Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,7 +18,7 @@ from diffusers.utils import load_image
|
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
|
| 20 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 21 |
-
pipe.load_lora_weights("ovi054/
|
| 22 |
pipe.fuse_lora()
|
| 23 |
# optimize_pipeline_(pipe, image=Image.new("RGB", (512, 512)), prompt='prompt')
|
| 24 |
|
|
@@ -30,53 +30,53 @@ BASE_EXAMPLES = [os.path.join(EXAMPLES_DIR, "base", f) for f in sorted(os.listdi
|
|
| 30 |
FACE_EXAMPLES = [os.path.join(EXAMPLES_DIR, "face", f) for f in sorted(os.listdir(os.path.join(EXAMPLES_DIR, "face")))]
|
| 31 |
|
| 32 |
|
| 33 |
-
def add_overlay(base_img, overlay_img, margin=20):
|
| 34 |
-
|
| 35 |
-
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
|
| 76 |
|
| 77 |
|
| 78 |
@spaces.GPU
|
| 79 |
-
def infer(
|
| 80 |
"""
|
| 81 |
Perform image editing using the FLUX.1 Kontext pipeline.
|
| 82 |
|
|
@@ -106,16 +106,7 @@ def infer(input_image, input_image_upload, overlay_image, prompt="make it real",
|
|
| 106 |
# 1. Prioritize the uploaded image. If it exists, it becomes our main 'input_image'.
|
| 107 |
if input_image_upload is not None:
|
| 108 |
processed_input_image = input_image_upload
|
| 109 |
-
|
| 110 |
-
elif isinstance(input_image, dict):
|
| 111 |
-
# Extract the actual image from the dictionary provided by gr.Paint
|
| 112 |
-
if "composite" in input_image and input_image["composite"] is not None:
|
| 113 |
-
processed_input_image = input_image["composite"]
|
| 114 |
-
elif "background" in input_image and input_image["background"] is not None:
|
| 115 |
-
processed_input_image = input_image["background"]
|
| 116 |
-
else:
|
| 117 |
-
# The canvas is empty, so there's no input image.
|
| 118 |
-
processed_input_image = None
|
| 119 |
else:
|
| 120 |
# Fallback in case the input is neither from upload nor a valid canvas dict.
|
| 121 |
processed_input_image = None
|
|
@@ -124,9 +115,6 @@ def infer(input_image, input_image_upload, overlay_image, prompt="make it real",
|
|
| 124 |
|
| 125 |
# From this point on, 'processed_input_image' is either a PIL Image or None.
|
| 126 |
if processed_input_image is not None:
|
| 127 |
-
if overlay_image is not None:
|
| 128 |
-
# Now this function is guaranteed to receive a PIL Image.
|
| 129 |
-
processed_input_image = add_overlay(processed_input_image, overlay_image)
|
| 130 |
|
| 131 |
processed_input_image = processed_input_image.convert("RGB")
|
| 132 |
image = pipe(
|
|
@@ -147,7 +135,7 @@ def infer(input_image, input_image_upload, overlay_image, prompt="make it real",
|
|
| 147 |
generator=torch.Generator().manual_seed(seed),
|
| 148 |
).images[0]
|
| 149 |
|
| 150 |
-
return image,
|
| 151 |
|
| 152 |
@spaces.GPU
|
| 153 |
def infer_example(input_image, prompt):
|
|
@@ -171,36 +159,26 @@ Turn drawing+face into a realistic photo with FLUX.1 Kontext [dev] + [Draw2Photo
|
|
| 171 |
""")
|
| 172 |
with gr.Row():
|
| 173 |
with gr.Column():
|
| 174 |
-
gr.Markdown("Step 1. Select/Upload
|
| 175 |
# input_image = gr.Image(label="Upload drawing", type="pil")
|
| 176 |
with gr.Row():
|
| 177 |
-
|
| 178 |
-
with gr.TabItem("Upload"):
|
| 179 |
-
input_image_upload = gr.Image(label="Upload drawing", type="pil")
|
| 180 |
-
|
| 181 |
-
with gr.TabItem("Draw"):
|
| 182 |
-
input_image = gr.Paint(
|
| 183 |
-
type="pil",
|
| 184 |
-
brush=gr.Brush(default_size=6, colors=["#000000"], color_mode="fixed"),
|
| 185 |
-
canvas_size = (1200,1200),
|
| 186 |
-
layers = False
|
| 187 |
-
)
|
| 188 |
gr.Examples(
|
| 189 |
examples=[[img] for img in BASE_EXAMPLES],
|
| 190 |
inputs=[input_image_upload],
|
| 191 |
)
|
| 192 |
|
| 193 |
-
with gr.Column():
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
|
| 202 |
with gr.Column():
|
| 203 |
-
gr.Markdown("Step
|
| 204 |
with gr.Row():
|
| 205 |
run_button = gr.Button("Run")
|
| 206 |
with gr.Accordion("Advanced Settings", open=False):
|
|
@@ -208,7 +186,7 @@ Turn drawing+face into a realistic photo with FLUX.1 Kontext [dev] + [Draw2Photo
|
|
| 208 |
prompt = gr.Text(
|
| 209 |
label="Prompt",
|
| 210 |
max_lines=1,
|
| 211 |
-
value = "
|
| 212 |
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
|
| 213 |
container=False,
|
| 214 |
)
|
|
@@ -258,8 +236,8 @@ Turn drawing+face into a realistic photo with FLUX.1 Kontext [dev] + [Draw2Photo
|
|
| 258 |
gr.on(
|
| 259 |
triggers=[run_button.click, prompt.submit],
|
| 260 |
fn = infer,
|
| 261 |
-
inputs = [
|
| 262 |
-
outputs = [result,
|
| 263 |
)
|
| 264 |
# reuse_button.click(
|
| 265 |
# fn = lambda image: image,
|
|
|
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
|
| 20 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 21 |
+
pipe.load_lora_weights("ovi054/virtual-tryon-kontext-lora")
|
| 22 |
pipe.fuse_lora()
|
| 23 |
# optimize_pipeline_(pipe, image=Image.new("RGB", (512, 512)), prompt='prompt')
|
| 24 |
|
|
|
|
| 30 |
FACE_EXAMPLES = [os.path.join(EXAMPLES_DIR, "face", f) for f in sorted(os.listdir(os.path.join(EXAMPLES_DIR, "face")))]
|
| 31 |
|
| 32 |
|
| 33 |
+
# def add_overlay(base_img, overlay_img, margin=20):
|
| 34 |
+
# """
|
| 35 |
+
# Pastes an overlay image onto the top-right corner of a base image.
|
| 36 |
|
| 37 |
+
# The overlay is resized to be 1/5th of the width of the base image,
|
| 38 |
+
# maintaining its aspect ratio.
|
| 39 |
|
| 40 |
+
# Args:
|
| 41 |
+
# base_img (PIL.Image.Image): The main image.
|
| 42 |
+
# overlay_img (PIL.Image.Image): The image to place on top.
|
| 43 |
+
# margin (int, optional): The pixel margin from the top and right edges. Defaults to 20.
|
| 44 |
|
| 45 |
+
# Returns:
|
| 46 |
+
# PIL.Image.Image: The combined image.
|
| 47 |
+
# """
|
| 48 |
+
# if base_img is None or overlay_img is None:
|
| 49 |
+
# return base_img
|
| 50 |
|
| 51 |
+
# base = base_img.convert("RGBA")
|
| 52 |
+
# overlay = overlay_img.convert("RGBA")
|
| 53 |
|
| 54 |
+
# # --- MODIFICATION ---
|
| 55 |
+
# # Calculate the target width to be 1/5th of the base image's width
|
| 56 |
+
# target_width = base.width // 5
|
| 57 |
|
| 58 |
+
# # Keep aspect ratio, resize overlay to the newly calculated target width
|
| 59 |
+
# w, h = overlay.size
|
| 60 |
|
| 61 |
+
# # Add a check to prevent division by zero if the overlay image has no width
|
| 62 |
+
# if w == 0:
|
| 63 |
+
# return base
|
| 64 |
|
| 65 |
+
# new_height = int(h * (target_width / w))
|
| 66 |
+
# overlay = overlay.resize((target_width, new_height), Image.LANCZOS)
|
| 67 |
|
| 68 |
+
# # Position: top-right corner with a margin
|
| 69 |
+
# x = base.width - overlay.width - margin
|
| 70 |
+
# y = margin
|
| 71 |
|
| 72 |
+
# # Paste the resized overlay onto the base image using its alpha channel for transparency
|
| 73 |
+
# base.paste(overlay, (x, y), overlay)
|
| 74 |
+
# return base
|
| 75 |
|
| 76 |
|
| 77 |
|
| 78 |
@spaces.GPU
|
| 79 |
+
def infer(input_image_upload, prompt="wear it", seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 80 |
"""
|
| 81 |
Perform image editing using the FLUX.1 Kontext pipeline.
|
| 82 |
|
|
|
|
| 106 |
# 1. Prioritize the uploaded image. If it exists, it becomes our main 'input_image'.
|
| 107 |
if input_image_upload is not None:
|
| 108 |
processed_input_image = input_image_upload
|
| 109 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
else:
|
| 111 |
# Fallback in case the input is neither from upload nor a valid canvas dict.
|
| 112 |
processed_input_image = None
|
|
|
|
| 115 |
|
| 116 |
# From this point on, 'processed_input_image' is either a PIL Image or None.
|
| 117 |
if processed_input_image is not None:
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
processed_input_image = processed_input_image.convert("RGB")
|
| 120 |
image = pipe(
|
|
|
|
| 135 |
generator=torch.Generator().manual_seed(seed),
|
| 136 |
).images[0]
|
| 137 |
|
| 138 |
+
return image, seed, gr.Button(visible=False)
|
| 139 |
|
| 140 |
@spaces.GPU
|
| 141 |
def infer_example(input_image, prompt):
|
|
|
|
| 159 |
""")
|
| 160 |
with gr.Row():
|
| 161 |
with gr.Column():
|
| 162 |
+
gr.Markdown("Step 1. Select/Upload a model image + clothes overlay to try on ⬇️")
|
| 163 |
# input_image = gr.Image(label="Upload drawing", type="pil")
|
| 164 |
with gr.Row():
|
| 165 |
+
input_image_upload = gr.Image(label="Upload drawing", type="pil")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
gr.Examples(
|
| 167 |
examples=[[img] for img in BASE_EXAMPLES],
|
| 168 |
inputs=[input_image_upload],
|
| 169 |
)
|
| 170 |
|
| 171 |
+
# with gr.Column():
|
| 172 |
+
# gr.Markdown("Step 2. Select/Upload a face photo ⬇️")
|
| 173 |
+
# with gr.Row():
|
| 174 |
+
# overlay_image = gr.Image(label="Upload face photo", type="pil")
|
| 175 |
+
# gr.Examples(
|
| 176 |
+
# examples=[[img] for img in FACE_EXAMPLES],
|
| 177 |
+
# inputs=[overlay_image],
|
| 178 |
+
# )
|
| 179 |
|
| 180 |
with gr.Column():
|
| 181 |
+
gr.Markdown("Step 2. Press “Run” to get results ⬇️")
|
| 182 |
with gr.Row():
|
| 183 |
run_button = gr.Button("Run")
|
| 184 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
| 186 |
prompt = gr.Text(
|
| 187 |
label="Prompt",
|
| 188 |
max_lines=1,
|
| 189 |
+
value = "wear it",
|
| 190 |
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
|
| 191 |
container=False,
|
| 192 |
)
|
|
|
|
| 236 |
gr.on(
|
| 237 |
triggers=[run_button.click, prompt.submit],
|
| 238 |
fn = infer,
|
| 239 |
+
inputs = [input_image_upload, prompt, seed, randomize_seed, guidance_scale, steps],
|
| 240 |
+
outputs = [result, seed, reuse_button]
|
| 241 |
)
|
| 242 |
# reuse_button.click(
|
| 243 |
# fn = lambda image: image,
|