File size: 28,871 Bytes
8499c35 e512522 8499c35 35a0403 77b71a6 be67fcf 8d7b496 d401ad6 6155281 0566fd9 a0ade06 08e6e30 6155281 8499c35 6155281 8499c35 8d6cc8d cedea8d 08e6e30 63f91c1 74f896e 8499c35 63f91c1 8499c35 e512522 8499c35 08e6e30 8499c35 f03dbdb b7ef881 7e12771 8499c35 08e6e30 377fd6b a31e67a 1ad3fab 377fd6b 74f896e 63f91c1 1ad3fab 74f896e 8499c35 63f91c1 74f896e 08e6e30 63f91c1 08e6e30 63f91c1 08e6e30 63f91c1 08e6e30 74f896e e429024 74f896e e429024 74f896e e429024 74f896e e429024 74f896e e429024 74f896e e429024 74f896e e429024 74f896e e429024 74f896e e429024 74f896e e429024 74f896e e429024 74f896e e429024 74f896e e429024 74f896e e429024 74f896e e429024 8499c35 f67f4fa 8499c35 a31e67a 8499c35 34b166f 8499c35 a31e67a 8499c35 34b166f 8499c35 f4b6788 8499c35 7a5728d 93ef2af 6a1d689 93ef2af 6a1d689 93ef2af 8499c35 7a5728d 8499c35 7a5728d f4b6788 63f91c1 8499c35 7a5728d 8499c35 7a5728d f4b6788 8499c35 7a5728d 8499c35 f4b6788 7a5728d 1bb7a66 8499c35 7a5728d 8499c35 7a5728d 8499c35 7a5728d 8499c35 7a5728d 8499c35 edd60a3 8499c35 040ddf0 8499c35 edd60a3 8499c35 edd60a3 8499c35 c2ce126 8499c35 edd60a3 8499c35 edd60a3 8499c35 edd60a3 e512522 edd60a3 74f896e 7a5728d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 |
import whisper
import os
from pytube import YouTube
import pandas as pd
import plotly_express as px
import nltk
import plotly.graph_objects as go
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForSeq2SeqLM
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import streamlit as st
import en_core_web_lg
import validators
import re
import itertools
import numpy as np
from bs4 import BeautifulSoup
import base64, time
from annotated_text import annotated_text
import pickle, math
import wikipedia
from pyvis.network import Network
import torch
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings,HuggingFaceInstructEmbeddings
from langchain.vectorstores import Pinecone
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain import VectorDBQA
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from langchain.prompts.base import RegexParser
nltk.download('punkt')
from nltk import sent_tokenize
time_str = time.strftime("%d%m%Y-%H%M%S")
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;
margin-bottom: 2.5rem">{}</div> """
#Stuff Chain Type Prompt template
output_parser = RegexParser(
regex=r"(.*?)\nScore: (.*)",
output_keys=["answer", "score"],
)
template = """Given the following extracted parts of a long document and a question, create a final answer with references ("SOURCES").
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
ALWAYS return a "SOURCES" part in your answer.
In addition to giving an answer, also return a score of how fully it answered the user's question. This should be in the following format:
Question: [question here]
Helpful Answer: [answer here]
Score: [score between 0 and 100]
Begin!
Context:
---------
{summaries}
---------
Question: {question}
Helpful Answer:"""
#Refine Chain Type Prompt Template
refine_prompt_template = (
"The original question is as follows: {question}\n"
"We have provided an existing answer: {existing_answer}\n"
"We have the opportunity to refine the existing answer"
"(only if needed) with some more context below.\n"
"------------\n"
"{context_str}\n"
"------------\n"
"Given the new context, refine the original answer to better "
"answer the question. "
"If the context isn't useful, return the original answer."
)
refine_prompt = PromptTemplate(
input_variables=["question", "existing_answer", "context_str"],
template=refine_prompt_template,
)
initial_qa_template = (
"Context information is below. \n"
"---------------------\n"
"{context_str}"
"\n---------------------\n"
"Given the context information and not prior knowledge, "
"answer the question: {question}\n.\n"
)
###################### Functions #######################################################################################
@st.experimental_singleton(suppress_st_warning=True)
def load_models():
'''Load and cache all the models to be used'''
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
kg_model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/rebel-large")
kg_tokenizer = AutoTokenizer.from_pretrained("Babelscape/rebel-large")
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
emb_tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-xl')
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
sum_pipe = pipeline("summarization",model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn",clean_up_tokenization_spaces=True)
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
cross_encoder = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1') #cross-encoder/ms-marco-MiniLM-L-12-v2
return sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer, emb_tokenizer
@st.experimental_singleton(suppress_st_warning=True)
def load_asr_model(asr_model_name):
asr_model = whisper.load_model(asr_model_name)
return asr_model
# @st.experimental_singleton(suppress_st_warning=True)
# def load_sbert(model_name):
# if 'hkunlp' in model_name:
# sbert = INSTRUCTOR(model_name)
# else:
# sbert = SentenceTransformer(model_name)
# return sbert
@st.experimental_singleton(suppress_st_warning=True)
def process_corpus(corpus, tok, title, embeddings, chunk_size=200, overlap=50):
'''Process text for Semantic Search'''
pinecone.init(api_key="2d1e8029-2d84-4724-9f7c-a4f0f5ae908a", environment="us-west1-gcp")
tokenizer = tok
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(tokenizer,chunk_size=chunk_size,chunk_overlap=overlap,separator='. ')
texts = text_splitter.split_text(corpus)
docsearch = Pinecone.from_texts(
texts,
embeddings,
index_name = index_id,
namespace = f'{title}-earnings',
metadatas = [
{'source':i} for i in range(len(texts))]
)
return docsearch
@st.experimental_memo(suppress_st_warning=True)
def embed_text(query,corpus,title,embedding_model,emb_tok,chain_type='stuff'):
'''Embed text and generate semantic search scores'''
index_id = "earnings-embeddings"
if 'hkunlp' in embedding_model:
embeddings = HuggingFaceInstructEmbeddings(model_name=f'hkunlp/{embedding_model}',
query_instruction='Represent the Financial question for retrieving supporting paragraphs: ',
embed_instruction='Represent the Financial paragraph for retrieval: ')
else:
embeddings = HuggingFaceEmbeddings(model_name=f'sentence-transformers/{embedding_model}')
title = title[0]
docsearch = process_corpus(corpus,embed_tok,title, embeddings)
docs = docsearch.similarity_search_with_score(query, k=3, namespace = f'{title}-earnings')
docs = [d[0] for d in docs]
if chain_type == 'stuff':
PROMPT = PromptTemplate(template=template,
input_variables=["summaries", "question"],
output_parser=output_parser)
chain = load_qa_with_sources_chain(OpenAI(temperature=0),
chain_type="stuff",
prompt=PROMPT,
)
answer = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
return answer['output_text']
elif chain_type == 'refine':
initial_qa_prompt = PromptTemplate(
input_variables=["context_str", "question"], template=initial_qa_template
)
chain = load_qa_chain(OpenAI(temperature=0), chain_type="refine", return_refine_steps=False,
question_prompt=initial_qa_prompt, refine_prompt=refine_prompt)
answer = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
return answer['output_text']
# @st.experimental_memo(suppress_st_warning=True)
# def embed_text(query,corpus,embedding_model):
# '''Embed text and generate semantic search scores'''
# #If model is e5 then apply prefixes to query and passage
# if embedding_model == 'intfloat/e5-base':
# search_input = 'query: '+ query
# passages_emb = ['passage: ' + sentence for sentence in corpus]
# elif embedding_model == 'hkunlp/instructor-base':
# search_input = [['Represent the Financial question for retrieving supporting paragraphs: ', query]]
# passages_emb = [['Represent the Financial paragraph for retrieval: ',sentence] for sentence in corpus]
# else:
# search_input = query
# passages_emb = corpus
# #Embed corpus and question
# corpus_embedding = sbert.encode(passages_emb, convert_to_tensor=True)
# question_embedding = sbert.encode(search_input, convert_to_tensor=True)
# question_embedding = question_embedding.cpu()
# corpus_embedding = corpus_embedding.cpu()
# # #Calculate similarity scores and rank
# hits = util.semantic_search(question_embedding, corpus_embedding, top_k=2)
# hits = hits[0] # Get the hits for the first query
# # ##### Re-Ranking #####
# # Now, score all retrieved passages with the cross_encoder
# cross_inp = [[search_input, corpus[hit['corpus_id']]] for hit in hits]
# if embedding_model == 'hkunlp/instructor-base':
# result = []
# for sublist in cross_inp:
# question = sublist[0][0][1]
# document = sublist[1][1]
# result.append([question, document])
# cross_inp = result
# cross_scores = cross_encoder.predict(cross_inp)
# # Sort results by the cross-encoder scores
# for idx in range(len(cross_scores)):
# hits[idx]['cross-score'] = cross_scores[idx]
# # Output of top-3 hits from re-ranker
# # st.markdown("\n-------------------------\n")
# # st.subheader(f"Top-{top_k} Cross-Encoder Re-ranker hits")
# hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
# return hits
@st.experimental_singleton(suppress_st_warning=True)
def get_spacy():
nlp = en_core_web_lg.load()
return nlp
@st.experimental_memo(suppress_st_warning=True)
def inference(link, upload, _asr_model):
'''Convert Youtube video or Audio upload to text'''
if validators.url(link):
yt = YouTube(link)
title = yt.title
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
results = _asr_model.transcribe(path, task='transcribe', language='en')
return results['text'], yt.title
elif upload:
results = _asr_model.trasncribe(upload, task='transcribe', language='en')
return results['text'], "Transcribed Earnings Audio"
@st.experimental_memo(suppress_st_warning=True)
def sentiment_pipe(earnings_text):
'''Determine the sentiment of the text'''
earnings_sentences = chunk_long_text(earnings_text,150,1,1)
earnings_sentiment = sent_pipe(earnings_sentences)
return earnings_sentiment, earnings_sentences
@st.experimental_memo(suppress_st_warning=True)
def summarize_text(text_to_summarize,max_len,min_len):
'''Summarize text with HF model'''
summarized_text = sum_pipe(text_to_summarize,max_length=max_len,min_length=min_len,clean_up_tokenization_spaces=True,no_repeat_ngram_size=4,
encoder_no_repeat_ngram_size=3,
repetition_penalty=3.5,
num_beams=4,
early_stopping=True)
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
return summarized_text
@st.experimental_memo(suppress_st_warning=True)
def clean_text(text):
'''Clean all text'''
text = text.encode("ascii", "ignore").decode() # unicode
text = re.sub(r"https*\S+", " ", text) # url
text = re.sub(r"@\S+", " ", text) # mentions
text = re.sub(r"#\S+", " ", text) # hastags
text = re.sub(r"\s{2,}", " ", text) # over spaces
return text
@st.experimental_memo(suppress_st_warning=True)
def chunk_long_text(text,threshold,window_size=3,stride=2):
'''Preprocess text and chunk for sentiment analysis'''
#Convert cleaned text into sentences
sentences = sent_tokenize(text)
out = []
#Limit the length of each sentence to a threshold
for chunk in sentences:
if len(chunk.split()) < threshold:
out.append(chunk)
else:
words = chunk.split()
num = int(len(words)/threshold)
for i in range(0,num*threshold+1,threshold):
out.append(' '.join(words[i:threshold+i]))
passages = []
#Combine sentences into a window of size window_size
for paragraph in [out]:
for start_idx in range(0, len(paragraph), stride):
end_idx = min(start_idx+window_size, len(paragraph))
passages.append(" ".join(paragraph[start_idx:end_idx]))
return passages
@st.experimental_memo(suppress_st_warning=True)
def chunk_and_preprocess_text(text,thresh=500):
"""Chunk text longer than n tokens for summarization"""
sentences = sent_tokenize(text)
current_chunk = 0
chunks = []
for sentence in sentences:
if len(chunks) == current_chunk + 1:
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= thresh:
chunks[current_chunk].extend(sentence.split(" "))
else:
current_chunk += 1
chunks.append(sentence.split(" "))
else:
chunks.append(sentence.split(" "))
for chunk_id in range(len(chunks)):
chunks[chunk_id] = " ".join(chunks[chunk_id])
return chunks
def summary_downloader(raw_text):
b64 = base64.b64encode(raw_text.encode()).decode()
new_filename = "new_text_file_{}_.txt".format(time_str)
st.markdown("#### Download Summary as a File ###")
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
st.markdown(href,unsafe_allow_html=True)
@st.experimental_memo(suppress_st_warning=True)
def get_all_entities_per_sentence(text):
doc = nlp(''.join(text))
sentences = list(doc.sents)
entities_all_sentences = []
for sentence in sentences:
entities_this_sentence = []
# SPACY ENTITIES
for entity in sentence.ents:
entities_this_sentence.append(str(entity))
# XLM ENTITIES
entities_xlm = [entity["word"] for entity in ner_pipe(str(sentence))]
for entity in entities_xlm:
entities_this_sentence.append(str(entity))
entities_all_sentences.append(entities_this_sentence)
return entities_all_sentences
@st.experimental_memo(suppress_st_warning=True)
def get_all_entities(text):
all_entities_per_sentence = get_all_entities_per_sentence(text)
return list(itertools.chain.from_iterable(all_entities_per_sentence))
@st.experimental_memo(suppress_st_warning=True)
def get_and_compare_entities(article_content,summary_output):
all_entities_per_sentence = get_all_entities_per_sentence(article_content)
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence))
all_entities_per_sentence = get_all_entities_per_sentence(summary_output)
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence))
matched_entities = []
unmatched_entities = []
for entity in entities_summary:
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article):
matched_entities.append(entity)
elif any(
np.inner(sbert.encode(entity, show_progress_bar=False),
sbert.encode(art_entity, show_progress_bar=False)) > 0.9 for
art_entity in entities_article):
matched_entities.append(entity)
else:
unmatched_entities.append(entity)
matched_entities = list(dict.fromkeys(matched_entities))
unmatched_entities = list(dict.fromkeys(unmatched_entities))
matched_entities_to_remove = []
unmatched_entities_to_remove = []
for entity in matched_entities:
for substring_entity in matched_entities:
if entity != substring_entity and entity.lower() in substring_entity.lower():
matched_entities_to_remove.append(entity)
for entity in unmatched_entities:
for substring_entity in unmatched_entities:
if entity != substring_entity and entity.lower() in substring_entity.lower():
unmatched_entities_to_remove.append(entity)
matched_entities_to_remove = list(dict.fromkeys(matched_entities_to_remove))
unmatched_entities_to_remove = list(dict.fromkeys(unmatched_entities_to_remove))
for entity in matched_entities_to_remove:
matched_entities.remove(entity)
for entity in unmatched_entities_to_remove:
unmatched_entities.remove(entity)
return matched_entities, unmatched_entities
@st.experimental_memo(suppress_st_warning=True)
def highlight_entities(article_content,summary_output):
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
markdown_end = "</mark>"
matched_entities, unmatched_entities = get_and_compare_entities(article_content,summary_output)
print(summary_output)
for entity in matched_entities:
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_green + entity + markdown_end,summary_output)
for entity in unmatched_entities:
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_red + entity + markdown_end,summary_output)
print("")
print(summary_output)
print("")
print(summary_output)
soup = BeautifulSoup(summary_output, features="html.parser")
return HTML_WRAPPER.format(soup)
def display_df_as_table(model,top_k,score='score'):
'''Display the df with text and scores as a table'''
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text'])
df['Score'] = round(df['Score'],2)
return df
def make_spans(text,results):
results_list = []
for i in range(len(results)):
results_list.append(results[i]['label'])
facts_spans = []
facts_spans = list(zip(sent_tokenizer(text),results_list))
return facts_spans
##Fiscal Sentiment by Sentence
def fin_ext(text):
results = remote_clx(sent_tokenizer(text))
return make_spans(text,results)
## Knowledge Graphs code
def extract_relations_from_model_output(text):
relations = []
relation, subject, relation, object_ = '', '', '', ''
text = text.strip()
current = 'x'
text_replaced = text.replace("<s>", "").replace("<pad>", "").replace("</s>", "")
for token in text_replaced.split():
if token == "<triplet>":
current = 't'
if relation != '':
relations.append({
'head': subject.strip(),
'type': relation.strip(),
'tail': object_.strip()
})
relation = ''
subject = ''
elif token == "<subj>":
current = 's'
if relation != '':
relations.append({
'head': subject.strip(),
'type': relation.strip(),
'tail': object_.strip()
})
object_ = ''
elif token == "<obj>":
current = 'o'
relation = ''
else:
if current == 't':
subject += ' ' + token
elif current == 's':
object_ += ' ' + token
elif current == 'o':
relation += ' ' + token
if subject != '' and relation != '' and object_ != '':
relations.append({
'head': subject.strip(),
'type': relation.strip(),
'tail': object_.strip()
})
return relations
def from_text_to_kb(text, model, tokenizer, article_url, span_length=128, article_title=None,
article_publish_date=None, verbose=False):
# tokenize whole text
inputs = tokenizer([text], return_tensors="pt")
# compute span boundaries
num_tokens = len(inputs["input_ids"][0])
if verbose:
print(f"Input has {num_tokens} tokens")
num_spans = math.ceil(num_tokens / span_length)
if verbose:
print(f"Input has {num_spans} spans")
overlap = math.ceil((num_spans * span_length - num_tokens) /
max(num_spans - 1, 1))
spans_boundaries = []
start = 0
for i in range(num_spans):
spans_boundaries.append([start + span_length * i,
start + span_length * (i + 1)])
start -= overlap
if verbose:
print(f"Span boundaries are {spans_boundaries}")
# transform input with spans
tensor_ids = [inputs["input_ids"][0][boundary[0]:boundary[1]]
for boundary in spans_boundaries]
tensor_masks = [inputs["attention_mask"][0][boundary[0]:boundary[1]]
for boundary in spans_boundaries]
inputs = {
"input_ids": torch.stack(tensor_ids),
"attention_mask": torch.stack(tensor_masks)
}
# generate relations
num_return_sequences = 3
gen_kwargs = {
"max_length": 256,
"length_penalty": 0,
"num_beams": 3,
"num_return_sequences": num_return_sequences
}
generated_tokens = model.generate(
**inputs,
**gen_kwargs,
)
# decode relations
decoded_preds = tokenizer.batch_decode(generated_tokens,
skip_special_tokens=False)
# create kb
kb = KB()
i = 0
for sentence_pred in decoded_preds:
current_span_index = i // num_return_sequences
relations = extract_relations_from_model_output(sentence_pred)
for relation in relations:
relation["meta"] = {
article_url: {
"spans": [spans_boundaries[current_span_index]]
}
}
kb.add_relation(relation, article_title, article_publish_date)
i += 1
return kb
def get_article(url):
article = Article(url)
article.download()
article.parse()
return article
def from_url_to_kb(url, model, tokenizer):
article = get_article(url)
config = {
"article_title": article.title,
"article_publish_date": article.publish_date
}
kb = from_text_to_kb(article.text, model, tokenizer, article.url, **config)
return kb
def get_news_links(query, lang="en", region="US", pages=1):
googlenews = GoogleNews(lang=lang, region=region)
googlenews.search(query)
all_urls = []
for page in range(pages):
googlenews.get_page(page)
all_urls += googlenews.get_links()
return list(set(all_urls))
def from_urls_to_kb(urls, model, tokenizer, verbose=False):
kb = KB()
if verbose:
print(f"{len(urls)} links to visit")
for url in urls:
if verbose:
print(f"Visiting {url}...")
try:
kb_url = from_url_to_kb(url, model, tokenizer)
kb.merge_with_kb(kb_url)
except ArticleException:
if verbose:
print(f" Couldn't download article at url {url}")
return kb
def save_network_html(kb, filename="network.html"):
# create network
net = Network(directed=True, width="700px", height="700px")
# nodes
color_entity = "#00FF00"
for e in kb.entities:
net.add_node(e, shape="circle", color=color_entity)
# edges
for r in kb.relations:
net.add_edge(r["head"], r["tail"],
title=r["type"], label=r["type"])
# save network
net.repulsion(
node_distance=200,
central_gravity=0.2,
spring_length=200,
spring_strength=0.05,
damping=0.09
)
net.set_edge_smooth('dynamic')
net.show(filename)
def save_kb(kb, filename):
with open(filename, "wb") as f:
pickle.dump(kb, f)
class CustomUnpickler(pickle.Unpickler):
def find_class(self, module, name):
if name == 'KB':
return KB
return super().find_class(module, name)
def load_kb(filename):
res = None
with open(filename, "rb") as f:
res = CustomUnpickler(f).load()
return res
class KB():
def __init__(self):
self.entities = {} # { entity_title: {...} }
self.relations = [] # [ head: entity_title, type: ..., tail: entity_title,
# meta: { article_url: { spans: [...] } } ]
self.sources = {} # { article_url: {...} }
def merge_with_kb(self, kb2):
for r in kb2.relations:
article_url = list(r["meta"].keys())[0]
source_data = kb2.sources[article_url]
self.add_relation(r, source_data["article_title"],
source_data["article_publish_date"])
def are_relations_equal(self, r1, r2):
return all(r1[attr] == r2[attr] for attr in ["head", "type", "tail"])
def exists_relation(self, r1):
return any(self.are_relations_equal(r1, r2) for r2 in self.relations)
def merge_relations(self, r2):
r1 = [r for r in self.relations
if self.are_relations_equal(r2, r)][0]
# if different article
article_url = list(r2["meta"].keys())[0]
if article_url not in r1["meta"]:
r1["meta"][article_url] = r2["meta"][article_url]
# if existing article
else:
spans_to_add = [span for span in r2["meta"][article_url]["spans"]
if span not in r1["meta"][article_url]["spans"]]
r1["meta"][article_url]["spans"] += spans_to_add
def get_wikipedia_data(self, candidate_entity):
try:
page = wikipedia.page(candidate_entity, auto_suggest=False)
entity_data = {
"title": page.title,
"url": page.url,
"summary": page.summary
}
return entity_data
except:
return None
def add_entity(self, e):
self.entities[e["title"]] = {k:v for k,v in e.items() if k != "title"}
def add_relation(self, r, article_title, article_publish_date):
# check on wikipedia
candidate_entities = [r["head"], r["tail"]]
entities = [self.get_wikipedia_data(ent) for ent in candidate_entities]
# if one entity does not exist, stop
if any(ent is None for ent in entities):
return
# manage new entities
for e in entities:
self.add_entity(e)
# rename relation entities with their wikipedia titles
r["head"] = entities[0]["title"]
r["tail"] = entities[1]["title"]
# add source if not in kb
article_url = list(r["meta"].keys())[0]
if article_url not in self.sources:
self.sources[article_url] = {
"article_title": article_title,
"article_publish_date": article_publish_date
}
# manage new relation
if not self.exists_relation(r):
self.relations.append(r)
else:
self.merge_relations(r)
def get_textual_representation(self):
res = ""
res += "### Entities\n"
for e in self.entities.items():
# shorten summary
e_temp = (e[0], {k:(v[:100] + "..." if k == "summary" else v) for k,v in e[1].items()})
res += f"- {e_temp}\n"
res += "\n"
res += "### Relations\n"
for r in self.relations:
res += f"- {r}\n"
res += "\n"
res += "### Sources\n"
for s in self.sources.items():
res += f"- {s}\n"
return res
def save_network_html(kb, filename="network.html"):
# create network
net = Network(directed=True, width="700px", height="700px", bgcolor="#eeeeee")
# nodes
color_entity = "#00FF00"
for e in kb.entities:
net.add_node(e, shape="circle", color=color_entity)
# edges
for r in kb.relations:
net.add_edge(r["head"], r["tail"],
title=r["type"], label=r["type"])
# save network
net.repulsion(
node_distance=200,
central_gravity=0.2,
spring_length=200,
spring_strength=0.05,
damping=0.09
)
net.set_edge_smooth('dynamic')
net.show(filename)
nlp = get_spacy()
sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer, emb_tokenizer = load_models()
sbert = load_sbert('all-MiniLM-L12-v2') |