Spaces:
Build error
Build error
nick-leland
commited on
Commit
·
b6fa050
1
Parent(s):
8093ae7
Updated the gradio app to now include the inverse gradient generation
Browse files- app.py +146 -65
- temp_app.py +0 -286
app.py
CHANGED
@@ -1,100 +1,95 @@
|
|
1 |
import numpy as np
|
|
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
-
from scipy import ndimage
|
5 |
import matplotlib.pyplot as plt
|
6 |
from bulk_bulge_generation import definitions, smooth
|
7 |
# from transformers import pipeline
|
8 |
import fastai
|
9 |
from fastcore.all import *
|
10 |
from fastai.vision.all import *
|
|
|
11 |
|
12 |
def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
|
13 |
-
# 0.106 strength = .50
|
14 |
-
# 0.106 strength = 1
|
15 |
rows, cols = image.shape[:2]
|
16 |
max_dim = max(rows, cols)
|
17 |
|
18 |
-
#Normalize the positions
|
19 |
-
# Y Needs to be flipped
|
20 |
center_y = int(center[1] * rows)
|
21 |
center_x = int(center[0] * cols)
|
22 |
-
|
23 |
-
# Inverts the Y axis (Numpy is 0 index at top of image)
|
24 |
center_y = abs(rows - center_y)
|
25 |
|
26 |
-
print()
|
27 |
-
print(
|
28 |
-
print("
|
29 |
-
print("
|
30 |
-
print()
|
31 |
-
|
32 |
-
pixel_radius = int(max_dim * radius)
|
33 |
|
34 |
y, x = np.ogrid[:rows, :cols]
|
35 |
y = (y - center_y) / max_dim
|
36 |
x = (x - center_x) / max_dim
|
37 |
|
38 |
-
# Calculate distance from center
|
39 |
dist_from_center = np.sqrt(x**2 + y**2)
|
40 |
|
41 |
-
# Calculate function values
|
42 |
z = func(x, y)
|
|
|
43 |
|
44 |
-
# Calculate gradients
|
45 |
gy, gx = np.gradient(z)
|
|
|
|
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
print(radius)
|
52 |
-
print(strength)
|
53 |
-
print(edge_smoothness)
|
54 |
-
print(center_smoothness)
|
55 |
|
56 |
-
# Masking
|
57 |
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
|
58 |
-
|
59 |
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
|
60 |
-
|
61 |
mask = edge_mask * center_mask
|
62 |
|
63 |
-
# Apply mask to gradients
|
64 |
gx = gx * mask
|
65 |
gy = gy * mask
|
66 |
|
67 |
-
# Normalize gradient vectors
|
68 |
magnitude = np.sqrt(gx**2 + gy**2)
|
69 |
magnitude[magnitude == 0] = 1 # Avoid division by zero
|
70 |
gx = gx / magnitude
|
71 |
gy = gy / magnitude
|
72 |
|
73 |
-
|
74 |
-
scale_factor = strength * np.log(max_dim) / 100 # Adjust strength based on image size
|
75 |
gx = gx * scale_factor * mask
|
76 |
gy = gy * scale_factor * mask
|
77 |
|
78 |
-
|
|
|
|
|
|
|
79 |
x_new = x + gx
|
80 |
y_new = y + gy
|
81 |
|
82 |
-
# Convert back to pixel coordinates
|
83 |
x_new = x_new * max_dim + center_x
|
84 |
y_new = y_new * max_dim + center_y
|
85 |
|
86 |
-
# Ensure the new coordinates are within the image boundaries
|
87 |
x_new = np.clip(x_new, 0, cols - 1)
|
88 |
y_new = np.clip(y_new, 0, rows - 1)
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
|
93 |
|
94 |
-
|
|
|
95 |
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
|
100 |
"""
|
@@ -142,13 +137,83 @@ def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
|
|
142 |
|
143 |
return vector_field
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
#############################
|
147 |
# MAIN FUNCTION HERE
|
148 |
#############################
|
149 |
|
150 |
-
# pipeline = pipeline(task="image-classification", model="nick-leland/distortionml")
|
151 |
-
|
152 |
# Version Check
|
153 |
print(f"NumPy version: {np.__version__}")
|
154 |
print(f"PyTorch version: {torch.__version__}")
|
@@ -157,6 +222,8 @@ print(f"FastAI version: {fastai.__version__}")
|
|
157 |
learn_bias = load_learner('model_bias.pkl')
|
158 |
learn_fresh = load_learner('model_fresh.pkl')
|
159 |
|
|
|
|
|
160 |
|
161 |
def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
|
162 |
I = np.asarray(Image.open(image))
|
@@ -177,16 +244,11 @@ def transform_image(image, func_choice, randomization_check, radius, center_x, c
|
|
177 |
return r * np.sin(theta - frequency * r)
|
178 |
|
179 |
rng = np.random.default_rng()
|
180 |
-
if randomization_check
|
181 |
-
radius, location, strength, edge_smoothness= definitions(rng)
|
182 |
-
center_x = location
|
183 |
-
|
184 |
-
|
185 |
-
# Temporarily disabling and using these values.
|
186 |
-
# edge_smoothness = 0.25 * strength
|
187 |
-
# center_smoothness = 0.25 * strength
|
188 |
-
edge_smoothness, center_smoothness = smooth(rng, strength)
|
189 |
-
|
190 |
|
191 |
if func_choice == "Pinch":
|
192 |
func = pinch
|
@@ -202,29 +264,47 @@ def transform_image(image, func_choice, randomization_check, radius, center_x, c
|
|
202 |
func = lambda x, y: spiral(x, y, frequency=spiral_frequency)
|
203 |
|
204 |
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
-
# GRADIO CHANGE HERE
|
209 |
-
# predictions = pipeline(transformed)
|
210 |
-
|
211 |
-
# Have to convert to image first
|
212 |
result = Image.fromarray(transformed)
|
213 |
|
214 |
categories = ['Distorted', 'Maze']
|
215 |
|
216 |
def clean_output(result_values):
|
217 |
-
pred, idx, probs = result_values
|
218 |
return dict(zip(categories, map(float, probs)))
|
219 |
|
220 |
result_bias = learn_bias.predict(result)
|
221 |
result_fresh = learn_fresh.predict(result)
|
222 |
-
print("Results")
|
223 |
result_bias_final = clean_output(result_bias)
|
224 |
result_fresh_final = clean_output(result_fresh)
|
225 |
|
226 |
-
|
227 |
-
|
|
|
228 |
|
229 |
demo = gr.Interface(
|
230 |
fn=transform_image,
|
@@ -248,10 +328,11 @@ demo = gr.Interface(
|
|
248 |
],
|
249 |
outputs=[
|
250 |
gr.Image(label="Transformed Image"),
|
251 |
-
# gr.Image(label="Result", num_top_classes=2)
|
252 |
gr.Label(),
|
253 |
gr.Label(),
|
254 |
-
gr.Image(label="Gradient Vector Field")
|
|
|
|
|
255 |
],
|
256 |
title="Image Transformation Demo!",
|
257 |
article="If you like this demo, please star the github repository for the project! Located [here!](https://github.com/nick-leland/DistortionML)",
|
|
|
1 |
import numpy as np
|
2 |
+
import traceback
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
+
from scipy import ndimage, interpolate
|
6 |
import matplotlib.pyplot as plt
|
7 |
from bulk_bulge_generation import definitions, smooth
|
8 |
# from transformers import pipeline
|
9 |
import fastai
|
10 |
from fastcore.all import *
|
11 |
from fastai.vision.all import *
|
12 |
+
from ultralytics import YOLO
|
13 |
|
14 |
def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
|
|
|
|
|
15 |
rows, cols = image.shape[:2]
|
16 |
max_dim = max(rows, cols)
|
17 |
|
|
|
|
|
18 |
center_y = int(center[1] * rows)
|
19 |
center_x = int(center[0] * cols)
|
|
|
|
|
20 |
center_y = abs(rows - center_y)
|
21 |
|
22 |
+
print(f"Image shape: {rows}x{cols}")
|
23 |
+
print(f"Center: ({center_x}, {center_y})")
|
24 |
+
print(f"Radius: {radius}, Strength: {strength}")
|
25 |
+
print(f"Edge smoothness: {edge_smoothness}, Center smoothness: {center_smoothness}")
|
|
|
|
|
|
|
26 |
|
27 |
y, x = np.ogrid[:rows, :cols]
|
28 |
y = (y - center_y) / max_dim
|
29 |
x = (x - center_x) / max_dim
|
30 |
|
|
|
31 |
dist_from_center = np.sqrt(x**2 + y**2)
|
32 |
|
|
|
33 |
z = func(x, y)
|
34 |
+
print(f"Function output - min: {np.min(z)}, max: {np.max(z)}")
|
35 |
|
|
|
36 |
gy, gx = np.gradient(z)
|
37 |
+
print(f"Initial gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
|
38 |
+
print(f"Initial gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
|
39 |
|
40 |
+
# Avoid division by zero
|
41 |
+
edge_smoothness = np.maximum(edge_smoothness, 1e-6)
|
42 |
+
center_smoothness = np.maximum(center_smoothness, 1e-6)
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
44 |
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
|
|
|
45 |
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
|
|
|
46 |
mask = edge_mask * center_mask
|
47 |
|
|
|
48 |
gx = gx * mask
|
49 |
gy = gy * mask
|
50 |
|
|
|
51 |
magnitude = np.sqrt(gx**2 + gy**2)
|
52 |
magnitude[magnitude == 0] = 1 # Avoid division by zero
|
53 |
gx = gx / magnitude
|
54 |
gy = gy / magnitude
|
55 |
|
56 |
+
scale_factor = strength * np.log(max_dim) / 100
|
|
|
57 |
gx = gx * scale_factor * mask
|
58 |
gy = gy * scale_factor * mask
|
59 |
|
60 |
+
print(f"Final gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
|
61 |
+
print(f"Final gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
|
62 |
+
|
63 |
+
# Forward transformation
|
64 |
x_new = x + gx
|
65 |
y_new = y + gy
|
66 |
|
|
|
67 |
x_new = x_new * max_dim + center_x
|
68 |
y_new = y_new * max_dim + center_y
|
69 |
|
|
|
70 |
x_new = np.clip(x_new, 0, cols - 1)
|
71 |
y_new = np.clip(y_new, 0, rows - 1)
|
72 |
|
73 |
+
# Inverse transformation
|
74 |
+
x_inv = x - gx
|
75 |
+
y_inv = y - gy
|
76 |
|
77 |
+
x_inv = x_inv * max_dim + center_x
|
78 |
+
y_inv = y_inv * max_dim + center_y
|
79 |
|
80 |
+
x_inv = np.clip(x_inv, 0, cols - 1)
|
81 |
+
y_inv = np.clip(y_inv, 0, rows - 1)
|
82 |
+
|
83 |
+
# Apply transformations
|
84 |
+
channels_forward = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect')
|
85 |
+
for i in range(image.shape[2])]
|
86 |
+
channels_inverse = [ndimage.map_coordinates(image[..., i], [y_inv, x_inv], order=1, mode='reflect')
|
87 |
+
for i in range(image.shape[2])]
|
88 |
+
|
89 |
+
transformed_image = np.dstack(channels_forward).astype(image.dtype)
|
90 |
+
inverse_transformed_image = np.dstack(channels_inverse).astype(image.dtype)
|
91 |
+
|
92 |
+
return transformed_image, inverse_transformed_image, (gx, gy)
|
93 |
|
94 |
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
|
95 |
"""
|
|
|
137 |
|
138 |
return vector_field
|
139 |
|
140 |
+
import numpy as np
|
141 |
+
from scipy import interpolate
|
142 |
+
|
143 |
+
# def invert_gradient_vector_field(gx, gy, image_shape):
|
144 |
+
# """
|
145 |
+
# Invert the gradient vector field using a more accurate method.
|
146 |
+
#
|
147 |
+
# :param gx: X-component of the gradient
|
148 |
+
# :param gy: Y-component of the gradient
|
149 |
+
# :param image_shape: Shape of the original image (height, width)
|
150 |
+
# :return: Inverted gx and gy
|
151 |
+
# """
|
152 |
+
# rows, cols = image_shape
|
153 |
+
# y, x = np.mgrid[0:rows, 0:cols]
|
154 |
+
#
|
155 |
+
# # Calculate the new positions after applying the gradient
|
156 |
+
# new_x = x + gx
|
157 |
+
# new_y = y + gy
|
158 |
+
#
|
159 |
+
# # Create a mask for valid (non-NaN, non-infinite) values
|
160 |
+
# mask = np.isfinite(new_x) & np.isfinite(new_y)
|
161 |
+
#
|
162 |
+
# # Flatten and filter the arrays
|
163 |
+
# x_flat = x[mask]
|
164 |
+
# y_flat = y[mask]
|
165 |
+
# new_x_flat = new_x[mask]
|
166 |
+
# new_y_flat = new_y[mask]
|
167 |
+
#
|
168 |
+
# # Create the inverse mapping
|
169 |
+
# inv_x = interpolate.griddata((new_x_flat, new_y_flat), x_flat, (x, y), method='linear', fill_value=np.nan)
|
170 |
+
# inv_y = interpolate.griddata((new_x_flat, new_y_flat), y_flat, (x, y), method='linear', fill_value=np.nan)
|
171 |
+
#
|
172 |
+
# # Calculate the inverse gradient
|
173 |
+
# inv_gx = inv_x - x
|
174 |
+
# inv_gy = inv_y - y
|
175 |
+
#
|
176 |
+
# # Fill NaN values with zeros
|
177 |
+
# inv_gx = np.nan_to_num(inv_gx)
|
178 |
+
# inv_gy = np.nan_to_num(inv_gy)
|
179 |
+
#
|
180 |
+
# return -inv_gx, -inv_gy # Note the negation here
|
181 |
+
|
182 |
+
def apply_gradient_transform(image, gx, gy):
|
183 |
+
"""
|
184 |
+
Apply the gradient transformation to an image.
|
185 |
+
|
186 |
+
:param image: Input image as a numpy array
|
187 |
+
:param gx: X-component of the gradient
|
188 |
+
:param gy: Y-component of the gradient
|
189 |
+
:return: Transformed image
|
190 |
+
"""
|
191 |
+
rows, cols = image.shape[:2]
|
192 |
+
y, x = np.mgrid[0:rows, 0:cols]
|
193 |
+
|
194 |
+
# Apply the transformation
|
195 |
+
x_new = x + gx
|
196 |
+
y_new = y + gy
|
197 |
+
|
198 |
+
# Ensure the new coordinates are within the image boundaries
|
199 |
+
x_new = np.clip(x_new, 0, cols - 1)
|
200 |
+
y_new = np.clip(y_new, 0, rows - 1)
|
201 |
+
|
202 |
+
# Apply the transformation to each channel
|
203 |
+
channels = []
|
204 |
+
for i in range(image.shape[2]):
|
205 |
+
channel = image[:,:,i]
|
206 |
+
transformed_channel = interpolate.griddata((y.flatten(), x.flatten()), channel.flatten(), (y_new, x_new), method='linear', fill_value=0)
|
207 |
+
channels.append(transformed_channel)
|
208 |
+
|
209 |
+
transformed_image = np.dstack(channels).astype(image.dtype)
|
210 |
+
|
211 |
+
return transformed_image
|
212 |
|
213 |
#############################
|
214 |
# MAIN FUNCTION HERE
|
215 |
#############################
|
216 |
|
|
|
|
|
217 |
# Version Check
|
218 |
print(f"NumPy version: {np.__version__}")
|
219 |
print(f"PyTorch version: {torch.__version__}")
|
|
|
222 |
learn_bias = load_learner('model_bias.pkl')
|
223 |
learn_fresh = load_learner('model_fresh.pkl')
|
224 |
|
225 |
+
# Loads the YOLO Model
|
226 |
+
model = YOLO("bulge_yolo_model.pt")
|
227 |
|
228 |
def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
|
229 |
I = np.asarray(Image.open(image))
|
|
|
244 |
return r * np.sin(theta - frequency * r)
|
245 |
|
246 |
rng = np.random.default_rng()
|
247 |
+
if randomization_check:
|
248 |
+
radius, location, strength, edge_smoothness = definitions(rng)
|
249 |
+
center_x, center_y = location
|
250 |
+
else:
|
251 |
+
edge_smoothness, center_smoothness = smooth(rng, strength)
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
if func_choice == "Pinch":
|
254 |
func = pinch
|
|
|
264 |
func = lambda x, y: spiral(x, y, frequency=spiral_frequency)
|
265 |
|
266 |
|
267 |
+
print(f"Function choice: {func_choice}")
|
268 |
+
print(f"Input image shape: {I.shape}")
|
269 |
+
|
270 |
+
try:
|
271 |
+
transformed, inverse_transformed, (gx, gy) = apply_vector_field_transform(
|
272 |
+
I, func, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness
|
273 |
+
)
|
274 |
+
print(f"Transformed image shape: {transformed.shape}")
|
275 |
+
print(f"Inverse transformed image shape: {inverse_transformed.shape}")
|
276 |
+
print(f"Gradient shapes: gx {gx.shape}, gy {gy.shape}")
|
277 |
+
print(f"Gradient ranges: gx [{np.min(gx)}, {np.max(gx)}], gy [{np.min(gy)}, {np.max(gy)}]")
|
278 |
+
|
279 |
+
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
|
280 |
+
inverted_vector_field = create_gradient_vector_field(-gx, -gy, I.shape[:2], reverse=False)
|
281 |
+
|
282 |
+
print(f"Vector field shape: {vector_field.shape}")
|
283 |
+
print(f"Inverted vector field shape: {inverted_vector_field.shape}")
|
284 |
+
except Exception as e:
|
285 |
+
print(f"Error in transformation: {str(e)}")
|
286 |
+
traceback.print_exc()
|
287 |
+
transformed = np.zeros_like(I)
|
288 |
+
inverse_transformed = np.zeros_like(I)
|
289 |
+
vector_field = np.zeros_like(I)
|
290 |
+
inverted_vector_field = np.zeros_like(I)
|
291 |
|
|
|
|
|
|
|
|
|
292 |
result = Image.fromarray(transformed)
|
293 |
|
294 |
categories = ['Distorted', 'Maze']
|
295 |
|
296 |
def clean_output(result_values):
|
297 |
+
pred, idx, probs = result_values
|
298 |
return dict(zip(categories, map(float, probs)))
|
299 |
|
300 |
result_bias = learn_bias.predict(result)
|
301 |
result_fresh = learn_fresh.predict(result)
|
|
|
302 |
result_bias_final = clean_output(result_bias)
|
303 |
result_fresh_final = clean_output(result_fresh)
|
304 |
|
305 |
+
result_localization = model.predict(transformed, save=True)
|
306 |
+
|
307 |
+
return transformed, result_bias_final, result_fresh_final, vector_field, inverse_transformed, inverted_vector_field
|
308 |
|
309 |
demo = gr.Interface(
|
310 |
fn=transform_image,
|
|
|
328 |
],
|
329 |
outputs=[
|
330 |
gr.Image(label="Transformed Image"),
|
|
|
331 |
gr.Label(),
|
332 |
gr.Label(),
|
333 |
+
gr.Image(label="Gradient Vector Field"),
|
334 |
+
gr.Image(label="Inverse Gradient"),
|
335 |
+
gr.Image(label="Inverted Vector Field"),
|
336 |
],
|
337 |
title="Image Transformation Demo!",
|
338 |
article="If you like this demo, please star the github repository for the project! Located [here!](https://github.com/nick-leland/DistortionML)",
|
temp_app.py
DELETED
@@ -1,286 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import gradio as gr
|
3 |
-
from PIL import Image
|
4 |
-
from scipy import ndimage
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
from bulk_bulge_generation import definitions, smooth
|
7 |
-
# from transformers import pipeline
|
8 |
-
import fastai
|
9 |
-
from fastcore.all import *
|
10 |
-
from fastai.vision.all import *
|
11 |
-
from ultralytics import YOLO
|
12 |
-
|
13 |
-
def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
|
14 |
-
# 0.106 strength = .50
|
15 |
-
# 0.106 strength = 1
|
16 |
-
rows, cols = image.shape[:2]
|
17 |
-
max_dim = max(rows, cols)
|
18 |
-
|
19 |
-
#Normalize the positions
|
20 |
-
# Y Needs to be flipped
|
21 |
-
center_y = int(center[1] * rows)
|
22 |
-
center_x = int(center[0] * cols)
|
23 |
-
|
24 |
-
# Inverts the Y axis (Numpy is 0 index at top of image)
|
25 |
-
center_y = abs(rows - center_y)
|
26 |
-
|
27 |
-
print()
|
28 |
-
print(rows, cols)
|
29 |
-
print("y =", center_y, "/", rows)
|
30 |
-
print("x =", center_x, "/", cols)
|
31 |
-
print()
|
32 |
-
|
33 |
-
pixel_radius = int(max_dim * radius)
|
34 |
-
|
35 |
-
y, x = np.ogrid[:rows, :cols]
|
36 |
-
y = (y - center_y) / max_dim
|
37 |
-
x = (x - center_x) / max_dim
|
38 |
-
|
39 |
-
# Calculate distance from center
|
40 |
-
dist_from_center = np.sqrt(x**2 + y**2)
|
41 |
-
|
42 |
-
# Calculate function values
|
43 |
-
z = func(x, y)
|
44 |
-
|
45 |
-
# Calculate gradients
|
46 |
-
gy, gx = np.gradient(z)
|
47 |
-
|
48 |
-
# Creating a sigmoid function to apply to masks
|
49 |
-
def sigmoid(x, center, steepness):
|
50 |
-
return 1 / (1 + np.exp(-steepness * (x - center)))
|
51 |
-
|
52 |
-
print(radius)
|
53 |
-
print(strength)
|
54 |
-
print(edge_smoothness)
|
55 |
-
print(center_smoothness)
|
56 |
-
|
57 |
-
# Masking
|
58 |
-
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
|
59 |
-
|
60 |
-
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
|
61 |
-
|
62 |
-
mask = edge_mask * center_mask
|
63 |
-
|
64 |
-
# Apply mask to gradients
|
65 |
-
gx = gx * mask
|
66 |
-
gy = gy * mask
|
67 |
-
|
68 |
-
# Normalize gradient vectors
|
69 |
-
magnitude = np.sqrt(gx**2 + gy**2)
|
70 |
-
magnitude[magnitude == 0] = 1 # Avoid division by zero
|
71 |
-
gx = gx / magnitude
|
72 |
-
gy = gy / magnitude
|
73 |
-
|
74 |
-
# Scale the effect (Play with the number 5)
|
75 |
-
scale_factor = strength * np.log(max_dim) / 100 # Adjust strength based on image size
|
76 |
-
gx = gx * scale_factor * mask
|
77 |
-
gy = gy * scale_factor * mask
|
78 |
-
|
79 |
-
# Create the mapping
|
80 |
-
x_new = x + gx
|
81 |
-
y_new = y + gy
|
82 |
-
|
83 |
-
# Convert back to pixel coordinates
|
84 |
-
x_new = x_new * max_dim + center_x
|
85 |
-
y_new = y_new * max_dim + center_y
|
86 |
-
|
87 |
-
# Ensure the new coordinates are within the image boundaries
|
88 |
-
x_new = np.clip(x_new, 0, cols - 1)
|
89 |
-
y_new = np.clip(y_new, 0, rows - 1)
|
90 |
-
|
91 |
-
# Apply the transformation to each channel
|
92 |
-
channels = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect')
|
93 |
-
for i in range(image.shape[2])]
|
94 |
-
|
95 |
-
transformed_image = np.dstack(channels).astype(image.dtype)
|
96 |
-
|
97 |
-
return transformed_image, (gx, gy)
|
98 |
-
|
99 |
-
|
100 |
-
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
|
101 |
-
"""
|
102 |
-
Create a gradient vector field visualization with option to reverse direction.
|
103 |
-
|
104 |
-
:param gx: X-component of the gradient
|
105 |
-
:param gy: Y-component of the gradient
|
106 |
-
:param image_shape: Shape of the original image (height, width)
|
107 |
-
:param step: Spacing between arrows
|
108 |
-
:param reverse: If True, reverse the direction of the arrows
|
109 |
-
:return: Gradient vector field as a numpy array (RGB image)
|
110 |
-
"""
|
111 |
-
rows, cols = image_shape
|
112 |
-
y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int)
|
113 |
-
|
114 |
-
# Calculate the scale based on image size
|
115 |
-
max_dim = max(rows, cols)
|
116 |
-
scale = max_dim / 1000 # Adjusted for longer arrows
|
117 |
-
|
118 |
-
# Reverse direction if specified
|
119 |
-
direction = -1 if reverse else 1
|
120 |
-
|
121 |
-
fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100)
|
122 |
-
ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x],
|
123 |
-
scale=scale,
|
124 |
-
scale_units='width',
|
125 |
-
width=0.002 * max_dim / 500,
|
126 |
-
headwidth=8,
|
127 |
-
headlength=12,
|
128 |
-
headaxislength=0,
|
129 |
-
color='black',
|
130 |
-
minshaft=2,
|
131 |
-
minlength=0,
|
132 |
-
pivot='tail')
|
133 |
-
ax.set_xlim(0, cols)
|
134 |
-
ax.set_ylim(rows, 0)
|
135 |
-
ax.set_aspect('equal')
|
136 |
-
ax.axis('off')
|
137 |
-
|
138 |
-
fig.tight_layout(pad=0)
|
139 |
-
fig.canvas.draw()
|
140 |
-
vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
141 |
-
vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
142 |
-
plt.close(fig)
|
143 |
-
|
144 |
-
return vector_field
|
145 |
-
|
146 |
-
|
147 |
-
#############################
|
148 |
-
# MAIN FUNCTION HERE
|
149 |
-
#############################
|
150 |
-
|
151 |
-
# pipeline = pipeline(task="image-classification", model="nick-leland/distortionml")
|
152 |
-
|
153 |
-
# Version Check
|
154 |
-
print(f"NumPy version: {np.__version__}")
|
155 |
-
print(f"PyTorch version: {torch.__version__}")
|
156 |
-
print(f"FastAI version: {fastai.__version__}")
|
157 |
-
|
158 |
-
learn_bias = load_learner('model_bias.pkl')
|
159 |
-
learn_fresh = load_learner('model_fresh.pkl')
|
160 |
-
|
161 |
-
# Loads the YOLO Model
|
162 |
-
model = YOLO("bulge_yolo_model.pt")
|
163 |
-
|
164 |
-
|
165 |
-
def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
|
166 |
-
I = np.asarray(Image.open(image))
|
167 |
-
|
168 |
-
def pinch(x, y):
|
169 |
-
return x**2 + y**2
|
170 |
-
|
171 |
-
def shift(x, y):
|
172 |
-
return np.arctan2(y, x)
|
173 |
-
|
174 |
-
def bulge(x, y):
|
175 |
-
r = -np.sqrt(x**2 + y**2)
|
176 |
-
return r
|
177 |
-
|
178 |
-
def bulge_inverse(x, y, f=bulge, a=1, b=1, c=1, d=0, e=0):
|
179 |
-
t = np.arctan2(y, x)
|
180 |
-
term = ((f - e) / (-a))**2 - d
|
181 |
-
if term < 0:
|
182 |
-
return None, None
|
183 |
-
|
184 |
-
x = (1/np.sqrt(b)) * np.sqrt(term) * np.cos(t)
|
185 |
-
y = (1/np.sqrt(c)) * np.sqrt(term) * np.sin(t)
|
186 |
-
|
187 |
-
return x, y
|
188 |
-
|
189 |
-
def spiral(x, y, frequency=1):
|
190 |
-
r = np.sqrt(x**2 + y**2)
|
191 |
-
theta = np.arctan2(y, x)
|
192 |
-
return r * np.sin(theta - frequency * r)
|
193 |
-
|
194 |
-
rng = np.random.default_rng()
|
195 |
-
if randomization_check == True:
|
196 |
-
radius, location, strength, edge_smoothness= definitions(rng)
|
197 |
-
center_x = location[0]
|
198 |
-
center_y = location[1]
|
199 |
-
|
200 |
-
# Temporarily disabling and using these values.
|
201 |
-
# edge_smoothness = 0.25 * strength
|
202 |
-
# center_smoothness = 0.25 * strength
|
203 |
-
edge_smoothness, center_smoothness = smooth(rng, strength)
|
204 |
-
|
205 |
-
|
206 |
-
if func_choice == "Pinch":
|
207 |
-
func = pinch
|
208 |
-
elif func_choice == "Spiral":
|
209 |
-
func = shift
|
210 |
-
elif func_choice == "Bulge":
|
211 |
-
func = bulge
|
212 |
-
func2 = bulge_inverse
|
213 |
-
edge_smoothness = 0
|
214 |
-
center_smoothness = 0
|
215 |
-
elif func_choice == "Volcano":
|
216 |
-
func = bulge
|
217 |
-
elif func_choice == "Shift Up":
|
218 |
-
func = lambda x, y: spiral(x, y, frequency=spiral_frequency)
|
219 |
-
|
220 |
-
|
221 |
-
# Original Image Transformation
|
222 |
-
transformed, (gx, gy) = apply_vector_field_transform(I, func, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness)
|
223 |
-
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
|
224 |
-
|
225 |
-
reverted, (gx_inverse, gy_inverse) = apply_vector_field_transform(I, func2, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness)
|
226 |
-
vector_field_reverted = create_gradient_vector_field(gx_inverse, gy_inverse, I.shape[:2], reverse=reverse_gradient)
|
227 |
-
|
228 |
-
|
229 |
-
# GRADIO CHANGE HERE
|
230 |
-
# predictions = pipeline(transformed)
|
231 |
-
|
232 |
-
# Have to convert to image first
|
233 |
-
result = Image.fromarray(transformed)
|
234 |
-
|
235 |
-
categories = ['Distorted', 'Maze']
|
236 |
-
|
237 |
-
def clean_output(result_values):
|
238 |
-
pred, idx, probs = result_values[0], result_values[1], result_values[2]
|
239 |
-
return dict(zip(categories, map(float, probs)))
|
240 |
-
|
241 |
-
result_bias = learn_bias.predict(result)
|
242 |
-
result_fresh = learn_fresh.predict(result)
|
243 |
-
print("Results")
|
244 |
-
result_bias_final = clean_output(result_bias)
|
245 |
-
result_fresh_final = clean_output(result_fresh)
|
246 |
-
|
247 |
-
print("saving?")
|
248 |
-
result_localization = model.predict(transformed, save=True)
|
249 |
-
print(result_localization)
|
250 |
-
|
251 |
-
return transformed, result_bias_final, result_fresh_final, vector_field, vector_field_reverted
|
252 |
-
|
253 |
-
demo = gr.Interface(
|
254 |
-
fn=transform_image,
|
255 |
-
inputs=[
|
256 |
-
gr.Image(type="filepath"),
|
257 |
-
gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Volcano", label="Function"),
|
258 |
-
gr.Checkbox(label="Randomize inputs?"),
|
259 |
-
gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
|
260 |
-
gr.Slider(0, 1, value=0.5, label="Center X"),
|
261 |
-
gr.Slider(0, 1, value=0.5, label="Center Y"),
|
262 |
-
gr.Slider(0, 1, value=0.5, label="Strength"),
|
263 |
-
# gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
|
264 |
-
# gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
|
265 |
-
# gr.Checkbox(label="Reverse Gradient Direction"),
|
266 |
-
],
|
267 |
-
examples=[
|
268 |
-
[np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
|
269 |
-
[np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
|
270 |
-
[np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
|
271 |
-
[np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5]
|
272 |
-
],
|
273 |
-
outputs=[
|
274 |
-
gr.Image(label="Transformed Image"),
|
275 |
-
# gr.Image(label="Result", num_top_classes=2)
|
276 |
-
gr.Label(),
|
277 |
-
gr.Label(),
|
278 |
-
gr.Image(label="Gradient Vector Field"),
|
279 |
-
gr.Image(label="Gradient Vector Field Reverted")
|
280 |
-
],
|
281 |
-
title="Image Transformation Demo!",
|
282 |
-
article="If you like this demo, please star the github repository for the project! Located [here!](https://github.com/nick-leland/DistortionML)",
|
283 |
-
description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here!\nYou can read more about the project at [this repository link](https://github.com/nick-leland/DistortionML). The main function that I was working on is the 'Bulge'/'Volcano' function, I can't really guarantee that the others work as well!\nI have just added the first baseline ML model to detect if a distortion has taken place! It was only trained on mazes though ([Dataset Here](https://www.kaggle.com/datasets/nickleland/distorted-mazes)) so in order for it to detect a distortion you have to use one of the images provided in the examples! Feel free to mess around wtih other images in the meantime though!"
|
284 |
-
)
|
285 |
-
|
286 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|