nickmuchi commited on
Commit
377fd6b
1 Parent(s): 82bf281

Update functions.py

Browse files
Files changed (1) hide show
  1. functions.py +9 -3
functions.py CHANGED
@@ -29,7 +29,7 @@ margin-bottom: 2.5rem">{}</div> """
29
 
30
  @st.experimental_singleton(suppress_st_warning=True)
31
  def load_models():
32
- asr_model = whisper.load_model("small")
33
  #asr_pipe = pipeline("automatic-speech-recognition",model = "openai/whisper-small")
34
  q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
35
  ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
@@ -40,8 +40,14 @@ def load_models():
40
  ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
41
  cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
42
 
43
- return asr_model, sent_pipe, sum_pipe, ner_pipe, cross_encoder
 
 
 
 
44
 
 
 
45
  @st.experimental_singleton(suppress_st_warning=True)
46
  def load_sbert(model_name):
47
  sbert = SentenceTransformer(model_name)
@@ -311,4 +317,4 @@ def fin_ext(text):
311
  return make_spans(text,results)
312
 
313
  nlp = get_spacy()
314
- asr_model, sent_pipe, sum_pipe, ner_pipe, cross_encoder = load_models()
 
29
 
30
  @st.experimental_singleton(suppress_st_warning=True)
31
  def load_models():
32
+ #asr_model = whisper.load_model("small")
33
  #asr_pipe = pipeline("automatic-speech-recognition",model = "openai/whisper-small")
34
  q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
35
  ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
 
40
  ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
41
  cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
42
 
43
+ return sent_pipe, sum_pipe, ner_pipe, cross_encoder
44
+
45
+ @st.experimental_singleton(suppress_st_warning=True)
46
+ def load_asr_model(asr_model_name):
47
+ asr_model = whisper.load(asr_model_name)
48
 
49
+ return asr_model
50
+
51
  @st.experimental_singleton(suppress_st_warning=True)
52
  def load_sbert(model_name):
53
  sbert = SentenceTransformer(model_name)
 
317
  return make_spans(text,results)
318
 
319
  nlp = get_spacy()
320
+ sent_pipe, sum_pipe, ner_pipe, cross_encoder = load_models()