels[i] if i < len(labels) else ""
|
| 138 |
+
# sometimes bboxes come as dicts with keys or lists
|
| 139 |
+
if isinstance(bx, dict) and {"x","y","w","h"}.issubset(bx.keys()):
|
| 140 |
+
# convert xywh to x1,y1,x2,y2
|
| 141 |
+
x = bx["x"]; y = bx["y"]; w = bx["w"]; h = bx["h"]
|
| 142 |
+
found.append(([int(x), int(y), int(x + w), int(y + h)], lbl))
|
| 143 |
+
else:
|
| 144 |
+
# assume list-like [x1,y1,x2,y2] or [x,y,w,h]
|
| 145 |
+
try:
|
| 146 |
+
bx_list = list(map(int, bx))
|
| 147 |
+
if len(bx_list) == 4:
|
| 148 |
+
x1, y1, x2, y2 = bx_list
|
| 149 |
+
# Heuristic: if x2>x1 and y2>y1 assume x1,y1,x2,y2 otherwise maybe xywh
|
| 150 |
+
if x2 > x1 and y2 > y1:
|
| 151 |
+
found.append(([x1, y1, x2, y2], lbl))
|
| 152 |
+
else:
|
| 153 |
+
# try treat as xywh
|
| 154 |
+
found.append(([x1, y1, x1 + x2, y1 + y2], lbl))
|
| 155 |
+
else:
|
| 156 |
+
# skip unexpected format
|
| 157 |
+
pass
|
| 158 |
+
except Exception:
|
| 159 |
+
pass
|
| 160 |
+
# also check for region entries like {'bbox': ..., 'text': ...} or list of regions
|
| 161 |
+
if "regions" in o and isinstance(o["regions"], list):
|
| 162 |
+
for reg in o["regions"]:
|
| 163 |
+
if isinstance(reg, dict) and "bbox" in reg:
|
| 164 |
+
bx = reg["bbox"]
|
| 165 |
+
lbl = reg.get("label", reg.get("text", ""))
|
| 166 |
+
try:
|
| 167 |
+
bx_list = list(map(int, bx))
|
| 168 |
+
if len(bx_list) == 4:
|
| 169 |
+
found.append(([bx_list[0], bx_list[1], bx_list[2], bx_list[3]], lbl))
|
| 170 |
+
except Exception:
|
| 171 |
+
pass
|
| 172 |
+
# recurse deeper
|
| 173 |
+
for v in o.values():
|
| 174 |
+
recurse(v)
|
| 175 |
+
elif isinstance(o, list):
|
| 176 |
+
for item in o:
|
| 177 |
+
recurse(item)
|
| 178 |
+
# else ignore primitives
|
| 179 |
|
| 180 |
+
recurse(obj)
|
| 181 |
+
return found
|
|
|
|
| 182 |
|
| 183 |
+
def _draw_bboxes_on_image(img: Image.Image, boxes_and_labels: List[Tuple[List[int], str]]) -> Image.Image:
|
| 184 |
+
"""
|
| 185 |
+
Draw bounding boxes and labels on a copy of `img`.
|
| 186 |
+
"""
|
| 187 |
+
annotated = img.convert("RGB").copy()
|
| 188 |
+
draw = ImageDraw.Draw(annotated)
|
| 189 |
+
# try to get a default font (PIL may not have a TTF available)
|
| 190 |
try:
|
| 191 |
+
font = ImageFont.truetype("DejaVuSans.ttf", size=14)
|
| 192 |
+
except Exception:
|
| 193 |
font = ImageFont.load_default()
|
| 194 |
|
| 195 |
+
for bbox, label in boxes_and_labels:
|
| 196 |
+
# bbox should be [x1,y1,x2,y2]
|
| 197 |
+
x1, y1, x2, y2 = bbox
|
| 198 |
+
# keep coordinates within image bounds
|
| 199 |
+
x1 = max(0, int(x1)); y1 = max(0, int(y1))
|
| 200 |
+
x2 = min(annotated.width - 1, int(x2)); y2 = min(annotated.height - 1, int(y2))
|
| 201 |
+
# draw rectangle (thicker by drawing several offsets)
|
| 202 |
+
thickness = max(2, int(round(min(annotated.width, annotated.height) / 200)))
|
| 203 |
+
for t in range(thickness):
|
| 204 |
+
draw.rectangle([x1 - t, y1 - t, x2 + t, y2 + t], outline="red")
|
| 205 |
+
# draw label background
|
| 206 |
+
if label is None:
|
| 207 |
+
label = ""
|
| 208 |
+
label_text = str(label)
|
| 209 |
+
text_w, text_h = draw.textsize(label_text, font=font)
|
| 210 |
+
# background rectangle for label (semi-opaque)
|
| 211 |
+
label_bg = [x1, max(0, y1 - text_h - 4), x1 + text_w + 6, y1]
|
| 212 |
+
draw.rectangle(label_bg, fill="red")
|
| 213 |
+
# text
|
| 214 |
+
draw.text((x1 + 3, max(0, y1 - text_h - 2)), label_text, fill="white", font=font)
|
| 215 |
|
| 216 |
+
return annotated
|
| 217 |
|
| 218 |
+
# ---------- Inference function ----------
|
| 219 |
+
# tasks for which we attempt to extract/display bboxes
|
| 220 |
+
VISUAL_REGION_TASKS = {"<OD>", "<DENSE_REGION_CAPTION>", "<OCR_WITH_REGION>", "<REGION_PROPOSAL>"}
|
| 221 |
|
| 222 |
+
# If you are using Spaces with GPU decorator; keep it as-is in your environment
|
| 223 |
def run_florence2_inference(model_name: str, image: Image.Image, task_prompt: str,
|
| 224 |
max_new_tokens: int = 1024, num_beams: int = 3):
|
| 225 |
"""
|
| 226 |
Runs inference using the selected Florence-2 model.
|
| 227 |
+
Returns a tuple: (parsed_answer, annotated_image_or_none)
|
| 228 |
"""
|
| 229 |
if image is None:
|
| 230 |
+
return {"error": "Please upload an image to get started."}, None
|
| 231 |
|
| 232 |
model = models[model_name]
|
| 233 |
processor = processors[model_name]
|
| 234 |
|
| 235 |
+
# Prepare inputs (move to model device)
|
| 236 |
+
inputs = processor(text=task_prompt, images=image, return_tensors="pt")
|
| 237 |
+
# send tensors to model device and set dtype
|
| 238 |
+
device = model.device
|
| 239 |
+
for k, v in inputs.items():
|
| 240 |
+
if isinstance(v, torch.Tensor):
|
| 241 |
+
inputs[k] = v.to(device, dtype=torch.bfloat16)
|
| 242 |
|
| 243 |
+
# Generate
|
| 244 |
generated_ids = model.generate(
|
| 245 |
+
input_ids=inputs.get("input_ids"),
|
| 246 |
+
pixel_values=inputs.get("pixel_values"),
|
| 247 |
max_new_tokens=max_new_tokens,
|
| 248 |
num_beams=num_beams,
|
| 249 |
do_sample=False
|
| 250 |
)
|
| 251 |
|
| 252 |
+
# Decode
|
| 253 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 254 |
|
| 255 |
+
# Post-process (the processor provided by Florence models sometimes provides
|
| 256 |
+
# a structured output such as dict with 'bboxes' etc.)
|
| 257 |
image_size = image.size
|
| 258 |
parsed_answer = processor.post_process_generation(
|
| 259 |
generated_text, task=task_prompt, image_size=image_size
|
| 260 |
)
|
| 261 |
|
| 262 |
+
# Try to make parsed_answer JSON-serializable and easily inspectable
|
| 263 |
+
parsed_serializable = parsed_answer
|
| 264 |
+
# If it's a string that contains JSON, attempt to parse
|
| 265 |
+
if isinstance(parsed_answer, str):
|
| 266 |
+
parsed_serializable = _safe_parse_json_like(parsed_answer)
|
| 267 |
+
|
| 268 |
+
annotated_image = None
|
| 269 |
+
# If the task is in our visual region tasks, try to find bboxes and labels
|
| 270 |
+
if task_prompt in VISUAL_REGION_TASKS:
|
| 271 |
+
# parsed_serializable may be dict/list or string; try to find bboxes
|
| 272 |
+
boxes_and_labels = _find_bboxes_and_labels(parsed_serializable)
|
| 273 |
+
if boxes_and_labels:
|
| 274 |
+
try:
|
| 275 |
+
annotated_image = _draw_bboxes_on_image(image, boxes_and_labels)
|
| 276 |
+
except Exception as e:
|
| 277 |
+
# if drawing fails, set annotated_image to None but keep parsed answer
|
| 278 |
+
print("Failed to draw boxes:", e)
|
| 279 |
+
annotated_image = None
|
| 280 |
|
| 281 |
+
# Return parsed answer (prefer a dict or serializable structure) and annotated image (PIL) or None
|
| 282 |
+
return parsed_serializable, annotated_image
|
| 283 |
|
| 284 |
+
# ---------- UI ----------
|
| 285 |
florence_tasks = [
|
| 286 |
"<OD>", "<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>",
|
| 287 |
"<DENSE_REGION_CAPTION>", "<REGION_PROPOSAL>", "<OCR>", "<OCR_WITH_REGION>"
|
| 288 |
]
|
| 289 |
|
| 290 |
+
# Example image (keeps your example)
|
| 291 |
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
| 292 |
example_image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
| 293 |
|
| 294 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 295 |
gr.Markdown("# **Florence-2 Vision Models**", elem_id="main-title")
|
| 296 |
+
gr.Markdown("Select a model, upload an image, choose a task, and click Submit to see the parsed output and an annotated image (when bounding boxes are present).")
|
| 297 |
|
| 298 |
with gr.Row():
|
| 299 |
with gr.Column(scale=2):
|
|
|
|
| 301 |
task_prompt = gr.Dropdown(
|
| 302 |
label="Select Task",
|
| 303 |
choices=florence_tasks,
|
| 304 |
+
value="<MORE_DETAILED_CAPTION>"
|
| 305 |
)
|
| 306 |
model_choice = gr.Radio(
|
| 307 |
choices=list(MODEL_IDS.keys()),
|
|
|
|
| 321 |
with gr.Column(scale=3):
|
| 322 |
gr.Markdown("## Output", elem_id="output-title")
|
| 323 |
parsed_output = gr.JSON(label="Parsed Answer")
|
| 324 |
+
annotated_output = gr.Image(label="Annotated Image (if available)", type="pil")
|
| 325 |
|
| 326 |
image_submit.click(
|
| 327 |
fn=run_florence2_inference,
|
| 328 |
inputs=[model_choice, image_upload, task_prompt, max_new_tokens, num_beams],
|
| 329 |
+
outputs=[parsed_output, annotated_output]
|
| 330 |
)
|
| 331 |
|
| 332 |
if __name__ == "__main__":
|
| 333 |
+
demo.queue().launch(debug=True, mcp_server=True, ssr_mode=False, show_error=True)
|