Spaces:
Runtime error
Runtime error
File size: 17,610 Bytes
3aff77a de26694 3aff77a de26694 3aff77a de26694 3aff77a de26694 3aff77a f572d39 3aff77a f572d39 3aff77a de26694 3aff77a 21a3a9e 70bd2e0 3aff77a 70bd2e0 3aff77a f572d39 3aff77a a46e517 70bd2e0 3aff77a 70bd2e0 3aff77a 70bd2e0 b2df0cb 70bd2e0 3aff77a f572d39 c343272 f572d39 3aff77a 21a3a9e 3aff77a 21a3a9e 3aff77a 21a3a9e 3aff77a 21a3a9e 3aff77a 21a3a9e 3aff77a 21a3a9e 3aff77a 21a3a9e 3aff77a 21a3a9e 3aff77a 21a3a9e 3aff77a 21a3a9e 3aff77a 21a3a9e 3aff77a 21a3a9e 3aff77a 21a3a9e 3aff77a 21a3a9e a235132 21a3a9e 3aff77a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
from argparse import ArgumentParser
from diffusers import DDIMScheduler, StableDiffusionXLImg2ImgPipeline
import gradio as gr
import torch
import yaml
from ctrl_x.pipelines.pipeline_sdxl import CtrlXStableDiffusionXLPipeline
from ctrl_x.utils import *
from ctrl_x.utils.sdxl import *
import spaces
parser = ArgumentParser()
parser.add_argument("-m", "--model", type=str, default=None) # Optionally, load model checkpoint from single file
args = parser.parse_args()
torch.backends.cudnn.enabled = False # Sometimes necessary to suppress CUDNN_STATUS_NOT_SUPPORTED
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
refiner_id_or_path = "stabilityai/stable-diffusion-xl-refiner-1.0"
device = "cuda" if torch.cuda.is_available() else "cpu"
#variant = "fp16" if device == "cuda" else "fp32"
scheduler = DDIMScheduler.from_config(model_id_or_path, subfolder="scheduler") # TODO: Support other schedulers
if args.model is None:
pipe = CtrlXStableDiffusionXLPipeline.from_pretrained(
model_id_or_path, scheduler=scheduler, torch_dtype=torch_dtype, use_safetensors=True
)
else:
print(f"Using weights {args.model} for SDXL base model.")
pipe = CtrlXStableDiffusionXLPipeline.from_single_file(args.model, scheduler=scheduler, torch_dtype=torch_dtype)
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
refiner_id_or_path, scheduler=scheduler, text_encoder_2=pipe.text_encoder_2, vae=pipe.vae,
torch_dtype=torch_dtype, use_safetensors=True,
)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
refiner = refiner.to("cuda")
def get_control_config(structure_schedule, appearance_schedule):
s = structure_schedule
a = appearance_schedule
control_config =\
f"""control_schedule:
# structure_conv structure_attn appearance_attn conv/attn
encoder: # (num layers)
0: [[ ], [ ], [ ]] # 2/0
1: [[ ], [ ], [{a}, {a} ]] # 2/2
2: [[ ], [ ], [{a}, {a} ]] # 2/2
middle: [[ ], [ ], [ ]] # 2/1
decoder:
0: [[{s} ], [{s}, {s}, {s}], [0.0, {a}, {a}]] # 3/3
1: [[ ], [ ], [{a}, {a} ]] # 3/3
2: [[ ], [ ], [ ]] # 3/0
control_target:
- [output_tensor] # structure_conv choices: {{hidden_states, output_tensor}}
- [query, key] # structure_attn choices: {{query, key, value}}
- [before] # appearance_attn choices: {{before, value, after}}
self_recurrence_schedule:
- [0.1, 0.5, 2] # format: [start, end, num_recurrence]"""
return control_config
css = """
.config textarea {font-family: monospace; font-size: 80%; white-space: pre}
.mono {font-family: monospace}
"""
title = """
<div style="display: flex; align-items: center; justify-content: center;margin-bottom: -15px">
<h1 style="margin-left: 12px;text-align: center;display: inline-block">
Ctrl-X: Controlling Structure and Appearance for Text-To-Image Generation Without Guidance
</h1>
<h3 style="display: inline-block; margin-left: 10px; margin-top: 7.5px; font-weight: 500">
SDXL v1.0
</h3>
</div>
<div style="display: flex; align-items: center; justify-content: center;margin-bottom: 25px">
<h3 style="text-align: center">
[<a href="https://genforce.github.io/ctrl-x/">Page</a>]
[<a href="https://arxiv.org/abs/2406.07540">Paper</a>]
[<a href="https://github.com/genforce/ctrl-x">Code</a>]
</h3>
</div>
"""
description = """<div>
<p>
<b>Ctrl-X</b> is a simple training-free and guidance-free framework for text-to-image (T2I) generation with
structure and appearance control. Given structure and appearance images, Ctrl-X designs feedforward structure
control to enable structure alignment with the arbitrary structure image and semantic-aware appearance transfer
to facilitate the appearance transfer from the appearance image.
</p>
<p>
Here are some notes and tips for this demo:
</p>
<ul>
<li> On input images:
<ul>
<li>
If both the structure and appearance images are provided, then Ctrl-X does <i>structure and
appearance</i> control.
</li>
<li>
If only the structure image is provided, then Ctrl-X does <i>structure-only</i> control and the
appearance image is jointly generated with the output image.
</li>
<li>
Similarly, if only the appearance image is provided, then Ctrl-X does <i>appearance-only</i>
control.
</li>
</ul>
</li>
<li> On prompts:
<ul>
<li>
Though the output prompt can affect the output image to a noticeable extent, the "accuracy" of the
structure and appearance prompts are not impactful to the final image.
</li>
<li>
If the structure or appearance prompt is left blank, then it uses the (non-optional) output prompt
by default.
</li>
</ul>
</li>
<li> On control schedules:
<ul>
<li>
When "Use advanced config" is <b>OFF</b>, the demo uses the structure guidance
(<span class="mono">structure_conv</span> and <span class="mono">structure_attn</span>
in the advanced config) and appearance guidance (<span class="mono">appearance_attn</span> in the
advanced config) sliders to change the control schedules.
</li>
<li>
Otherwise, the demo uses "Advanced control config," which allows per-layer structure and
appearance schedule control, along with self-recurrence control. <i>This should be used
carefully</i>, and we recommend switching "Use advanced config" <b>OFF</b> in most cases. (For the
examples provided at the bottom of the demo, the advanced config uses the default schedules that
may not be the best settings for these examples.)
</li>
</ul>
</li>
</ul>
<p>
Have fun! :D
</p>
</div>
"""
@spaces.GPU
def inference(
structure_image,
appearance_image,
prompt,
structure_prompt,
appearance_prompt,
positive_prompt="high quality",
negative_prompt="ugly, blurry, dark, low res, unrealistic",
guidance_scale=5.0,
structure_guidance_scale=5.0,
appearance_guidance_scale=5.0,
num_inference_steps=28,
eta=1.0,
seed=42,
width=1024,
height=1024,
structure_schedule=0.6,
appearance_schedule=0.6,
use_advanced_config=False,
control_config="",
progress=gr.Progress(track_tqdm=True)
):
torch.manual_seed(seed)
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = pipe.scheduler.timesteps
print(f"\nUsing the following control config (use_advanced_config={use_advanced_config}):")
if not use_advanced_config:
control_config = get_control_config(structure_schedule, appearance_schedule)
print(control_config, end="\n\n")
config = yaml.safe_load(control_config)
register_control(
model = pipe,
timesteps = timesteps,
control_schedule = config["control_schedule"],
control_target = config["control_target"],
)
pipe.safety_checker = None
pipe.requires_safety_checker = False
self_recurrence_schedule = get_self_recurrence_schedule(config["self_recurrence_schedule"], num_inference_steps)
pipe.set_progress_bar_config(desc="Ctrl-X inference")
refiner.set_progress_bar_config(desc="Refiner")
result, structure, appearance = pipe(
prompt = prompt,
structure_prompt = structure_prompt,
appearance_prompt = appearance_prompt,
structure_image = structure_image,
appearance_image = appearance_image,
num_inference_steps = num_inference_steps,
negative_prompt = negative_prompt,
positive_prompt = positive_prompt,
height = height,
width = width,
guidance_scale = guidance_scale,
structure_guidance_scale = structure_guidance_scale,
appearance_guidance_scale = appearance_guidance_scale,
eta = eta,
output_type = "pil",
return_dict = False,
control_schedule = config["control_schedule"],
self_recurrence_schedule = self_recurrence_schedule,
)
result_refiner = refiner(
image = pipe.refiner_args["latents"],
prompt = pipe.refiner_args["prompt"],
negative_prompt = pipe.refiner_args["negative_prompt"],
height = height,
width = width,
num_inference_steps = num_inference_steps,
guidance_scale = guidance_scale,
guidance_rescale = 0.7,
num_images_per_prompt = 1,
eta = eta,
output_type = "pil",
).images
del pipe.refiner_args
return [result[0], result_refiner[0], structure[0], appearance[0]]
with gr.Blocks(theme=gr.themes.Default(), css=css, title="Ctrl-X (SDXL v1.0)") as app:
gr.HTML(title)
with gr.Accordion("Instructions", open=False):
gr.HTML(description)
with gr.Row():
with gr.Column(scale=45):
with gr.Group():
kwargs = {} # {"width": 400, "height": 400}
with gr.Row():
structure_image = gr.Image(label="Upload structure image (optional)", type="pil", **kwargs)
appearance_image = gr.Image(label="Upload appearance image (optional)", type="pil", **kwargs)
with gr.Row():
structure_prompt = gr.Textbox(label="Structure prompt (optional)", placeholder="Describes the structure image")
appearance_prompt = gr.Textbox(label="Appearance prompt (optional)", placeholder="Describes the style image")
with gr.Row():
prompt = gr.Textbox(label="Output prompt", placeholder="Prompt which describes the output image")
with gr.Row():
positive_prompt = gr.Textbox(label="Positive prompt", value="high quality", placeholder="")
negative_prompt = gr.Textbox(label="Negative prompt", value="ugly, blurry, dark, low res, unrealistic", placeholder="")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
guidance_scale = gr.Slider(label="Target guidance scale", value=5.0, minimum=1, maximum=10)
structure_guidance_scale = gr.Slider(label="Structure guidance scale", value=5.0, minimum=1, maximum=10)
appearance_guidance_scale = gr.Slider(label="Appearance guidance scale", value=5.0, minimum=1, maximum=10)
with gr.Row():
num_inference_steps = gr.Slider(label="# inference steps", value=28, minimum=1, maximum=200, step=1)
eta = gr.Slider(label="Eta (noise)", value=1.0, minimum=0, maximum=1.0, step=0.01)
seed = gr.Slider(0, 2147483647, label="Seed", value=90095, step=1)
with gr.Row():
width = gr.Slider(label="Width", value=1024, minimum=256, maximum=2048, step=pipe.vae_scale_factor)
height = gr.Slider(label="Height", value=1024, minimum=256, maximum=2048, step=pipe.vae_scale_factor)
with gr.Row():
structure_schedule = gr.Slider(label="Structure schedule", value=0.6, minimum=0.0, maximum=1.0, step=0.01, scale=2)
appearance_schedule = gr.Slider(label="Appearance schedule", value=0.6, minimum=0.0, maximum=1.0, step=0.01, scale=2)
use_advanced_config = gr.Checkbox(label="Use advanced config", value=False, scale=1)
with gr.Row():
control_config = gr.Textbox(
label="Advanced control config", lines=20, value=get_control_config(0.6, 0.6), elem_classes=["config"], visible=False,
)
use_advanced_config.change(
fn=lambda value: gr.update(visible=value), inputs=use_advanced_config, outputs=control_config,
)
with gr.Row():
generate = gr.Button(value="Run")
with gr.Column(scale=55):
with gr.Group():
with gr.Row():
result_refiner = gr.Image(label="Output image w/ refiner", format="jpg", **kwargs)
with gr.Row():
result = gr.Image(label="Output image", format="jpg", **kwargs)
structure_recon = gr.Image(label="Structure image", format="jpg", **kwargs)
appearance_recon = gr.Image(label="Style image", format="jpg", **kwargs)
inputs = [
structure_image, appearance_image,
prompt, structure_prompt, appearance_prompt,
positive_prompt, negative_prompt,
guidance_scale, structure_guidance_scale, appearance_guidance_scale,
num_inference_steps, eta, seed,
width, height,
structure_schedule, appearance_schedule, use_advanced_config,
control_config,
]
outputs = [result, result_refiner, structure_recon, appearance_recon]
generate.click(inference, inputs=inputs, outputs=outputs)
examples = gr.Examples(
[
[
"assets/images/horse__point_cloud.jpg",
"assets/images/horse.jpg",
"a photo of a horse standing on grass",
"a 3D point cloud of a horse",
"",
],
[
"assets/images/cat__mesh.jpg",
"assets/images/tiger.jpg",
"a photo of a tiger standing on snow",
"a 3D mesh of a cat",
"",
],
[
"assets/images/dog__sketch.jpg",
"assets/images/squirrel.jpg",
"a photo of a squirrel",
"a sketch of a dog",
"",
],
[
"assets/images/living_room__seg.jpg",
"assets/images/van_gogh.jpg",
"a Van Gogh painting of a living room",
"a segmentation map of a living room",
"",
],
[
"assets/images/bedroom__sketch.jpg",
"assets/images/living_room_modern.jpg",
"a sketch of a bedroom",
"a photo of a modern bedroom during sunset",
"",
],
[
"assets/images/running__pose.jpg",
"assets/images/man_park.jpg",
"a photo of a man running in a park",
"a pose image of a person running",
"",
],
[
"assets/images/fruit_bowl.jpg",
"assets/images/grapes.jpg",
"a photo of a bowl of grapes in the trees",
"a photo of a bowl of fruits",
"",
],
[
"assets/images/bear_avocado__spatext.jpg",
None,
"a realistic photo of a bear and an avocado in a forest",
"a segmentation map of a bear and an avocado",
"",
],
[
"assets/images/cat__point_cloud.jpg",
None,
"an embroidery of a white cat sitting on a rock under the night sky",
"a 3D point cloud of a cat",
"",
],
[
"assets/images/library__mesh.jpg",
None,
"a Polaroid photo of an old library, sunlight streaming in",
"a 3D mesh of a library",
"",
],
[
"assets/images/knight__humanoid.jpg",
None,
"a photo of a medieval soldier standing on a barren field, raining",
"a 3D model of a person holding a sword and shield",
"",
],
[
"assets/images/person__mesh.jpg",
None,
"a photo of a Karate man performing in a cyberpunk city at night",
"a 3D mesh of a person",
"",
],
],
[
structure_image,
appearance_image,
prompt,
structure_prompt,
appearance_prompt,
],
examples_per_page=50,
cache_examples="lazy",
fn=inference,
outputs=[result, result_refiner, structure_recon, appearance_recon]
)
app.launch(debug=False, share=False)
|