File size: 17,610 Bytes
3aff77a
 
 
 
 
 
 
 
 
 
 
de26694
 
3aff77a
 
 
 
 
 
 
 
 
 
 
 
de26694
3aff77a
 
 
 
de26694
3aff77a
 
 
 
 
 
de26694
3aff77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f572d39
3aff77a
 
 
 
 
 
 
 
f572d39
 
3aff77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de26694
3aff77a
21a3a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70bd2e0
3aff77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70bd2e0
 
3aff77a
f572d39
3aff77a
a46e517
70bd2e0
 
 
3aff77a
70bd2e0
 
3aff77a
 
 
 
 
70bd2e0
 
 
 
 
 
b2df0cb
70bd2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aff77a
 
f572d39
 
 
 
 
 
c343272
f572d39
 
 
3aff77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a3a9e
3aff77a
 
 
 
 
 
21a3a9e
3aff77a
 
 
 
 
 
21a3a9e
3aff77a
 
 
 
 
 
21a3a9e
3aff77a
 
 
 
 
 
 
 
21a3a9e
3aff77a
 
 
 
21a3a9e
3aff77a
 
 
 
 
 
21a3a9e
3aff77a
 
 
 
 
 
21a3a9e
3aff77a
 
 
 
 
 
21a3a9e
3aff77a
 
 
 
 
 
21a3a9e
3aff77a
 
 
 
 
 
21a3a9e
3aff77a
 
 
 
 
 
21a3a9e
3aff77a
 
 
 
 
 
 
21a3a9e
3aff77a
 
 
 
21a3a9e
a235132
21a3a9e
3aff77a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
from argparse import ArgumentParser

from diffusers import DDIMScheduler, StableDiffusionXLImg2ImgPipeline
import gradio as gr
import torch
import yaml

from ctrl_x.pipelines.pipeline_sdxl import CtrlXStableDiffusionXLPipeline
from ctrl_x.utils import *
from ctrl_x.utils.sdxl import *

import spaces


parser = ArgumentParser()
parser.add_argument("-m", "--model", type=str, default=None)  # Optionally, load model checkpoint from single file
args = parser.parse_args()

torch.backends.cudnn.enabled = False  # Sometimes necessary to suppress CUDNN_STATUS_NOT_SUPPORTED

torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
refiner_id_or_path = "stabilityai/stable-diffusion-xl-refiner-1.0"
device = "cuda" if torch.cuda.is_available() else "cpu"
#variant = "fp16" if device == "cuda" else "fp32"

scheduler = DDIMScheduler.from_config(model_id_or_path, subfolder="scheduler")  # TODO: Support other schedulers
if args.model is None:
    pipe = CtrlXStableDiffusionXLPipeline.from_pretrained(
        model_id_or_path, scheduler=scheduler, torch_dtype=torch_dtype, use_safetensors=True
    )
else:
    print(f"Using weights {args.model} for SDXL base model.")
    pipe = CtrlXStableDiffusionXLPipeline.from_single_file(args.model, scheduler=scheduler, torch_dtype=torch_dtype)
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    refiner_id_or_path, scheduler=scheduler, text_encoder_2=pipe.text_encoder_2, vae=pipe.vae,
    torch_dtype=torch_dtype, use_safetensors=True,
)

if torch.cuda.is_available():
    pipe = pipe.to("cuda")
    refiner = refiner.to("cuda")
    

def get_control_config(structure_schedule, appearance_schedule):
    s = structure_schedule
    a = appearance_schedule
    
    control_config =\
f"""control_schedule:
    #       structure_conv   structure_attn   appearance_attn  conv/attn
    encoder:                                                # (num layers)
        0: [[             ], [             ], [             ]]  # 2/0
        1: [[             ], [             ], [{a}, {a}     ]]  # 2/2
        2: [[             ], [             ], [{a}, {a}     ]]  # 2/2
    middle: [[            ], [             ], [             ]]  # 2/1
    decoder:
        0: [[{s}          ], [{s}, {s}, {s}], [0.0, {a}, {a}]]  # 3/3
        1: [[             ], [             ], [{a}, {a}     ]]  # 3/3
        2: [[             ], [             ], [             ]]  # 3/0

control_target:
    - [output_tensor]  # structure_conv   choices: {{hidden_states, output_tensor}}
    - [query, key]     # structure_attn   choices: {{query, key, value}}
    - [before]         # appearance_attn  choices: {{before, value, after}}

self_recurrence_schedule:
    - [0.1, 0.5, 2]  # format: [start, end, num_recurrence]"""
    
    return control_config
    

css = """
.config textarea {font-family: monospace; font-size: 80%; white-space: pre}
.mono {font-family: monospace}
"""

title = """
<div style="display: flex; align-items: center; justify-content: center;margin-bottom: -15px">
    <h1 style="margin-left: 12px;text-align: center;display: inline-block">
        Ctrl-X: Controlling Structure and Appearance for Text-To-Image Generation Without Guidance
    </h1>
    <h3 style="display: inline-block; margin-left: 10px; margin-top: 7.5px; font-weight: 500">
        SDXL v1.0
    </h3>
</div>
<div style="display: flex; align-items: center; justify-content: center;margin-bottom: 25px">
    <h3 style="text-align: center">
        [<a href="https://genforce.github.io/ctrl-x/">Page</a>]
        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
        [<a href="https://arxiv.org/abs/2406.07540">Paper</a>]
        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
        [<a href="https://github.com/genforce/ctrl-x">Code</a>]
    </h3>
</div>
"""
description = """<div>
    <p>
        <b>Ctrl-X</b> is a simple training-free and guidance-free framework for text-to-image (T2I) generation with 
        structure and appearance control. Given structure and appearance images, Ctrl-X designs feedforward structure 
        control to enable structure alignment with the arbitrary structure image and semantic-aware appearance transfer 
        to facilitate the appearance transfer from the appearance image.
    </p>
    <p>
        Here are some notes and tips for this demo:
    </p>
    <ul>
        <li> On input images:
            <ul>
                <li>
                    If both the structure and appearance images are provided, then Ctrl-X does <i>structure and 
                    appearance</i> control.
                </li>
                <li>
                    If only the structure image is provided, then Ctrl-X does <i>structure-only</i> control and the 
                    appearance image is jointly generated with the output image.
                </li>
                <li>
                    Similarly, if only the appearance image is provided, then Ctrl-X does <i>appearance-only</i> 
                    control.
                </li>
            </ul>
        </li>
        <li> On prompts:
            <ul>
                <li>
                    Though the output prompt can affect the output image to a noticeable extent, the "accuracy" of the 
                    structure and appearance prompts are not impactful to the final image.
                </li>
                <li>
                    If the structure or appearance prompt is left blank, then it uses the (non-optional) output prompt 
                    by default.
                </li>
            </ul>
        </li>
        <li> On control schedules:
            <ul>
                <li>
                    When "Use advanced config" is <b>OFF</b>, the demo uses the structure guidance 
                    (<span class="mono">structure_conv</span> and <span class="mono">structure_attn</span> 
                    in the advanced config) and appearance guidance (<span class="mono">appearance_attn</span> in the 
                    advanced config) sliders to change the control schedules.
                </li>
                <li>
                    Otherwise, the demo uses "Advanced control config," which allows per-layer structure and 
                    appearance schedule control, along with self-recurrence control. <i>This should be used 
                    carefully</i>, and we recommend switching "Use advanced config" <b>OFF</b> in most cases. (For the 
                    examples provided at the bottom of the demo, the advanced config uses the default schedules that 
                    may not be the best settings for these examples.)
                </li>
            </ul>
        </li>
    </ul>
    <p>
        Have fun! :D
    </p>
</div>
"""

@spaces.GPU
def inference(
    structure_image,
    appearance_image,
    prompt,
    structure_prompt,
    appearance_prompt,
    positive_prompt="high quality",
    negative_prompt="ugly, blurry, dark, low res, unrealistic",
    guidance_scale=5.0,
    structure_guidance_scale=5.0,
    appearance_guidance_scale=5.0,
    num_inference_steps=28,
    eta=1.0,
    seed=42,
    width=1024,
    height=1024,
    structure_schedule=0.6,
    appearance_schedule=0.6,
    use_advanced_config=False,
    control_config="",
    progress=gr.Progress(track_tqdm=True)
):
    torch.manual_seed(seed)
    
    pipe.scheduler.set_timesteps(num_inference_steps, device=device)
    timesteps = pipe.scheduler.timesteps
    
    print(f"\nUsing the following control config (use_advanced_config={use_advanced_config}):")
    if not use_advanced_config:
        control_config = get_control_config(structure_schedule, appearance_schedule)
    print(control_config, end="\n\n")
    
    config = yaml.safe_load(control_config)
    register_control(
        model = pipe,
        timesteps = timesteps,
        control_schedule = config["control_schedule"],
        control_target = config["control_target"],
    )
    
    pipe.safety_checker = None
    pipe.requires_safety_checker = False
    
    self_recurrence_schedule = get_self_recurrence_schedule(config["self_recurrence_schedule"], num_inference_steps)

    pipe.set_progress_bar_config(desc="Ctrl-X inference")
    refiner.set_progress_bar_config(desc="Refiner")
    
    result, structure, appearance = pipe(
        prompt = prompt,
        structure_prompt = structure_prompt,
        appearance_prompt = appearance_prompt,
        structure_image = structure_image,
        appearance_image = appearance_image,
        num_inference_steps = num_inference_steps,
        negative_prompt = negative_prompt,
        positive_prompt = positive_prompt,
        height = height,
        width = width,
        guidance_scale = guidance_scale,
        structure_guidance_scale = structure_guidance_scale,
        appearance_guidance_scale = appearance_guidance_scale,
        eta = eta,
        output_type = "pil",
        return_dict = False,
        control_schedule = config["control_schedule"],
        self_recurrence_schedule = self_recurrence_schedule,
    )
    
    result_refiner = refiner(
        image = pipe.refiner_args["latents"],
        prompt = pipe.refiner_args["prompt"],
        negative_prompt = pipe.refiner_args["negative_prompt"],
        height = height,
        width = width,
        num_inference_steps = num_inference_steps,
        guidance_scale = guidance_scale,
        guidance_rescale = 0.7,
        num_images_per_prompt = 1,
        eta = eta,
        output_type = "pil",
    ).images
    del pipe.refiner_args
    
    return [result[0], result_refiner[0], structure[0], appearance[0]]
    
    
with gr.Blocks(theme=gr.themes.Default(), css=css, title="Ctrl-X (SDXL v1.0)") as app:
    gr.HTML(title)
    with gr.Accordion("Instructions", open=False):
        gr.HTML(description)
    with gr.Row():
        with gr.Column(scale=45):
            with gr.Group():
                kwargs = {}  # {"width": 400, "height": 400}
                with gr.Row():
                    structure_image = gr.Image(label="Upload structure image (optional)", type="pil", **kwargs)
                    appearance_image = gr.Image(label="Upload appearance image (optional)", type="pil", **kwargs)
                with gr.Row():
                    structure_prompt = gr.Textbox(label="Structure prompt (optional)", placeholder="Describes the structure image")
                    appearance_prompt = gr.Textbox(label="Appearance prompt (optional)", placeholder="Describes the style image")
                with gr.Row():
                    prompt = gr.Textbox(label="Output prompt", placeholder="Prompt which describes the output image")
                with gr.Row():
                    positive_prompt = gr.Textbox(label="Positive prompt", value="high quality", placeholder="")
                    negative_prompt = gr.Textbox(label="Negative prompt", value="ugly, blurry, dark, low res, unrealistic", placeholder="")
                with gr.Accordion("Advanced Options", open=False):
                    with gr.Row():
                        guidance_scale = gr.Slider(label="Target guidance scale", value=5.0, minimum=1, maximum=10)
                        structure_guidance_scale = gr.Slider(label="Structure guidance scale", value=5.0, minimum=1, maximum=10)
                        appearance_guidance_scale = gr.Slider(label="Appearance guidance scale", value=5.0, minimum=1, maximum=10)
                    with gr.Row():
                        num_inference_steps = gr.Slider(label="# inference steps", value=28, minimum=1, maximum=200, step=1)
                        eta = gr.Slider(label="Eta (noise)", value=1.0, minimum=0, maximum=1.0, step=0.01)
                        seed = gr.Slider(0, 2147483647, label="Seed", value=90095, step=1)
                    with gr.Row():
                        width = gr.Slider(label="Width", value=1024, minimum=256, maximum=2048, step=pipe.vae_scale_factor)
                        height = gr.Slider(label="Height", value=1024, minimum=256, maximum=2048, step=pipe.vae_scale_factor)
                    with gr.Row():
                        structure_schedule = gr.Slider(label="Structure schedule", value=0.6, minimum=0.0, maximum=1.0, step=0.01, scale=2)
                        appearance_schedule = gr.Slider(label="Appearance schedule", value=0.6, minimum=0.0, maximum=1.0, step=0.01, scale=2)
                        use_advanced_config = gr.Checkbox(label="Use advanced config", value=False, scale=1)
                    with gr.Row():
                        control_config = gr.Textbox(
                            label="Advanced control config", lines=20, value=get_control_config(0.6, 0.6), elem_classes=["config"], visible=False,
                        )
                        use_advanced_config.change(
                            fn=lambda value: gr.update(visible=value), inputs=use_advanced_config, outputs=control_config,
                        )
                with gr.Row():
                    generate = gr.Button(value="Run")
        
        with gr.Column(scale=55):
            with gr.Group():
                with gr.Row():
                    result_refiner = gr.Image(label="Output image w/ refiner", format="jpg", **kwargs)
                with gr.Row():
                    result = gr.Image(label="Output image", format="jpg", **kwargs)
                    structure_recon = gr.Image(label="Structure image", format="jpg", **kwargs)
                    appearance_recon = gr.Image(label="Style image", format="jpg", **kwargs)
                        
    inputs = [
        structure_image, appearance_image,
        prompt, structure_prompt, appearance_prompt,
        positive_prompt, negative_prompt,
        guidance_scale, structure_guidance_scale, appearance_guidance_scale,
        num_inference_steps, eta, seed,
        width, height,
        structure_schedule, appearance_schedule, use_advanced_config,
        control_config,
    ]
    outputs = [result, result_refiner, structure_recon, appearance_recon]
    
    generate.click(inference, inputs=inputs, outputs=outputs)

    examples = gr.Examples(
        [
            [
                "assets/images/horse__point_cloud.jpg",
                "assets/images/horse.jpg",
                "a photo of a horse standing on grass",
                "a 3D point cloud of a horse",
                "",
            ],
            [
                "assets/images/cat__mesh.jpg",
                "assets/images/tiger.jpg",
                "a photo of a tiger standing on snow",
                "a 3D mesh of a cat",
                "",
            ],
            [
                "assets/images/dog__sketch.jpg",
                "assets/images/squirrel.jpg",
                "a photo of a squirrel",
                "a sketch of a dog",
                "",
            ],
            [
                "assets/images/living_room__seg.jpg",
                "assets/images/van_gogh.jpg",
                "a Van Gogh painting of a living room",
                "a segmentation map of a living room",
                "",
            ],
            [
                "assets/images/bedroom__sketch.jpg",
                "assets/images/living_room_modern.jpg",
                "a sketch of a bedroom",
                "a photo of a modern bedroom during sunset",
                "",
            ],
            [
                "assets/images/running__pose.jpg",
                "assets/images/man_park.jpg",
                "a photo of a man running in a park",
                "a pose image of a person running",
                "",
            ],
            [
                "assets/images/fruit_bowl.jpg",
                "assets/images/grapes.jpg",
                "a photo of a bowl of grapes in the trees",
                "a photo of a bowl of fruits",
                "",
            ],
            [
                "assets/images/bear_avocado__spatext.jpg",
                None,
                "a realistic photo of a bear and an avocado in a forest",
                "a segmentation map of a bear and an avocado",
                "",
            ],
            [
                "assets/images/cat__point_cloud.jpg",
                None,
                "an embroidery of a white cat sitting on a rock under the night sky",
                "a 3D point cloud of a cat",
                "",
            ],
            [
                "assets/images/library__mesh.jpg",
                None,
                "a Polaroid photo of an old library, sunlight streaming in",
                "a 3D mesh of a library",
                "",
            ],
            [
                "assets/images/knight__humanoid.jpg",
                None,
                "a photo of a medieval soldier standing on a barren field, raining",
                "a 3D model of a person holding a sword and shield",
                "",
            ],
            [
                "assets/images/person__mesh.jpg",
                None,
                "a photo of a Karate man performing in a cyberpunk city at night",
                "a 3D mesh of a person",
                "",
            ],
        ],
        [
            structure_image,
            appearance_image,
            prompt,
            structure_prompt,
            appearance_prompt,
        ],
        examples_per_page=50,
        cache_examples="lazy",
        fn=inference,
        outputs=[result, result_refiner, structure_recon, appearance_recon]
    )

app.launch(debug=False, share=False)