Spaces:
Build error
Build error
File size: 17,000 Bytes
063f4f5 b6fa050 174d358 45f18d1 b6fa050 45f18d1 ef63822 d764aaf ef63822 d647f3e f148267 174d358 b43e654 ef63822 45f18d1 b6fa050 ef63822 f148267 ef63822 9f35487 ef63822 b6fa050 3499e9c 36a356a ef63822 75ce59c d647f3e ef63822 91b420f 45f18d1 f148267 36a356a f148267 ff36ed6 f148267 45f18d1 ff36ed6 45f18d1 8a01cdc 45f18d1 ef63822 b6fa050 f148267 b6fa050 ef63822 ff36ed6 f148267 c9e7f8b ff36ed6 f148267 45f18d1 ef63822 36a356a ef63822 f148267 8a01cdc 45f18d1 f148267 45f18d1 8a01cdc b6fa050 f148267 b6fa050 b43e654 f148267 36a356a f148267 b43e654 36a356a b43e654 b6fa050 f148267 b6fa050 b43e654 f148267 36a356a f148267 b6fa050 45f18d1 91b420f ef63822 36a356a d8805a9 36a356a d8805a9 36a356a ef63822 b09ff92 36a356a b09ff92 b6fa050 36a356a d647f3e 36a356a 174d358 f148267 063f4f5 45f18d1 b43e654 8a01cdc 45f18d1 ef63822 45f18d1 d8805a9 45f18d1 75ce59c 36a356a b6fa050 36a356a 45f18d1 d8805a9 b43e654 45f18d1 063f4f5 cfc47f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import numpy as np
import traceback
import gradio as gr
from PIL import Image
from scipy import ndimage, interpolate
import matplotlib.pyplot as plt
from bulk_bulge_generation import definitions, smooth
# from transformers import pipeline
import fastai
from fastcore.all import *
from fastai.vision.all import *
from ultralytics import ASSETS, YOLO
import cv2
# def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
# rows, cols = image.shape[:2]
# max_dim = max(rows, cols)
# print()
# print(f"Max_dim is {max_dim}")
# print()
#
# center_y = int(center[1] * rows)
# center_x = int(center[0] * cols)
# center_y = abs(rows - center_y)
#
# print(f"Image shape: {rows}x{cols}")
# print(f"Center: ({center_x}, {center_y})")
# print(f"Radius: {radius}, Strength: {strength}")
# print(f"Edge smoothness: {edge_smoothness}, Center smoothness: {center_smoothness}")
#
# y, x = np.ogrid[:rows, :cols]
# y = (y - center_y) / max_dim
# x = (x - center_x) / max_dim
#
# dist_from_center = np.sqrt(x**2 + y**2)
#
# z = func(x, y)
# print(f"Function output - min: {np.min(z)}, max: {np.max(z)}")
#
# gy, gx = np.gradient(z)
# print(f"Initial gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
# print(f"Initial gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
#
# # Avoid division by zero
# edge_smoothness = np.maximum(edge_smoothness, 1e-6)
# center_smoothness = np.maximum(center_smoothness, 1e-6)
#
# edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
# center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
# mask = edge_mask * center_mask
#
# gx = gx * mask
# gy = gy * mask
#
# magnitude = np.sqrt(gx**2 + gy**2)
# magnitude[magnitude == 0] = 1 # Avoid division by zero
# gx = gx / magnitude
# gy = gy / magnitude
#
# scale_factor = strength * np.log(max_dim) / 100
# gx = gx * scale_factor * mask
# gy = gy * scale_factor * mask
#
# print(f"Final gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
# print(f"Final gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
#
# # Forward transformation
# x_new = x + gx
# y_new = y + gy
#
# x_new = x_new * max_dim + center_x
# y_new = y_new * max_dim + center_y
#
# x_new = np.clip(x_new, 0, cols - 1)
# y_new = np.clip(y_new, 0, rows - 1)
#
# # Inverse transformation
# x_inv = x - gx
# y_inv = y - gy
#
# x_inv = x_inv * max_dim + center_x
# y_inv = y_inv * max_dim + center_y
#
# x_inv = np.clip(x_inv, 0, cols - 1)
# y_inv = np.clip(y_inv, 0, rows - 1)
#
# # Apply transformations
# channels_forward = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect')
# for i in range(image.shape[2])]
# channels_inverse = [ndimage.map_coordinates(image[..., i], [y_inv, x_inv], order=1, mode='reflect')
# for i in range(image.shape[2])]
#
# transformed_image = np.dstack(channels_forward).astype(image.dtype)
# inverse_transformed_image = np.dstack(channels_inverse).astype(image.dtype)
#
# return transformed_image, inverse_transformed_image, (gx, gy)
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
"""
Create a gradient vector field visualization with option to reverse direction.
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:param image_shape: Shape of the original image (height, width)
:param step: Spacing between arrows
:param reverse: If True, reverse the direction of the arrows
:return: Gradient vector field as a numpy array (RGB image)
"""
rows, cols = image_shape
y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int)
# Calculate the scale based on image size
max_dim = max(rows, cols)
scale = max_dim / 1000 # Adjusted for longer arrows
# Reverse direction if specified
direction = -1 if reverse else 1
fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100)
ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x],
scale=scale,
scale_units='width',
width=0.002 * max_dim / 500,
headwidth=8,
headlength=12,
headaxislength=0,
color='black',
minshaft=2,
minlength=0,
pivot='tail')
ax.set_xlim(0, cols)
ax.set_ylim(rows, 0)
ax.set_aspect('equal')
ax.axis('off')
fig.tight_layout(pad=0)
fig.canvas.draw()
vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return vector_field
def apply_gradient_transform(image, gx, gy):
"""
Apply the gradient transformation to an image.
:param image: Input image as a numpy array
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:return: Transformed image
"""
rows, cols = image.shape[:2]
y, x = np.mgrid[0:rows, 0:cols]
# Apply the transformation
x_new = x + gx
y_new = y + gy
# Ensure the new coordinates are within the image boundaries
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
# Apply the transformation to each channel
channels = []
for i in range(image.shape[2]):
channel = image[:,:,i]
transformed_channel = interpolate.griddata((y.flatten(), x.flatten()), channel.flatten(), (y_new, x_new), method='linear', fill_value=0)
channels.append(transformed_channel)
transformed_image = np.dstack(channels).astype(image.dtype)
return transformed_image
def generate_function_gradient(func, image_shape, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
rows, cols = image_shape[:2]
max_dim = max(rows, cols)
y, x = np.mgrid[0:rows, 0:cols].astype(np.float32)
y = (y - center[1] * rows) / max_dim
x = (x - center[0] * cols) / max_dim
dist_from_center = np.sqrt(x**2 + y**2)
z = func(x, y)
gy, gx = np.gradient(z)
edge_smoothness = np.maximum(edge_smoothness, 1e-6)
center_smoothness = np.maximum(center_smoothness, 1e-6)
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
mask = edge_mask * center_mask
gx *= mask
gy *= mask
magnitude = np.sqrt(gx**2 + gy**2)
max_magnitude = np.max(magnitude)
if max_magnitude > 0:
gx /= max_magnitude
gy /= max_magnitude
# Increase the base scale factor
base_scale = radius * max_dim * 0.2 # Increased from 0.1 to 0.2
# Apply a non-linear scaling to the strength
adjusted_strength = np.power(strength, 1.5) # This will make the effect more pronounced at higher strengths
# Increase the maximum strength multiplier
scale_factor = base_scale * np.clip(adjusted_strength, 0, 3) # Increased max from 2 to 3
# Apply an additional scaling factor based on image size
size_factor = np.log(max_dim) / np.log(1000) # This will be 1 for 1000x1000 images, larger for bigger images
scale_factor *= size_factor
gx *= scale_factor
gy *= scale_factor
print(f"Final scale factor: {scale_factor}")
print(f"Final gradient ranges: gx [{np.min(gx)}, {np.max(gx)}], gy [{np.min(gy)}, {np.max(gy)}]")
return gx, gy
#############################
# MAIN FUNCTION HERE
#############################
# Version Check
print(f"NumPy version: {np.__version__}")
print(f"PyTorch version: {torch.__version__}")
print(f"FastAI version: {fastai.__version__}")
learn_bias = load_learner('model_bias.pkl')
learn_fresh = load_learner('model_fresh.pkl')
# Loads the YOLO Model
model_bulge = YOLO("best.onnx")
# modelv8x = YOLO("yolov8x.pt")
# modelv8n = YOLO("yolov8n.pt")
def predict_image(img, model, conf_threshold, iou_threshold):
"""Predicts objects in an image using a YOLOv8 model with adjustable confidence and IOU thresholds."""
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
return im
def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
with Image.open(image) as img:
img = img.convert('RGB')
I = np.array(img)
# Downsample large images
max_size = 640 # Increased from 512 to allow for more detail, decreased from 1024 to match YOLO model training.
if max(I.shape[:2]) > max_size:
scale = max_size / max(I.shape[:2])
new_size = (int(I.shape[1] * scale), int(I.shape[0] * scale))
I = cv2.resize(I, new_size, interpolation=cv2.INTER_AREA)
print(f"Downsampled image to {I.shape}")
##################################
# Transformation Functions #
##################################
def pinch(x, y):
r = np.sqrt(x**2 + y**2)
return r
def zoom(x, y):
return x**2 + y**2
def shift(x, y):
return np.arctan2(y, x)
def bulge(x, y):
r = -np.sqrt(x**2 + y**2)
return r
def spiral(x, y, frequency=1):
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
return r * np.sin(theta - frequency * r)
rng = np.random.default_rng()
if randomization_check:
radius, location, strength, edge_smoothness = definitions(rng)
center_x, center_y = location
center_smoothness = edge_smoothness
else:
edge_smoothness, center_smoothness = smooth(rng, strength)
if func_choice == "Pinch":
func = pinch
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Spiral":
func = shift
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Bulge":
func = bulge
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Volcano":
func = bulge
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Shift Up":
func = lambda x, y: spiral(x, y, frequency=spiral_frequency)
edge_smoothness = 0
center_smoothness = 0
print(f"Function choice: {func_choice}")
print(f"Input image shape: {I.shape}")
print(f"Radius: {radius}, Center: ({center_x}, {center_y}), Strength: {strength}")
# strength = strength * 2 # This allows for stronger effects
try:
strength = 0.8
# Generate gradients
gx, gy = generate_function_gradient(func, I.shape, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness)
# Vectorized transformation
rows, cols = I.shape[:2]
y, x = np.mgrid[0:rows, 0:cols].astype(np.float32)
x_new = x + gx
y_new = y + gy
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
transformed = cv2.remap(I, x_new, y_new, cv2.INTER_LINEAR)
inv_gx, inv_gy = -gx, -gy
x_inv = x + inv_gx
y_inv = y + inv_gy
x_inv = np.clip(x_inv, 0, cols - 1)
y_inv = np.clip(y_inv, 0, rows - 1)
inverse_transformed = cv2.remap(I, x_inv, y_inv, cv2.INTER_LINEAR)
# Apply Inverse to detected location
YOLO_image = predict_image(transformed, model_bulge, 0.5, 0.5)
applied_transformed = cv2.remap(transformed, x_inv, y_inv, cv2.INTER_LINEAR)
# print(f"Transformed image shape: {transformed.shape}")
# print(f"Inverse transformed image shape: {inverse_transformed.shape}")
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
inverted_vector_field = create_gradient_vector_field(inv_gx, inv_gy, I.shape[:2], reverse=False)
# print(f"Vector field shape: {vector_field.shape}")
# print(f"Inverted vector field shape: {inverted_vector_field.shape}")
# If we downsampled earlier, upsample the results back to original size
if max(I.shape[:2]) != max(np.asarray(Image.open(image)).shape[:2]):
original_size = np.asarray(Image.open(image)).shape[:2][::-1]
transformed = cv2.resize(transformed, original_size, interpolation=cv2.INTER_LINEAR)
inverse_transformed = cv2.resize(inverse_transformed, original_size, interpolation=cv2.INTER_LINEAR)
applied_transformed = cv2.resize(applied_transformed, original_size, interpolation=cv2.INTER_LINEAR)
vector_field = cv2.resize(vector_field, original_size, interpolation=cv2.INTER_LINEAR)
inverted_vector_field = cv2.resize(inverted_vector_field, original_size, interpolation=cv2.INTER_LINEAR)
except Exception as e:
print(f"Error in transformation: {str(e)}")
traceback.print_exc()
transformed = np.zeros_like(I)
inverse_transformed = np.zeros_like(I)
vector_field = np.zeros_like(I)
inverted_vector_field = np.zeros_like(I)
result = Image.fromarray(transformed.astype('uint8'), 'RGB')
# categories = ['Distorted', 'Maze']
# def clean_output(result_values):
# pred, idx, probs = result_values
# return dict(zip(categories, map(float, probs)))
# Outdated, changing to a classification basis
# result_bias = learn_bias.predict(result)
# result_fresh = learn_fresh.predict(result)
# result_bias_final = clean_output(result_bias)
# result_fresh_final = clean_output(result_fresh)
result_localization = model_bulge.predict(transformed, save=True)
print(result_localization, "bulge")
# result_localization1 = modelv8n.predict(transformed, save=True)
# print(result_localization1, "modelv8n")
# result_localization2 = modelv8x.predict(transformed, save=True)
# print(result_localization2, "modelv8x")
# YOLO_image1 = predict_image(transformed, modelv8n, 0.5, 0.5)
# YOLO_image2 = predict_image(transformed, modelv8x, 0.5, 0.5)
# return transformed, YOLO_image, YOLO_image1, YOLO_image2, result_bias_final, result_fresh_final, vector_field, inverse_transformed, inverted_vector_field
# return transformed, YOLO_image, result_bias_final, result_fresh_final, vector_field, inverse_transformed, inverted_vector_field
return transformed, YOLO_image, vector_field, inverse_transformed, inverted_vector_field, applied_transformed
demo = gr.Interface(
fn=transform_image,
inputs=[
gr.Image(type="filepath"),
gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Bulge", label="Function"),
gr.Checkbox(label="Randomize inputs?"),
gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
gr.Slider(0, 1, value=0.5, label="Center X"),
gr.Slider(0, 1, value=0.5, label="Center Y"),
gr.Slider(0, 1, value=0.5, label="Strength"),
# gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
# gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
# gr.Checkbox(label="Reverse Gradient Direction"),
],
examples=[
[np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5]
],
outputs=[
gr.Image(label="Transformed Image"),
gr.Image(label="bulge_model Model Classification"),
# gr.Image(label="yolov8n Model Classification"),
# gr.Image(label="yolov8x Model Classification"),
# gr.Label(),
# gr.Label(),
gr.Image(label="Gradient Vector Field"),
gr.Image(label="Inverse Gradient"),
gr.Image(label="Inverted Vector Field"),
gr.Image(label="Fixed Image")
],
title="Image Transformation Demo!",
article="If you like this demo, please star the github repository for the project! Located [here!](https://github.com/nick-leland/DistortionML)",
description=""
)
demo.launch(share=True)
|