nick-leland commited on
Commit
9f35487
·
1 Parent(s): a395fc6

Updated the model output!

Browse files
Files changed (1) hide show
  1. app.py +11 -7
app.py CHANGED
@@ -154,7 +154,8 @@ print(f"NumPy version: {np.__version__}")
154
  print(f"PyTorch version: {torch.__version__}")
155
  print(f"FastAI version: {fastai.__version__}")
156
 
157
- learn = load_learner('model.pkl')
 
158
 
159
 
160
  def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
@@ -210,11 +211,13 @@ def transform_image(image, func_choice, randomization_check, radius, center_x, c
210
  # Have to convert to image first
211
  result = Image.fromarray(transformed)
212
 
213
- result = str(learn.predict(result))
214
- print("result")
215
- print(result)
 
 
216
 
217
- return transformed, vector_field, result
218
 
219
  demo = gr.Interface(
220
  fn=transform_image,
@@ -232,9 +235,10 @@ demo = gr.Interface(
232
  ],
233
  outputs=[
234
  gr.Image(label="Transformed Image"),
235
- gr.Image(label="Gradient Vector Field"),
236
  # gr.Image(label="Result", num_top_classes=2)
237
- # gr.Textbox(label='Result')
 
 
238
  ],
239
  title="Image Transformation Demo!",
240
  description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here! You can read more about the project at this repository link : https://github.com/nick-leland/DistortionML. The main function that I was working on is the 'Bulge' function, I can't really guarantee that the others work well (;"
 
154
  print(f"PyTorch version: {torch.__version__}")
155
  print(f"FastAI version: {fastai.__version__}")
156
 
157
+ learn_bias = load_learner('model_bias.pkl')
158
+ learn_fresh = load_learner('model_fresh.pkl')
159
 
160
 
161
  def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
 
211
  # Have to convert to image first
212
  result = Image.fromarray(transformed)
213
 
214
+ result_bias = str(learn_bias.predict(result))
215
+ result_fresh = str(learn_fresh.predict(result))
216
+ print("Results")
217
+ print(result_bias)
218
+ print(result_fresh)
219
 
220
+ return transformed, result_bias, result_fresh, vector_field
221
 
222
  demo = gr.Interface(
223
  fn=transform_image,
 
235
  ],
236
  outputs=[
237
  gr.Image(label="Transformed Image"),
 
238
  # gr.Image(label="Result", num_top_classes=2)
239
+ gr.Textbox(label='Result Bias'),
240
+ gr.Textbox(label='Result Fresh'),
241
+ gr.Image(label="Gradient Vector Field")
242
  ],
243
  title="Image Transformation Demo!",
244
  description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here! You can read more about the project at this repository link : https://github.com/nick-leland/DistortionML. The main function that I was working on is the 'Bulge' function, I can't really guarantee that the others work well (;"