Spaces:
Runtime error
Runtime error
File size: 9,394 Bytes
449d6db 1bfde71 449d6db e813159 1bfde71 449d6db 1bfde71 449d6db 1bfde71 449d6db 1bfde71 449d6db 1bfde71 449d6db 1bfde71 449d6db 1bfde71 449d6db 1bfde71 449d6db 1bfde71 449d6db 1bfde71 449d6db 1bfde71 449d6db 0a2963b 1bfde71 449d6db 1bfde71 449d6db 1bfde71 449d6db babe222 449d6db d4e8caa 449d6db cb011c7 7f4bd00 fca368f f44ab65 449d6db e53c7ab ba36c3d 541c781 1bfde71 541c781 1bfde71 449d6db 541c781 449d6db 1bfde71 449d6db cb011c7 449d6db 931b456 449d6db 1bfde71 449d6db 931b456 449d6db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
# Actual demo code
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image, ImageOps
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
# from optimization import optimize_pipeline_
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("ovi054/virtual-tryon-kontext-lora")
pipe.fuse_lora()
# optimize_pipeline_(pipe, image=Image.new("RGB", (512, 512)), prompt='prompt')
import os
EXAMPLES_DIR = "examples"
BASE_EXAMPLES = [os.path.join(EXAMPLES_DIR, "base", f) for f in sorted(os.listdir(os.path.join(EXAMPLES_DIR, "base")))]
FACE_EXAMPLES = [os.path.join(EXAMPLES_DIR, "face", f) for f in sorted(os.listdir(os.path.join(EXAMPLES_DIR, "face")))]
# def add_overlay(base_img, overlay_img, margin=20):
# """
# Pastes an overlay image onto the top-right corner of a base image.
# The overlay is resized to be 1/5th of the width of the base image,
# maintaining its aspect ratio.
# Args:
# base_img (PIL.Image.Image): The main image.
# overlay_img (PIL.Image.Image): The image to place on top.
# margin (int, optional): The pixel margin from the top and right edges. Defaults to 20.
# Returns:
# PIL.Image.Image: The combined image.
# """
# if base_img is None or overlay_img is None:
# return base_img
# base = base_img.convert("RGBA")
# overlay = overlay_img.convert("RGBA")
# # --- MODIFICATION ---
# # Calculate the target width to be 1/5th of the base image's width
# target_width = base.width // 5
# # Keep aspect ratio, resize overlay to the newly calculated target width
# w, h = overlay.size
# # Add a check to prevent division by zero if the overlay image has no width
# if w == 0:
# return base
# new_height = int(h * (target_width / w))
# overlay = overlay.resize((target_width, new_height), Image.LANCZOS)
# # Position: top-right corner with a margin
# x = base.width - overlay.width - margin
# y = margin
# # Paste the resized overlay onto the base image using its alpha channel for transparency
# base.paste(overlay, (x, y), overlay)
# return base
@spaces.GPU(duration=45)
def infer(input_image_upload, prompt="wear it", seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
"""
Perform image editing using the FLUX.1 Kontext pipeline.
This function takes an input image and a text prompt to generate a modified version
of the image based on the provided instructions. It uses the FLUX.1 Kontext model
for contextual image editing tasks.
Args:
input_image (dict or PIL.Image.Image): The input from the gr.Paint component.
input_image_upload (PIL.Image.Image): The input from the gr.Image upload component.
overlay_image (PIL.Image.Image): The face photo to overlay.
prompt (str): Text description of the desired edit to apply to the image.
seed (int, optional): Random seed for reproducible generation.
randomize_seed (bool, optional): If True, generates a random seed.
guidance_scale (float, optional): Controls how closely the model follows the prompt.
steps (int, optional): Controls how many steps to run the diffusion model for.
progress (gr.Progress, optional): Gradio progress tracker.
Returns:
tuple: A 4-tuple containing the result image, the processed input image, the seed, and a gr.Button update.
"""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# --- CORRECTED LOGIC STARTS HERE ---
# 1. Prioritize the uploaded image. If it exists, it becomes our main 'input_image'.
if input_image_upload is not None:
processed_input_image = input_image_upload
else:
# Fallback in case the input is neither from upload nor a valid canvas dict.
processed_input_image = None
# --- CORRECTED LOGIC ENDS HERE ---
# From this point on, 'processed_input_image' is either a PIL Image or None.
if processed_input_image is not None:
processed_input_image = processed_input_image.convert("RGB")
image = pipe(
image=processed_input_image,
prompt=prompt,
guidance_scale=guidance_scale,
width = processed_input_image.size[0],
height = processed_input_image.size[1],
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
else:
# Handle the text-to-image case where no input image was provided.
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
return image, seed, gr.Button(visible=False)
@spaces.GPU
def infer_example(input_image, prompt):
image, seed, _ = infer(input_image, prompt)
return image, seed
# css="""
# #col-container {
# margin: 0 auto;
# max-width: 960px;
# }
# """
css=""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 Kontext [dev] + [Virtual Try-On LoRA](https://huggingface.co/ovi054/virtual-tryon-kontext-lora)
""")
with gr.Row():
with gr.Column():
gr.Markdown("""Step 1. Select/Upload the combined model and garment image ⬇️<br>
Place the garment onto the model image as an overlay using [this tool](https://v0-image-editor-app-eight.vercel.app/).
""")
# input_image = gr.Image(label="Upload Image", type="pil")
with gr.Row():
input_image_upload = gr.Image(label="Upload Image", type="pil")
gr.Examples(
examples=[[img] for img in BASE_EXAMPLES],
inputs=[input_image_upload],
)
# with gr.Column():
# gr.Markdown("Step 2. Select/Upload a face photo ⬇️")
# with gr.Row():
# overlay_image = gr.Image(label="Upload face photo", type="pil")
# gr.Examples(
# examples=[[img] for img in FACE_EXAMPLES],
# inputs=[overlay_image],
# )
with gr.Column():
gr.Markdown("Step 2. Press “Run” to get results ⬇️")
with gr.Row():
run_button = gr.Button("Run")
with gr.Accordion("Advanced Settings", open=False):
prompt = gr.Text(
label="Prompt",
max_lines=1,
value = "wear it",
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
container=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=30,
value=28,
step=1
)
result = gr.Image(label="Result", show_label=False, interactive=False)
result_input = gr.Image(label="Result", visible=False, show_label=False, interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
# examples = gr.Examples(
# examples=[
# ["flowers.png", "turn the flowers into sunflowers"],
# ["monster.png", "make this monster ride a skateboard on the beach"],
# ["cat.png", "make this cat happy"]
# ],
# inputs=[input_image_upload, prompt],
# outputs=[result, seed],
# fn=infer_example,
# cache_examples="lazy"
# )
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [input_image_upload, prompt, seed, randomize_seed, guidance_scale, steps],
outputs = [result, seed, reuse_button]
)
# reuse_button.click(
# fn = lambda image: image,
# inputs = [result],
# outputs = [input_image]
# )
demo.launch(mcp_server=True) |