Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
|
@@ -1,172 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
-
from
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
"""
|
| 49 |
-
|
| 50 |
"""
|
| 51 |
if image is None:
|
| 52 |
-
return "Please upload an image
|
| 53 |
-
|
| 54 |
-
# No need to move the model to GPU here; it's already done at startup.
|
| 55 |
-
print("✅ Model is already on the designated device.")
|
| 56 |
-
|
| 57 |
-
with tempfile.TemporaryDirectory() as output_path:
|
| 58 |
-
# Build the prompt
|
| 59 |
-
if task_type == "📝 Free OCR":
|
| 60 |
-
prompt = "<image>\nFree OCR."
|
| 61 |
-
elif task_type == "📄 Convert to Markdown":
|
| 62 |
-
prompt = "<image>\n<|grounding|>Convert the document to markdown."
|
| 63 |
-
elif task_type == "📈 Parse Figure":
|
| 64 |
-
prompt = "<image>\nParse the figure."
|
| 65 |
-
elif task_type == "🔍 Locate Object by Reference":
|
| 66 |
-
if not ref_text or ref_text.strip() == "":
|
| 67 |
-
raise gr.Error("For the 'Locate' task, you must provide the reference text to find!")
|
| 68 |
-
prompt = f"<image>\nLocate <|ref|>{ref_text.strip()}<|/ref|> in the image."
|
| 69 |
-
else:
|
| 70 |
-
prompt = "<image>\nFree OCR."
|
| 71 |
-
|
| 72 |
-
temp_image_path = os.path.join(output_path, "temp_image.png")
|
| 73 |
-
image.save(temp_image_path)
|
| 74 |
-
|
| 75 |
-
# Configure model size
|
| 76 |
-
size_configs = {
|
| 77 |
-
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|
| 78 |
-
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
| 79 |
-
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
| 80 |
-
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
|
| 81 |
-
"Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
|
| 82 |
-
}
|
| 83 |
-
config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])
|
| 84 |
-
|
| 85 |
-
print(f"🏃 Running inference with prompt: {prompt}")
|
| 86 |
-
# Use the globally defined 'model' which is already on the GPU
|
| 87 |
-
text_result = model.infer(
|
| 88 |
-
tokenizer,
|
| 89 |
-
prompt=prompt,
|
| 90 |
-
image_file=temp_image_path,
|
| 91 |
-
output_path=output_path,
|
| 92 |
-
base_size=config["base_size"],
|
| 93 |
-
image_size=config["image_size"],
|
| 94 |
-
crop_mode=config["crop_mode"],
|
| 95 |
-
save_results=True,
|
| 96 |
-
test_compress=True,
|
| 97 |
-
eval_mode=True,
|
| 98 |
-
)
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
w, h = image.size
|
| 112 |
-
|
| 113 |
-
for match in matches:
|
| 114 |
-
coords_norm = [int(c) for c in match.groups()]
|
| 115 |
-
x1_norm, y1_norm, x2_norm, y2_norm = coords_norm
|
| 116 |
-
|
| 117 |
-
x1 = int(x1_norm / 1000 * w)
|
| 118 |
-
y1 = int(y1_norm / 1000 * h)
|
| 119 |
-
x2 = int(x2_norm / 1000 * w)
|
| 120 |
-
y2 = int(y2_norm / 1000 * h)
|
| 121 |
-
|
| 122 |
-
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
|
| 123 |
-
|
| 124 |
-
result_image_pil = image_with_bboxes
|
| 125 |
-
else:
|
| 126 |
-
print("⚠️ No bounding box coordinates found in text result. Falling back to search for a result image file.")
|
| 127 |
-
result_image_pil = find_result_image(output_path)
|
| 128 |
-
|
| 129 |
-
return text_result, result_image_pil
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
# --- 3. Build the Gradio Interface ---
|
| 133 |
-
with gr.Blocks(title="🐳DeepSeek-OCR🐳", theme=gr.themes.Soft()) as demo:
|
| 134 |
-
gr.Markdown(
|
| 135 |
-
"""
|
| 136 |
-
# 🐳 Full Demo of DeepSeek-OCR 🐳
|
| 137 |
-
|
| 138 |
-
**💡 How to use:**
|
| 139 |
-
1. **Upload an image** using the upload box.
|
| 140 |
-
2. Select a **Resolution**. `Gundam` is recommended for most documents.
|
| 141 |
-
3. Choose a **Task Type**:
|
| 142 |
-
- **📝 Free OCR**: Extracts raw text from the image.
|
| 143 |
-
- **📄 Convert to Markdown**: Converts the document into Markdown, preserving structure.
|
| 144 |
-
- **📈 Parse Figure**: Extracts structured data from charts and figures.
|
| 145 |
-
- **🔍 Locate Object by Reference**: Finds a specific object/text.
|
| 146 |
-
4. If this helpful, please give it a like! 🙏 ❤️
|
| 147 |
-
"""
|
| 148 |
)
|
| 149 |
|
| 150 |
-
|
| 151 |
-
with gr.Column(scale=1):
|
| 152 |
-
image_input = gr.Image(type="pil", label="🖼️ Upload Image", sources=["upload", "clipboard"])
|
| 153 |
-
model_size = gr.Dropdown(choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"], value="Gundam (Recommended)", label="⚙️ Resolution Size")
|
| 154 |
-
task_type = gr.Dropdown(choices=["📝 Free OCR", "📄 Convert to Markdown", "📈 Parse Figure", "🔍 Locate Object by Reference"], value="📄 Convert to Markdown", label="🚀 Task Type")
|
| 155 |
-
ref_text_input = gr.Textbox(label="📝 Reference Text (for Locate task)", placeholder="e.g., the teacher, 20-10, a red car...", visible=False)
|
| 156 |
-
submit_btn = gr.Button("Process Image", variant="primary")
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
| 161 |
|
| 162 |
-
|
| 163 |
-
def toggle_ref_text_visibility(task):
|
| 164 |
-
return gr.Textbox(visible=True) if task == "🔍 Locate Object by Reference" else gr.Textbox(visible=False)
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
# --- 4. Launch the App ---
|
| 171 |
if __name__ == "__main__":
|
| 172 |
-
demo.queue(
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import spaces
|
| 4 |
+
from typing import Iterable
|
| 5 |
import gradio as gr
|
| 6 |
import torch
|
| 7 |
+
import requests
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from transformers import AutoProcessor, Florence2ForConditionalGeneration
|
| 10 |
+
from gradio.themes import Soft
|
| 11 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 12 |
+
|
| 13 |
+
colors.steel_blue = colors.Color(
|
| 14 |
+
name="steel_blue",
|
| 15 |
+
c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2",
|
| 16 |
+
c400="#529AC3", c500="#4682B4", c600="#3E72A0", c700="#36638C",
|
| 17 |
+
c800="#2E5378", c900="#264364", c950="#1E3450",
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
class SteelBlueTheme(Soft):
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
*,
|
| 24 |
+
primary_hue: colors.Color | str = colors.gray,
|
| 25 |
+
secondary_hue: colors.Color | str = colors.steel_blue,
|
| 26 |
+
neutral_hue: colors.Color | str = colors.slate,
|
| 27 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
| 28 |
+
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 29 |
+
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
|
| 30 |
+
),
|
| 31 |
+
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 32 |
+
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
|
| 33 |
+
),
|
| 34 |
+
):
|
| 35 |
+
super().__init__(
|
| 36 |
+
primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue,
|
| 37 |
+
text_size=text_size, font=font, font_mono=font_mono,
|
| 38 |
+
)
|
| 39 |
+
super().set(
|
| 40 |
+
background_fill_primary="*primary_50",
|
| 41 |
+
background_fill_primary_dark="*primary_900",
|
| 42 |
+
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 43 |
+
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 44 |
+
button_primary_text_color="white",
|
| 45 |
+
button_primary_text_color_hover="white",
|
| 46 |
+
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 47 |
+
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 48 |
+
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 49 |
+
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 50 |
+
slider_color="*secondary_500",
|
| 51 |
+
slider_color_dark="*secondary_600",
|
| 52 |
+
block_title_text_weight="600",
|
| 53 |
+
block_border_width="3px",
|
| 54 |
+
block_shadow="*shadow_drop_lg",
|
| 55 |
+
button_primary_shadow="*shadow_drop_lg",
|
| 56 |
+
button_large_padding="11px",
|
| 57 |
+
color_accent_soft="*primary_100",
|
| 58 |
+
block_label_background_fill="*primary_200",
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
steel_blue_theme = SteelBlueTheme()
|
| 62 |
+
|
| 63 |
+
css = """
|
| 64 |
+
#main-title h1 {
|
| 65 |
+
font-size: 2.3em !important;
|
| 66 |
+
}
|
| 67 |
+
#output-title h2 {
|
| 68 |
+
font-size: 2.1em !important;
|
| 69 |
+
}
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
MODEL_IDS = {
|
| 73 |
+
"Florence-2-base": "florence-community/Florence-2-base",
|
| 74 |
+
"Florence-2-base-ft": "florence-community/Florence-2-base-ft",
|
| 75 |
+
"Florence-2-large": "florence-community/Florence-2-large",
|
| 76 |
+
"Florence-2-large-ft": "florence-community/Florence-2-large-ft",
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
models = {}
|
| 80 |
+
processors = {}
|
| 81 |
+
|
| 82 |
+
print("Loading Florence-2 models... This may take a while.")
|
| 83 |
+
for name, repo_id in MODEL_IDS.items():
|
| 84 |
+
print(f"Loading {name}...")
|
| 85 |
+
model = Florence2ForConditionalGeneration.from_pretrained(
|
| 86 |
+
repo_id,
|
| 87 |
+
dtype=torch.bfloat16,
|
| 88 |
+
device_map="auto",
|
| 89 |
+
trust_remote_code=True
|
| 90 |
+
)
|
| 91 |
+
processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
|
| 92 |
+
models[name] = model
|
| 93 |
+
processors[name] = processor
|
| 94 |
+
print(f"✅ Finished loading {name}.")
|
| 95 |
+
|
| 96 |
+
print("\n🎉 All models loaded successfully!")
|
| 97 |
+
|
| 98 |
+
@spaces.GPU(duration=30)
|
| 99 |
+
def run_florence2_inference(model_name: str, image: Image.Image, task_prompt: str,
|
| 100 |
+
max_new_tokens: int = 1024, num_beams: int = 3):
|
| 101 |
"""
|
| 102 |
+
Runs inference using the selected Florence-2 model.
|
| 103 |
"""
|
| 104 |
if image is None:
|
| 105 |
+
return "Please upload an image to get started."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
model = models[model_name]
|
| 108 |
+
processor = processors[model_name]
|
| 109 |
+
|
| 110 |
+
inputs = processor(text=task_prompt, images=image, return_tensors="pt").to(model.device, torch.bfloat16)
|
| 111 |
+
|
| 112 |
+
generated_ids = model.generate(
|
| 113 |
+
input_ids=inputs["input_ids"],
|
| 114 |
+
pixel_values=inputs["pixel_values"],
|
| 115 |
+
max_new_tokens=max_new_tokens,
|
| 116 |
+
num_beams=num_beams,
|
| 117 |
+
do_sample=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
)
|
| 119 |
|
| 120 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
image_size = image.size
|
| 123 |
+
parsed_answer = processor.post_process_generation(
|
| 124 |
+
generated_text, task=task_prompt, image_size=image_size
|
| 125 |
+
)
|
| 126 |
|
| 127 |
+
return parsed_answer
|
|
|
|
|
|
|
| 128 |
|
| 129 |
+
florence_tasks = [
|
| 130 |
+
"<OD>", "<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>",
|
| 131 |
+
"<DENSE_REGION_CAPTION>", "<REGION_PROPOSAL>", "<OCR>", "<OCR_WITH_REGION>"
|
| 132 |
+
]
|
| 133 |
|
| 134 |
+
url = "https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/venice.jpg?download=true"
|
| 135 |
+
example_image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
| 136 |
+
|
| 137 |
+
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 138 |
+
gr.Markdown("# **Florence-2 Vision Models**", elem_id="main-title")
|
| 139 |
+
gr.Markdown("Select a model, upload an image, choose a task, and click Submit to see the results.")
|
| 140 |
+
|
| 141 |
+
with gr.Row():
|
| 142 |
+
with gr.Column(scale=2):
|
| 143 |
+
image_upload = gr.Image(type="pil", label="Upload Image", value=example_image, height=290)
|
| 144 |
+
task_prompt = gr.Dropdown(
|
| 145 |
+
label="Select Task",
|
| 146 |
+
choices=florence_tasks,
|
| 147 |
+
value="<MORE_DETAILED_CAPTION>"
|
| 148 |
+
)
|
| 149 |
+
model_choice = gr.Radio(
|
| 150 |
+
choices=list(MODEL_IDS.keys()),
|
| 151 |
+
label="Select Model",
|
| 152 |
+
value="Florence-2-base"
|
| 153 |
+
)
|
| 154 |
+
image_submit = gr.Button("Submit", variant="primary")
|
| 155 |
+
|
| 156 |
+
with gr.Accordion("Advanced options", open=False):
|
| 157 |
+
max_new_tokens = gr.Slider(
|
| 158 |
+
label="Max New Tokens", minimum=128, maximum=2048, step=128, value=1024
|
| 159 |
+
)
|
| 160 |
+
num_beams = gr.Slider(
|
| 161 |
+
label="Number of Beams", minimum=1, maximum=10, step=1, value=3
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
with gr.Column(scale=3):
|
| 165 |
+
gr.Markdown("## Output", elem_id="output-title")
|
| 166 |
+
parsed_output = gr.JSON(label="Parsed Answer")
|
| 167 |
+
|
| 168 |
+
image_submit.click(
|
| 169 |
+
fn=run_florence2_inference,
|
| 170 |
+
inputs=[model_choice, image_upload, task_prompt, max_new_tokens, num_beams],
|
| 171 |
+
outputs=[parsed_output]
|
| 172 |
+
)
|
| 173 |
|
|
|
|
| 174 |
if __name__ == "__main__":
|
| 175 |
+
demo.queue().launch(debug=True, mcp_server=True, ssr_mode=False, show_error=True)
|