Spaces:
Runtime error
Runtime error
Commit
·
449d6db
0
Parent(s):
Initial commit with LFS
Browse files- .gitattributes +43 -0
- README.md +14 -0
- app.py +345 -0
- cat.png +3 -0
- examples/base/01.png +3 -0
- examples/base/02.png +3 -0
- examples/base/04.png +3 -0
- examples/base/07.png +3 -0
- examples/base/08.png +3 -0
- examples/base/22.png +3 -0
- examples/base/25.png +3 -0
- examples/base/6.png +3 -0
- examples/face/09 11.png +3 -0
- flowers.png +3 -0
- monster.png +3 -0
- optimization.py +60 -0
- optimization_utils.py +96 -0
- requirements.txt +6 -0
.gitattributes
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
cat.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
flowers.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
monster.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: FLUX.1 Kontext
|
| 3 |
+
emoji: ⚡
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: gray
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.34.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
license: mit
|
| 11 |
+
short_description: 'Kontext image editing on FLUX[dev] '
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# PyTorch 2.8 (temporary hack)
|
| 2 |
+
import os
|
| 3 |
+
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
| 4 |
+
|
| 5 |
+
# Actual demo code
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
+
import spaces
|
| 9 |
+
import torch
|
| 10 |
+
import random
|
| 11 |
+
from PIL import Image, ImageOps
|
| 12 |
+
|
| 13 |
+
from diffusers import FluxKontextPipeline
|
| 14 |
+
from diffusers.utils import load_image
|
| 15 |
+
|
| 16 |
+
# from optimization import optimize_pipeline_
|
| 17 |
+
|
| 18 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
+
|
| 20 |
+
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 21 |
+
pipe.load_lora_weights("ovi054/Draw2Photo")
|
| 22 |
+
pipe.fuse_lora()
|
| 23 |
+
# optimize_pipeline_(pipe, image=Image.new("RGB", (512, 512)), prompt='prompt')
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def add_overlay(base_img, overlay_img, margin=20):
|
| 27 |
+
"""
|
| 28 |
+
Pastes an overlay image onto the top-right corner of a base image.
|
| 29 |
+
|
| 30 |
+
The overlay is resized to be 1/5th of the width of the base image,
|
| 31 |
+
maintaining its aspect ratio.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
base_img (PIL.Image.Image): The main image.
|
| 35 |
+
overlay_img (PIL.Image.Image): The image to place on top.
|
| 36 |
+
margin (int, optional): The pixel margin from the top and right edges. Defaults to 20.
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
PIL.Image.Image: The combined image.
|
| 40 |
+
"""
|
| 41 |
+
if base_img is None or overlay_img is None:
|
| 42 |
+
return base_img
|
| 43 |
+
|
| 44 |
+
base = base_img.convert("RGBA")
|
| 45 |
+
overlay = overlay_img.convert("RGBA")
|
| 46 |
+
|
| 47 |
+
# --- MODIFICATION ---
|
| 48 |
+
# Calculate the target width to be 1/5th of the base image's width
|
| 49 |
+
target_width = base.width // 5
|
| 50 |
+
|
| 51 |
+
# Keep aspect ratio, resize overlay to the newly calculated target width
|
| 52 |
+
w, h = overlay.size
|
| 53 |
+
|
| 54 |
+
# Add a check to prevent division by zero if the overlay image has no width
|
| 55 |
+
if w == 0:
|
| 56 |
+
return base
|
| 57 |
+
|
| 58 |
+
new_height = int(h * (target_width / w))
|
| 59 |
+
overlay = overlay.resize((target_width, new_height), Image.LANCZOS)
|
| 60 |
+
|
| 61 |
+
# Position: top-right corner with a margin
|
| 62 |
+
x = base.width - overlay.width - margin
|
| 63 |
+
y = margin
|
| 64 |
+
|
| 65 |
+
# Paste the resized overlay onto the base image using its alpha channel for transparency
|
| 66 |
+
base.paste(overlay, (x, y), overlay)
|
| 67 |
+
return base
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# def add_overlay(base_img, overlay_img, margin=20, target_width=200):
|
| 71 |
+
# if base_img is None or overlay_img is None:
|
| 72 |
+
# return base_img
|
| 73 |
+
|
| 74 |
+
# base = base_img.convert("RGBA")
|
| 75 |
+
# overlay = overlay_img.convert("RGBA")
|
| 76 |
+
|
| 77 |
+
# # Keep aspect ratio, resize overlay to target width
|
| 78 |
+
# w, h = overlay.size
|
| 79 |
+
# new_height = int(h * (target_width / w))
|
| 80 |
+
# overlay = overlay.resize((target_width, new_height), Image.LANCZOS)
|
| 81 |
+
|
| 82 |
+
# # Position: top-right with margin
|
| 83 |
+
# x = base.width - overlay.width - margin
|
| 84 |
+
# y = margin
|
| 85 |
+
|
| 86 |
+
# # Paste overlay on base with transparency
|
| 87 |
+
# base.paste(overlay, (x, y), overlay)
|
| 88 |
+
# return base
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# @spaces.GPU
|
| 92 |
+
# def infer(input_image, input_image_upload, overlay_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 93 |
+
# """
|
| 94 |
+
# Perform image editing using the FLUX.1 Kontext pipeline.
|
| 95 |
+
|
| 96 |
+
# This function takes an input image and a text prompt to generate a modified version
|
| 97 |
+
# of the image based on the provided instructions. It uses the FLUX.1 Kontext model
|
| 98 |
+
# for contextual image editing tasks.
|
| 99 |
+
|
| 100 |
+
# Args:
|
| 101 |
+
# input_image (PIL.Image.Image): The input image to be edited. Will be converted
|
| 102 |
+
# to RGB format if not already in that format.
|
| 103 |
+
# prompt (str): Text description of the desired edit to apply to the image.
|
| 104 |
+
# Examples: "Remove glasses", "Add a hat", "Change background to beach".
|
| 105 |
+
# seed (int, optional): Random seed for reproducible generation. Defaults to 42.
|
| 106 |
+
# Must be between 0 and MAX_SEED (2^31 - 1).
|
| 107 |
+
# randomize_seed (bool, optional): If True, generates a random seed instead of
|
| 108 |
+
# using the provided seed value. Defaults to False.
|
| 109 |
+
# guidance_scale (float, optional): Controls how closely the model follows the
|
| 110 |
+
# prompt. Higher values mean stronger adherence to the prompt but may reduce
|
| 111 |
+
# image quality. Range: 1.0-10.0. Defaults to 2.5.
|
| 112 |
+
# steps (int, optional): Controls how many steps to run the diffusion model for.
|
| 113 |
+
# Range: 1-30. Defaults to 28.
|
| 114 |
+
# progress (gr.Progress, optional): Gradio progress tracker for monitoring
|
| 115 |
+
# generation progress. Defaults to gr.Progress(track_tqdm=True).
|
| 116 |
+
|
| 117 |
+
# Returns:
|
| 118 |
+
# tuple: A 3-tuple containing:
|
| 119 |
+
# - PIL.Image.Image: The generated/edited image
|
| 120 |
+
# - int: The seed value used for generation (useful when randomize_seed=True)
|
| 121 |
+
# - gr.update: Gradio update object to make the reuse button visible
|
| 122 |
+
|
| 123 |
+
# Example:
|
| 124 |
+
# >>> edited_image, used_seed, button_update = infer(
|
| 125 |
+
# ... input_image=my_image,
|
| 126 |
+
# ... prompt="Add sunglasses",
|
| 127 |
+
# ... seed=123,
|
| 128 |
+
# ... randomize_seed=False,
|
| 129 |
+
# ... guidance_scale=2.5
|
| 130 |
+
# ... )
|
| 131 |
+
# """
|
| 132 |
+
# if randomize_seed:
|
| 133 |
+
# seed = random.randint(0, MAX_SEED)
|
| 134 |
+
|
| 135 |
+
# if input_image_upload is not None:
|
| 136 |
+
# input_image_upload = input_image
|
| 137 |
+
# elif "composite" in input_image and input_image["composite"] is not None:
|
| 138 |
+
# input_image = input_image["composite"]
|
| 139 |
+
# elif "background" in input_image and input_image["background"] is not None:
|
| 140 |
+
# input_image = input_image["background"]
|
| 141 |
+
# else:
|
| 142 |
+
# raise ValueError("No valid image found in EditorValue dict (both 'composite' and 'background' are None)")
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
# if input_image is not None:
|
| 146 |
+
# if overlay_image is not None:
|
| 147 |
+
# input_image = add_overlay(input_image, overlay_image)
|
| 148 |
+
|
| 149 |
+
# input_image = input_image.convert("RGB")
|
| 150 |
+
# image = pipe(
|
| 151 |
+
# image=input_image,
|
| 152 |
+
# prompt=prompt,
|
| 153 |
+
# guidance_scale=guidance_scale,
|
| 154 |
+
# width = input_image.size[0],
|
| 155 |
+
# height = input_image.size[1],
|
| 156 |
+
# num_inference_steps=steps,
|
| 157 |
+
# generator=torch.Generator().manual_seed(seed),
|
| 158 |
+
# ).images[0]
|
| 159 |
+
# else:
|
| 160 |
+
# image = pipe(
|
| 161 |
+
# prompt=prompt,
|
| 162 |
+
# guidance_scale=guidance_scale,
|
| 163 |
+
# num_inference_steps=steps,
|
| 164 |
+
# generator=torch.Generator().manual_seed(seed),
|
| 165 |
+
# ).images[0]
|
| 166 |
+
# return image, input_image, seed, gr.Button(visible=True)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
@spaces.GPU
|
| 170 |
+
def infer(input_image, input_image_upload, overlay_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 171 |
+
"""
|
| 172 |
+
Perform image editing using the FLUX.1 Kontext pipeline.
|
| 173 |
+
|
| 174 |
+
This function takes an input image and a text prompt to generate a modified version
|
| 175 |
+
of the image based on the provided instructions. It uses the FLUX.1 Kontext model
|
| 176 |
+
for contextual image editing tasks.
|
| 177 |
+
|
| 178 |
+
Args:
|
| 179 |
+
input_image (dict or PIL.Image.Image): The input from the gr.Paint component.
|
| 180 |
+
input_image_upload (PIL.Image.Image): The input from the gr.Image upload component.
|
| 181 |
+
overlay_image (PIL.Image.Image): The face photo to overlay.
|
| 182 |
+
prompt (str): Text description of the desired edit to apply to the image.
|
| 183 |
+
seed (int, optional): Random seed for reproducible generation.
|
| 184 |
+
randomize_seed (bool, optional): If True, generates a random seed.
|
| 185 |
+
guidance_scale (float, optional): Controls how closely the model follows the prompt.
|
| 186 |
+
steps (int, optional): Controls how many steps to run the diffusion model for.
|
| 187 |
+
progress (gr.Progress, optional): Gradio progress tracker.
|
| 188 |
+
|
| 189 |
+
Returns:
|
| 190 |
+
tuple: A 4-tuple containing the result image, the processed input image, the seed, and a gr.Button update.
|
| 191 |
+
"""
|
| 192 |
+
if randomize_seed:
|
| 193 |
+
seed = random.randint(0, MAX_SEED)
|
| 194 |
+
|
| 195 |
+
# --- CORRECTED LOGIC STARTS HERE ---
|
| 196 |
+
|
| 197 |
+
# 1. Prioritize the uploaded image. If it exists, it becomes our main 'input_image'.
|
| 198 |
+
if input_image_upload is not None:
|
| 199 |
+
processed_input_image = input_image_upload
|
| 200 |
+
# 2. If no image was uploaded, check the drawing canvas.
|
| 201 |
+
elif isinstance(input_image, dict):
|
| 202 |
+
# Extract the actual image from the dictionary provided by gr.Paint
|
| 203 |
+
if "composite" in input_image and input_image["composite"] is not None:
|
| 204 |
+
processed_input_image = input_image["composite"]
|
| 205 |
+
elif "background" in input_image and input_image["background"] is not None:
|
| 206 |
+
processed_input_image = input_image["background"]
|
| 207 |
+
else:
|
| 208 |
+
# The canvas is empty, so there's no input image.
|
| 209 |
+
processed_input_image = None
|
| 210 |
+
else:
|
| 211 |
+
# Fallback in case the input is neither from upload nor a valid canvas dict.
|
| 212 |
+
processed_input_image = None
|
| 213 |
+
|
| 214 |
+
# --- CORRECTED LOGIC ENDS HERE ---
|
| 215 |
+
|
| 216 |
+
# From this point on, 'processed_input_image' is either a PIL Image or None.
|
| 217 |
+
if processed_input_image is not None:
|
| 218 |
+
if overlay_image is not None:
|
| 219 |
+
# Now this function is guaranteed to receive a PIL Image.
|
| 220 |
+
processed_input_image = add_overlay(processed_input_image, overlay_image)
|
| 221 |
+
|
| 222 |
+
processed_input_image = processed_input_image.convert("RGB")
|
| 223 |
+
image = pipe(
|
| 224 |
+
image=processed_input_image,
|
| 225 |
+
prompt=prompt,
|
| 226 |
+
guidance_scale=guidance_scale,
|
| 227 |
+
width = processed_input_image.size[0],
|
| 228 |
+
height = processed_input_image.size[1],
|
| 229 |
+
num_inference_steps=steps,
|
| 230 |
+
generator=torch.Generator().manual_seed(seed),
|
| 231 |
+
).images[0]
|
| 232 |
+
else:
|
| 233 |
+
# Handle the text-to-image case where no input image was provided.
|
| 234 |
+
image = pipe(
|
| 235 |
+
prompt=prompt,
|
| 236 |
+
guidance_scale=guidance_scale,
|
| 237 |
+
num_inference_steps=steps,
|
| 238 |
+
generator=torch.Generator().manual_seed(seed),
|
| 239 |
+
).images[0]
|
| 240 |
+
|
| 241 |
+
return image, processed_input_image, seed, gr.Button(visible=True)
|
| 242 |
+
|
| 243 |
+
@spaces.GPU
|
| 244 |
+
def infer_example(input_image, prompt):
|
| 245 |
+
image, seed, _ = infer(input_image, prompt)
|
| 246 |
+
return image, seed
|
| 247 |
+
|
| 248 |
+
css="""
|
| 249 |
+
#col-container {
|
| 250 |
+
margin: 0 auto;
|
| 251 |
+
max-width: 960px;
|
| 252 |
+
}
|
| 253 |
+
"""
|
| 254 |
+
|
| 255 |
+
with gr.Blocks(css=css) as demo:
|
| 256 |
+
|
| 257 |
+
with gr.Column(elem_id="col-container"):
|
| 258 |
+
gr.Markdown(f"""# FLUX.1 Kontext [dev]
|
| 259 |
+
Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro], [[blog]](https://bfl.ai/announcements/flux-1-kontext-dev) [[model]](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev)
|
| 260 |
+
""")
|
| 261 |
+
with gr.Row():
|
| 262 |
+
with gr.Column():
|
| 263 |
+
# input_image = gr.Image(label="Upload the image for editing", type="pil")
|
| 264 |
+
with gr.Row():
|
| 265 |
+
with gr.Tabs() as tabs:
|
| 266 |
+
with gr.TabItem("Draw"):
|
| 267 |
+
input_image = gr.Paint(
|
| 268 |
+
type="pil",
|
| 269 |
+
brush=gr.Brush(default_size=6, colors=["#000000"], color_mode="fixed"),
|
| 270 |
+
canvas_size = (1200,1200),
|
| 271 |
+
layers = False
|
| 272 |
+
)
|
| 273 |
+
with gr.TabItem("Upload"):
|
| 274 |
+
input_image_upload = gr.Image(label="Upload the drawing", type="pil")
|
| 275 |
+
with gr.Row():
|
| 276 |
+
overlay_image = gr.Image(label="Upload face photo", type="pil")
|
| 277 |
+
with gr.Row():
|
| 278 |
+
prompt = gr.Text(
|
| 279 |
+
label="Prompt",
|
| 280 |
+
show_label=False,
|
| 281 |
+
max_lines=1,
|
| 282 |
+
value = "make it real",
|
| 283 |
+
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
|
| 284 |
+
container=False,
|
| 285 |
+
)
|
| 286 |
+
run_button = gr.Button("Run", scale=0)
|
| 287 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 288 |
+
|
| 289 |
+
seed = gr.Slider(
|
| 290 |
+
label="Seed",
|
| 291 |
+
minimum=0,
|
| 292 |
+
maximum=MAX_SEED,
|
| 293 |
+
step=1,
|
| 294 |
+
value=0,
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 298 |
+
|
| 299 |
+
guidance_scale = gr.Slider(
|
| 300 |
+
label="Guidance Scale",
|
| 301 |
+
minimum=1,
|
| 302 |
+
maximum=10,
|
| 303 |
+
step=0.1,
|
| 304 |
+
value=2.5,
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
steps = gr.Slider(
|
| 308 |
+
label="Steps",
|
| 309 |
+
minimum=1,
|
| 310 |
+
maximum=30,
|
| 311 |
+
value=28,
|
| 312 |
+
step=1
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
with gr.Column():
|
| 316 |
+
result = gr.Image(label="Result", show_label=False, interactive=False)
|
| 317 |
+
result_input = gr.Image(label="Result", show_label=False, interactive=False)
|
| 318 |
+
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
examples = gr.Examples(
|
| 322 |
+
examples=[
|
| 323 |
+
["flowers.png", "turn the flowers into sunflowers"],
|
| 324 |
+
["monster.png", "make this monster ride a skateboard on the beach"],
|
| 325 |
+
["cat.png", "make this cat happy"]
|
| 326 |
+
],
|
| 327 |
+
inputs=[input_image, prompt],
|
| 328 |
+
outputs=[result, seed],
|
| 329 |
+
fn=infer_example,
|
| 330 |
+
cache_examples="lazy"
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
gr.on(
|
| 334 |
+
triggers=[run_button.click, prompt.submit],
|
| 335 |
+
fn = infer,
|
| 336 |
+
inputs = [input_image, input_image_upload, overlay_image, prompt, seed, randomize_seed, guidance_scale, steps],
|
| 337 |
+
outputs = [result, result_input, seed, reuse_button]
|
| 338 |
+
)
|
| 339 |
+
reuse_button.click(
|
| 340 |
+
fn = lambda image: image,
|
| 341 |
+
inputs = [result],
|
| 342 |
+
outputs = [input_image]
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
demo.launch(mcp_server=True)
|
cat.png
ADDED
|
Git LFS Details
|
examples/base/01.png
ADDED
|
Git LFS Details
|
examples/base/02.png
ADDED
|
Git LFS Details
|
examples/base/04.png
ADDED
|
Git LFS Details
|
examples/base/07.png
ADDED
|
Git LFS Details
|
examples/base/08.png
ADDED
|
Git LFS Details
|
examples/base/22.png
ADDED
|
Git LFS Details
|
examples/base/25.png
ADDED
|
Git LFS Details
|
examples/base/6.png
ADDED
|
Git LFS Details
|
examples/face/09 11.png
ADDED
|
Git LFS Details
|
flowers.png
ADDED
|
Git LFS Details
|
monster.png
ADDED
|
Git LFS Details
|
optimization.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
"""
|
| 3 |
+
|
| 4 |
+
from typing import Any
|
| 5 |
+
from typing import Callable
|
| 6 |
+
from typing import ParamSpec
|
| 7 |
+
|
| 8 |
+
import spaces
|
| 9 |
+
import torch
|
| 10 |
+
from torch.utils._pytree import tree_map_only
|
| 11 |
+
|
| 12 |
+
from optimization_utils import capture_component_call
|
| 13 |
+
from optimization_utils import aoti_compile
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
P = ParamSpec('P')
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
TRANSFORMER_HIDDEN_DIM = torch.export.Dim('hidden', min=4096, max=8212)
|
| 20 |
+
|
| 21 |
+
TRANSFORMER_DYNAMIC_SHAPES = {
|
| 22 |
+
'hidden_states': {1: TRANSFORMER_HIDDEN_DIM},
|
| 23 |
+
'img_ids': {0: TRANSFORMER_HIDDEN_DIM},
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
INDUCTOR_CONFIGS = {
|
| 27 |
+
'conv_1x1_as_mm': True,
|
| 28 |
+
'epilogue_fusion': False,
|
| 29 |
+
'coordinate_descent_tuning': True,
|
| 30 |
+
'coordinate_descent_check_all_directions': True,
|
| 31 |
+
'max_autotune': True,
|
| 32 |
+
'triton.cudagraphs': True,
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
| 37 |
+
|
| 38 |
+
@spaces.GPU(duration=1500)
|
| 39 |
+
def compile_transformer():
|
| 40 |
+
|
| 41 |
+
with capture_component_call(pipeline, 'transformer') as call:
|
| 42 |
+
pipeline(*args, **kwargs)
|
| 43 |
+
|
| 44 |
+
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
|
| 45 |
+
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
|
| 46 |
+
|
| 47 |
+
pipeline.transformer.fuse_qkv_projections()
|
| 48 |
+
|
| 49 |
+
exported = torch.export.export(
|
| 50 |
+
mod=pipeline.transformer,
|
| 51 |
+
args=call.args,
|
| 52 |
+
kwargs=call.kwargs,
|
| 53 |
+
dynamic_shapes=dynamic_shapes,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
return aoti_compile(exported, INDUCTOR_CONFIGS)
|
| 57 |
+
|
| 58 |
+
transformer_config = pipeline.transformer.config
|
| 59 |
+
pipeline.transformer = compile_transformer()
|
| 60 |
+
pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue]
|
optimization_utils.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
"""
|
| 3 |
+
import contextlib
|
| 4 |
+
from contextvars import ContextVar
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from typing import Any
|
| 7 |
+
from typing import cast
|
| 8 |
+
from unittest.mock import patch
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch._inductor.package.package import package_aoti
|
| 12 |
+
from torch.export.pt2_archive._package import AOTICompiledModel
|
| 13 |
+
from torch.export.pt2_archive._package_weights import TensorProperties
|
| 14 |
+
from torch.export.pt2_archive._package_weights import Weights
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
INDUCTOR_CONFIGS_OVERRIDES = {
|
| 18 |
+
'aot_inductor.package_constants_in_so': False,
|
| 19 |
+
'aot_inductor.package_constants_on_disk': True,
|
| 20 |
+
'aot_inductor.package': True,
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class ZeroGPUCompiledModel:
|
| 25 |
+
def __init__(self, archive_file: torch.types.FileLike, weights: Weights, cuda: bool = False):
|
| 26 |
+
self.archive_file = archive_file
|
| 27 |
+
self.weights = weights
|
| 28 |
+
if cuda:
|
| 29 |
+
self.weights_to_cuda_()
|
| 30 |
+
self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None)
|
| 31 |
+
def weights_to_cuda_(self):
|
| 32 |
+
for name in self.weights:
|
| 33 |
+
tensor, properties = self.weights.get_weight(name)
|
| 34 |
+
self.weights[name] = (tensor.to('cuda'), properties)
|
| 35 |
+
def __call__(self, *args, **kwargs):
|
| 36 |
+
if (compiled_model := self.compiled_model.get()) is None:
|
| 37 |
+
constants_map = {name: value[0] for name, value in self.weights.items()}
|
| 38 |
+
compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
|
| 39 |
+
compiled_model.load_constants(constants_map, check_full_update=True, user_managed=True)
|
| 40 |
+
self.compiled_model.set(compiled_model)
|
| 41 |
+
return compiled_model(*args, **kwargs)
|
| 42 |
+
def __reduce__(self):
|
| 43 |
+
weight_dict: dict[str, tuple[torch.Tensor, TensorProperties]] = {}
|
| 44 |
+
for name in self.weights:
|
| 45 |
+
tensor, properties = self.weights.get_weight(name)
|
| 46 |
+
tensor_ = torch.empty_like(tensor, device='cpu').pin_memory()
|
| 47 |
+
weight_dict[name] = (tensor_.copy_(tensor).detach().share_memory_(), properties)
|
| 48 |
+
return ZeroGPUCompiledModel, (self.archive_file, Weights(weight_dict), True)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def aoti_compile(
|
| 52 |
+
exported_program: torch.export.ExportedProgram,
|
| 53 |
+
inductor_configs: dict[str, Any] | None = None,
|
| 54 |
+
):
|
| 55 |
+
inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES
|
| 56 |
+
gm = cast(torch.fx.GraphModule, exported_program.module())
|
| 57 |
+
assert exported_program.example_inputs is not None
|
| 58 |
+
args, kwargs = exported_program.example_inputs
|
| 59 |
+
artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs)
|
| 60 |
+
archive_file = BytesIO()
|
| 61 |
+
files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
|
| 62 |
+
package_aoti(archive_file, files)
|
| 63 |
+
weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights))
|
| 64 |
+
return ZeroGPUCompiledModel(archive_file, weights)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@contextlib.contextmanager
|
| 68 |
+
def capture_component_call(
|
| 69 |
+
pipeline: Any,
|
| 70 |
+
component_name: str,
|
| 71 |
+
component_method='forward',
|
| 72 |
+
):
|
| 73 |
+
|
| 74 |
+
class CapturedCallException(Exception):
|
| 75 |
+
def __init__(self, *args, **kwargs):
|
| 76 |
+
super().__init__()
|
| 77 |
+
self.args = args
|
| 78 |
+
self.kwargs = kwargs
|
| 79 |
+
|
| 80 |
+
class CapturedCall:
|
| 81 |
+
def __init__(self):
|
| 82 |
+
self.args: tuple[Any, ...] = ()
|
| 83 |
+
self.kwargs: dict[str, Any] = {}
|
| 84 |
+
|
| 85 |
+
component = getattr(pipeline, component_name)
|
| 86 |
+
captured_call = CapturedCall()
|
| 87 |
+
|
| 88 |
+
def capture_call(*args, **kwargs):
|
| 89 |
+
raise CapturedCallException(*args, **kwargs)
|
| 90 |
+
|
| 91 |
+
with patch.object(component, component_method, new=capture_call):
|
| 92 |
+
try:
|
| 93 |
+
yield captured_call
|
| 94 |
+
except CapturedCallException as e:
|
| 95 |
+
captured_call.args = e.args
|
| 96 |
+
captured_call.kwargs = e.kwargs
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
git+https://github.com/huggingface/diffusers.git
|
| 3 |
+
accelerate
|
| 4 |
+
safetensors
|
| 5 |
+
sentencepiece
|
| 6 |
+
peft
|