multimodalart HF staff commited on
Commit
3aff77a
·
verified ·
1 Parent(s): 073f81a

Upload folder using huggingface_hub

Browse files
Files changed (48) hide show
  1. .gitattributes +11 -0
  2. .gitignore +162 -0
  3. README.md +46 -12
  4. app_ctrlx.py +412 -0
  5. assets/images/bear_avocado__spatext.jpg +0 -0
  6. assets/images/bedroom__sketch.jpg +0 -0
  7. assets/images/cat__mesh.jpg +0 -0
  8. assets/images/cat__point_cloud.jpg +0 -0
  9. assets/images/dog__sketch.jpg +0 -0
  10. assets/images/fruit_bowl.jpg +0 -0
  11. assets/images/grapes.jpg +0 -0
  12. assets/images/horse.jpg +0 -0
  13. assets/images/horse__point_cloud.jpg +0 -0
  14. assets/images/knight__humanoid.jpg +0 -0
  15. assets/images/library__mesh.jpg +0 -0
  16. assets/images/living_room__seg.jpg +0 -0
  17. assets/images/living_room_modern.jpg +0 -0
  18. assets/images/man_park.jpg +0 -0
  19. assets/images/person__mesh.jpg +0 -0
  20. assets/images/running__pose.jpg +0 -0
  21. assets/images/squirrel.jpg +0 -0
  22. assets/images/tiger.jpg +0 -0
  23. assets/images/van_gogh.jpg +0 -0
  24. ctrl_x/__init__.py +0 -0
  25. ctrl_x/pipelines/__init__.py +0 -0
  26. ctrl_x/pipelines/pipeline_sdxl.py +665 -0
  27. ctrl_x/utils/__init__.py +3 -0
  28. ctrl_x/utils/feature.py +79 -0
  29. ctrl_x/utils/media.py +21 -0
  30. ctrl_x/utils/sdxl.py +274 -0
  31. ctrl_x/utils/utils.py +88 -0
  32. docs/assets/bootstrap.min.css +0 -0
  33. docs/assets/cross_image_attention.jpg +3 -0
  34. docs/assets/ctrl-x.jpg +3 -0
  35. docs/assets/font.css +37 -0
  36. docs/assets/freecontrol.jpg +3 -0
  37. docs/assets/genforce.png +0 -0
  38. docs/assets/pipeline.jpg +3 -0
  39. docs/assets/results_animatediff.mp4 +3 -0
  40. docs/assets/results_multi_subject.jpg +3 -0
  41. docs/assets/results_struct+app.jpg +3 -0
  42. docs/assets/results_struct+app_2.jpg +3 -0
  43. docs/assets/results_struct+prompt.jpg +3 -0
  44. docs/assets/style.css +139 -0
  45. docs/assets/teaser_github.jpg +3 -0
  46. docs/assets/teaser_small.jpg +3 -0
  47. docs/index.html +186 -0
  48. environment.yaml +125 -0
.gitattributes CHANGED
@@ -33,3 +33,14 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ docs/assets/cross_image_attention.jpg filter=lfs diff=lfs merge=lfs -text
37
+ docs/assets/ctrl-x.jpg filter=lfs diff=lfs merge=lfs -text
38
+ docs/assets/freecontrol.jpg filter=lfs diff=lfs merge=lfs -text
39
+ docs/assets/pipeline.jpg filter=lfs diff=lfs merge=lfs -text
40
+ docs/assets/results_animatediff.mp4 filter=lfs diff=lfs merge=lfs -text
41
+ docs/assets/results_multi_subject.jpg filter=lfs diff=lfs merge=lfs -text
42
+ docs/assets/results_struct+app.jpg filter=lfs diff=lfs merge=lfs -text
43
+ docs/assets/results_struct+app_2.jpg filter=lfs diff=lfs merge=lfs -text
44
+ docs/assets/results_struct+prompt.jpg filter=lfs diff=lfs merge=lfs -text
45
+ docs/assets/teaser_github.jpg filter=lfs diff=lfs merge=lfs -text
46
+ docs/assets/teaser_small.jpg filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
110
+ .pdm.toml
111
+ .pdm-python
112
+ .pdm-build/
113
+
114
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
115
+ __pypackages__/
116
+
117
+ # Celery stuff
118
+ celerybeat-schedule
119
+ celerybeat.pid
120
+
121
+ # SageMath parsed files
122
+ *.sage.py
123
+
124
+ # Environments
125
+ .env
126
+ .venv
127
+ env/
128
+ venv/
129
+ ENV/
130
+ env.bak/
131
+ venv.bak/
132
+
133
+ # Spyder project settings
134
+ .spyderproject
135
+ .spyproject
136
+
137
+ # Rope project settings
138
+ .ropeproject
139
+
140
+ # mkdocs documentation
141
+ /site
142
+
143
+ # mypy
144
+ .mypy_cache/
145
+ .dmypy.json
146
+ dmypy.json
147
+
148
+ # Pyre type checker
149
+ .pyre/
150
+
151
+ # pytype static type analyzer
152
+ .pytype/
153
+
154
+ # Cython debug symbols
155
+ cython_debug/
156
+
157
+ # PyCharm
158
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
159
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
160
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
161
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
+ #.idea/
README.md CHANGED
@@ -1,12 +1,46 @@
1
- ---
2
- title: Ctrl X
3
- emoji: 🌖
4
- colorFrom: purple
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 4.44.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ctrl-X: Controlling Structure and Appearance for Text-To-Image Generation Without Guidance (NeurIPS 2024)
2
+
3
+ <a href="https://arxiv.org/abs/2406.07540"><img src="https://img.shields.io/badge/arXiv-Paper-red"></a>
4
+ <a href="https://genforce.github.io/ctrl-x"><img src="https://img.shields.io/badge/Project-Page-yellow"></a>
5
+ [![GitHub](https://img.shields.io/github/stars/genforce/ctrl-x?style=social)](https://github.com/genforce/ctrl-x)
6
+
7
+ [Kuan Heng Lin](https://kuanhenglin.github.io)<sup>1*</sup>, [Sicheng Mo](https://sichengmo.github.io/)<sup>1*</sup>, [Ben Klingher](https://bklingher.github.io)<sup>1</sup>, [Fangzhou Mu](https://pages.cs.wisc.edu/~fmu/)<sup>2</sup>, [Bolei Zhou](https://boleizhou.github.io/)<sup>1</sup> <br>
8
+ <sup>1</sup>UCLA&emsp;<sup>2</sup>NVIDIA <br>
9
+ <sup>*</sup>Equal contribution <br>
10
+
11
+ ![Ctrl-X teaser figure](docs/assets/teaser_github.jpg)
12
+
13
+ ## Getting started
14
+
15
+ ### Environment setup
16
+
17
+ Our code is built on top of [`diffusers v0.28.0`](https://github.com/huggingface/diffusers). To set up the environment, please run the following.
18
+ ```
19
+ conda env create -f environment.yaml
20
+ conda activate ctrlx
21
+ ```
22
+
23
+ ### Gradio demo
24
+
25
+ We provide a user interface for testing our method. Running the following command starts the demo.
26
+ ```
27
+ python3 app_ctrlx.py
28
+ ```
29
+ Have fun playing around! :D
30
+
31
+ ## Contact
32
+
33
+ For any questions, thoughts, discussions, and any other things you want to reach out for, please contact [Kuan Heng (Jordan) Lin](https://kuanhenglin.github.io) (kuanhenglin@ucla.edu).
34
+
35
+ ## Reference
36
+
37
+ If you use our code in your research, please cite the following work.
38
+
39
+ ```bibtex
40
+ @inproceedings{lin2024ctrlx,
41
+ author = {Lin, {Kuan Heng} and Mo, Sicheng and Klingher, Ben and Mu, Fangzhou and Zhou, Bolei},
42
+ booktitle = {Advances in Neural Information Processing Systems},
43
+ title = {Ctrl-X: Controlling Structure and Appearance for Text-To-Image Generation Without Guidance},
44
+ year = {2024}
45
+ }
46
+ ```
app_ctrlx.py ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from argparse import ArgumentParser
2
+
3
+ from diffusers import DDIMScheduler, StableDiffusionXLImg2ImgPipeline
4
+ import gradio as gr
5
+ import torch
6
+ import yaml
7
+
8
+ from ctrl_x.pipelines.pipeline_sdxl import CtrlXStableDiffusionXLPipeline
9
+ from ctrl_x.utils import *
10
+ from ctrl_x.utils.sdxl import *
11
+
12
+
13
+ parser = ArgumentParser()
14
+ parser.add_argument("-m", "--model", type=str, default=None) # Optionally, load model checkpoint from single file
15
+ args = parser.parse_args()
16
+
17
+ torch.backends.cudnn.enabled = False # Sometimes necessary to suppress CUDNN_STATUS_NOT_SUPPORTED
18
+
19
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
20
+
21
+ model_id_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
22
+ refiner_id_or_path = "stabilityai/stable-diffusion-xl-refiner-1.0"
23
+ device = "cuda" if torch.cuda.is_available() else "cpu"
24
+ variant = "fp16" if device == "cuda" else "fp32"
25
+
26
+ scheduler = DDIMScheduler.from_config(model_id_or_path, subfolder="scheduler") # TODO: Support other schedulers
27
+ if args.model is None:
28
+ pipe = CtrlXStableDiffusionXLPipeline.from_pretrained(
29
+ model_id_or_path, scheduler=scheduler, torch_dtype=torch_dtype, variant=variant, use_safetensors=True
30
+ )
31
+ else:
32
+ print(f"Using weights {args.model} for SDXL base model.")
33
+ pipe = CtrlXStableDiffusionXLPipeline.from_single_file(args.model, scheduler=scheduler, torch_dtype=torch_dtype)
34
+ refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
35
+ refiner_id_or_path, scheduler=scheduler, text_encoder_2=pipe.text_encoder_2, vae=pipe.vae,
36
+ torch_dtype=torch_dtype, variant=variant, use_safetensors=True,
37
+ )
38
+
39
+ if torch.cuda.is_available():
40
+ pipe = pipe.to("cuda")
41
+ refiner = refiner.to("cuda")
42
+
43
+
44
+ def get_control_config(structure_schedule, appearance_schedule):
45
+ s = structure_schedule
46
+ a = appearance_schedule
47
+
48
+ control_config =\
49
+ f"""control_schedule:
50
+ # structure_conv structure_attn appearance_attn conv/attn
51
+ encoder: # (num layers)
52
+ 0: [[ ], [ ], [ ]] # 2/0
53
+ 1: [[ ], [ ], [{a}, {a} ]] # 2/2
54
+ 2: [[ ], [ ], [{a}, {a} ]] # 2/2
55
+ middle: [[ ], [ ], [ ]] # 2/1
56
+ decoder:
57
+ 0: [[{s} ], [{s}, {s}, {s}], [0.0, {a}, {a}]] # 3/3
58
+ 1: [[ ], [ ], [{a}, {a} ]] # 3/3
59
+ 2: [[ ], [ ], [ ]] # 3/0
60
+
61
+ control_target:
62
+ - [output_tensor] # structure_conv choices: {{hidden_states, output_tensor}}
63
+ - [query, key] # structure_attn choices: {{query, key, value}}
64
+ - [before] # appearance_attn choices: {{before, value, after}}
65
+
66
+ self_recurrence_schedule:
67
+ - [0.1, 0.5, 2] # format: [start, end, num_recurrence]"""
68
+
69
+ return control_config
70
+
71
+
72
+ css = """
73
+ .config textarea {font-family: monospace; font-size: 80%; white-space: pre}
74
+ .mono {font-family: monospace}
75
+ """
76
+
77
+ title = """
78
+ <div style="display: flex; align-items: center; justify-content: center;margin-bottom: -15px">
79
+ <h1 style="margin-left: 12px;text-align: center;display: inline-block">
80
+ Ctrl-X: Controlling Structure and Appearance for Text-To-Image Generation Without Guidance
81
+ </h1>
82
+ <h3 style="display: inline-block; margin-left: 10px; margin-top: 7.5px; font-weight: 500">
83
+ SDXL v1.0
84
+ </h3>
85
+ </div>
86
+ <div style="display: flex; align-items: center; justify-content: center;margin-bottom: 25px">
87
+ <h3 style="text-align: center">
88
+ [<a href="https://genforce.github.io/ctrl-x/">Page</a>]
89
+ &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
90
+ [<a href="https://arxiv.org/abs/2406.07540">Paper</a>]
91
+ &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
92
+ [<a href="https://github.com/genforce/ctrl-x">Code</a>]
93
+ </h3>
94
+ </div>
95
+ <div>
96
+ <p>
97
+ <b>Ctrl-X</b> is a simple training-free and guidance-free framework for text-to-image (T2I) generation with
98
+ structure and appearance control. Given structure and appearance images, Ctrl-X designs feedforward structure
99
+ control to enable structure alignment with the arbitrary structure image and semantic-aware appearance transfer
100
+ to facilitate the appearance transfer from the appearance image.
101
+ </p>
102
+ <p>
103
+ Here are some notes and tips for this demo:
104
+ </p>
105
+ <ul>
106
+ <li> On input images:
107
+ <ul>
108
+ <li>
109
+ If both the structure and appearance images are provided, then Ctrl-X does <i>structure and
110
+ appearance</i> control.
111
+ </li>
112
+ <li>
113
+ If only the structure image is provided, then Ctrl-X does <i>structure-only</i> control and the
114
+ appearance image is jointly generated with the output image.
115
+ </li>
116
+ <li>
117
+ Similarly, if only the appearance image is provided, then Ctrl-X does <i>appearance-only</i>
118
+ control.
119
+ </li>
120
+ </ul>
121
+ </li>
122
+ <li> On prompts:
123
+ <ul>
124
+ <li>
125
+ Though the output prompt can affect the output image to a noticeable extent, the "accuracy" of the
126
+ structure and appearance prompts are not impactful to the final image.
127
+ </li>
128
+ <li>
129
+ If the structure or appearance prompt is left blank, then it uses the (non-optional) output prompt
130
+ by default.
131
+ </li>
132
+ </ul>
133
+ </li>
134
+ <li> On control schedules:
135
+ <ul>
136
+ <li>
137
+ When "Use advanced config" is <b>OFF</b>, the demo uses the structure guidance
138
+ (<span class="mono">structure_conv</span> and <span class="mono">structure_attn</span>
139
+ in the advanced config) and appearance guidance (<span class="mono">appearance_attn</span> in the
140
+ advanced config) sliders to change the control schedules.
141
+ </li>
142
+ <li>
143
+ Otherwise, the demo uses "Advanced control config," which allows per-layer structure and
144
+ appearance schedule control, along with self-recurrence control. <i>This should be used
145
+ carefully</i>, and we recommend switching "Use advanced config" <b>OFF</b> in most cases. (For the
146
+ examples provided at the bottom of the demo, the advanced config uses the default schedules that
147
+ may not be the best settings for these examples.)
148
+ </li>
149
+ </ul>
150
+ </li>
151
+ </ul>
152
+ <p>
153
+ Have fun! :D
154
+ </p>
155
+ </div>
156
+ """
157
+
158
+
159
+ def inference(
160
+ structure_image, appearance_image,
161
+ prompt, structure_prompt, appearance_prompt,
162
+ positive_prompt, negative_prompt,
163
+ guidance_scale, structure_guidance_scale, appearance_guidance_scale,
164
+ num_inference_steps, eta, seed,
165
+ width, height,
166
+ structure_schedule, appearance_schedule, use_advanced_config,
167
+ control_config,
168
+ ):
169
+ torch.manual_seed(seed)
170
+
171
+ pipe.scheduler.set_timesteps(num_inference_steps, device=device)
172
+ timesteps = pipe.scheduler.timesteps
173
+
174
+ print(f"\nUsing the following control config (use_advanced_config={use_advanced_config}):")
175
+ if not use_advanced_config:
176
+ control_config = get_control_config(structure_schedule, appearance_schedule)
177
+ print(control_config, end="\n\n")
178
+
179
+ config = yaml.safe_load(control_config)
180
+ register_control(
181
+ model = pipe,
182
+ timesteps = timesteps,
183
+ control_schedule = config["control_schedule"],
184
+ control_target = config["control_target"],
185
+ )
186
+
187
+ pipe.safety_checker = None
188
+ pipe.requires_safety_checker = False
189
+
190
+ self_recurrence_schedule = get_self_recurrence_schedule(config["self_recurrence_schedule"], num_inference_steps)
191
+
192
+ pipe.set_progress_bar_config(desc="Ctrl-X inference")
193
+ refiner.set_progress_bar_config(desc="Refiner")
194
+
195
+ result, structure, appearance = pipe(
196
+ prompt = prompt,
197
+ structure_prompt = structure_prompt,
198
+ appearance_prompt = appearance_prompt,
199
+ structure_image = structure_image,
200
+ appearance_image = appearance_image,
201
+ num_inference_steps = num_inference_steps,
202
+ negative_prompt = negative_prompt,
203
+ positive_prompt = positive_prompt,
204
+ height = height,
205
+ width = width,
206
+ guidance_scale = guidance_scale,
207
+ structure_guidance_scale = structure_guidance_scale,
208
+ appearance_guidance_scale = appearance_guidance_scale,
209
+ eta = eta,
210
+ output_type = "pil",
211
+ return_dict = False,
212
+ control_schedule = config["control_schedule"],
213
+ self_recurrence_schedule = self_recurrence_schedule,
214
+ )
215
+
216
+ result_refiner = refiner(
217
+ image = pipe.refiner_args["latents"],
218
+ prompt = pipe.refiner_args["prompt"],
219
+ negative_prompt = pipe.refiner_args["negative_prompt"],
220
+ height = height,
221
+ width = width,
222
+ num_inference_steps = num_inference_steps,
223
+ guidance_scale = guidance_scale,
224
+ guidance_rescale = 0.7,
225
+ num_images_per_prompt = 1,
226
+ eta = eta,
227
+ output_type = "pil",
228
+ ).images
229
+ del pipe.refiner_args
230
+
231
+ return [result[0], result_refiner[0], structure[0], appearance[0]]
232
+
233
+
234
+ with gr.Blocks(theme=gr.themes.Default(), css=css, title="Ctrl-X (SDXL v1.0)") as app:
235
+ gr.HTML(title)
236
+
237
+ with gr.Row():
238
+
239
+ with gr.Column(scale=55):
240
+ with gr.Group():
241
+ kwargs = {} # {"width": 400, "height": 400}
242
+ with gr.Row():
243
+ result = gr.Image(label="Output image", format="jpg", **kwargs)
244
+ result_refiner = gr.Image(label="Output image w/ refiner", format="jpg", **kwargs)
245
+ with gr.Row():
246
+ structure_recon = gr.Image(label="Structure image", format="jpg", **kwargs)
247
+ appearance_recon = gr.Image(label="Style image", format="jpg", **kwargs)
248
+ with gr.Row():
249
+ structure_image = gr.Image(label="Upload structure image (optional)", type="pil", **kwargs)
250
+ appearance_image = gr.Image(label="Upload appearance image (optional)", type="pil", **kwargs)
251
+
252
+ with gr.Column(scale=45):
253
+ with gr.Group():
254
+ with gr.Row():
255
+ structure_prompt = gr.Textbox(label="Structure prompt (optional)", placeholder="Prompt which describes the structure image")
256
+ appearance_prompt = gr.Textbox(label="Appearance prompt (optional)", placeholder="Prompt which describes the style image")
257
+ with gr.Row():
258
+ prompt = gr.Textbox(label="Output prompt", placeholder="Prompt which describes the output image")
259
+ with gr.Row():
260
+ positive_prompt = gr.Textbox(label="Positive prompt", value="high quality", placeholder="")
261
+ negative_prompt = gr.Textbox(label="Negative prompt", value="ugly, blurry, dark, low res, unrealistic", placeholder="")
262
+ with gr.Row():
263
+ guidance_scale = gr.Slider(label="Target guidance scale", value=5.0, minimum=1, maximum=10)
264
+ structure_guidance_scale = gr.Slider(label="Structure guidance scale", value=5.0, minimum=1, maximum=10)
265
+ appearance_guidance_scale = gr.Slider(label="Appearance guidance scale", value=5.0, minimum=1, maximum=10)
266
+ with gr.Row():
267
+ num_inference_steps = gr.Slider(label="# inference steps", value=50, minimum=1, maximum=200, step=1)
268
+ eta = gr.Slider(label="Eta (noise)", value=1.0, minimum=0, maximum=1.0, step=0.01)
269
+ seed = gr.Slider(0, 2147483647, label="Seed", value=90095, step=1)
270
+ with gr.Row():
271
+ width = gr.Slider(label="Width", value=1024, minimum=256, maximum=2048, step=pipe.vae_scale_factor)
272
+ height = gr.Slider(label="Height", value=1024, minimum=256, maximum=2048, step=pipe.vae_scale_factor)
273
+ with gr.Row():
274
+ structure_schedule = gr.Slider(label="Structure schedule", value=0.6, minimum=0.0, maximum=1.0, step=0.01, scale=2)
275
+ appearance_schedule = gr.Slider(label="Appearance schedule", value=0.6, minimum=0.0, maximum=1.0, step=0.01, scale=2)
276
+ use_advanced_config = gr.Checkbox(label="Use advanced config", value=False, scale=1)
277
+ with gr.Row():
278
+ control_config = gr.Textbox(
279
+ label="Advanced control config", lines=20, value=get_control_config(0.6, 0.6), elem_classes=["config"], visible=False,
280
+ )
281
+ use_advanced_config.change(
282
+ fn=lambda value: gr.update(visible=value), inputs=use_advanced_config, outputs=control_config,
283
+ )
284
+ with gr.Row():
285
+ generate = gr.Button(value="Run")
286
+
287
+ inputs = [
288
+ structure_image, appearance_image,
289
+ prompt, structure_prompt, appearance_prompt,
290
+ positive_prompt, negative_prompt,
291
+ guidance_scale, structure_guidance_scale, appearance_guidance_scale,
292
+ num_inference_steps, eta, seed,
293
+ width, height,
294
+ structure_schedule, appearance_schedule, use_advanced_config,
295
+ control_config,
296
+ ]
297
+ outputs = [result, result_refiner, structure_recon, appearance_recon]
298
+
299
+ generate.click(inference, inputs=inputs, outputs=outputs)
300
+
301
+ examples = gr.Examples(
302
+ [
303
+ [
304
+ "assets/images/horse__point_cloud.jpg",
305
+ "assets/images/horse.jpg",
306
+ "a 3D point cloud of a horse",
307
+ "",
308
+ "a photo of a horse standing on grass",
309
+ 0.6, 0.6,
310
+ ],
311
+ [
312
+ "assets/images/cat__mesh.jpg",
313
+ "assets/images/tiger.jpg",
314
+ "a 3D mesh of a cat",
315
+ "",
316
+ "a photo of a tiger standing on snow",
317
+ 0.6, 0.6,
318
+ ],
319
+ [
320
+ "assets/images/dog__sketch.jpg",
321
+ "assets/images/squirrel.jpg",
322
+ "a sketch of a dog",
323
+ "",
324
+ "a photo of a squirrel",
325
+ 0.6, 0.6,
326
+ ],
327
+ [
328
+ "assets/images/living_room__seg.jpg",
329
+ "assets/images/van_gogh.jpg",
330
+ "a segmentation map of a living room",
331
+ "",
332
+ "a Van Gogh painting of a living room",
333
+ 0.6, 0.6,
334
+ ],
335
+ [
336
+ "assets/images/bedroom__sketch.jpg",
337
+ "assets/images/living_room_modern.jpg",
338
+ "a sketch of a bedroom",
339
+ "",
340
+ "a photo of a modern bedroom during sunset",
341
+ 0.6, 0.6,
342
+ ],
343
+ [
344
+ "assets/images/running__pose.jpg",
345
+ "assets/images/man_park.jpg",
346
+ "a pose image of a person running",
347
+ "",
348
+ "a photo of a man running in a park",
349
+ 0.4, 0.6,
350
+ ],
351
+ [
352
+ "assets/images/fruit_bowl.jpg",
353
+ "assets/images/grapes.jpg",
354
+ "a photo of a bowl of fruits",
355
+ "",
356
+ "a photo of a bowl of grapes in the trees",
357
+ 0.6, 0.6,
358
+ ],
359
+ [
360
+ "assets/images/bear_avocado__spatext.jpg",
361
+ None,
362
+ "a segmentation map of a bear and an avocado",
363
+ "",
364
+ "a realistic photo of a bear and an avocado in a forest",
365
+ 0.6, 0.6,
366
+ ],
367
+ [
368
+ "assets/images/cat__point_cloud.jpg",
369
+ None,
370
+ "a 3D point cloud of a cat",
371
+ "",
372
+ "an embroidery of a white cat sitting on a rock under the night sky",
373
+ 0.6, 0.6,
374
+ ],
375
+ [
376
+ "assets/images/library__mesh.jpg",
377
+ None,
378
+ "a 3D mesh of a library",
379
+ "",
380
+ "a Polaroid photo of an old library, sunlight streaming in",
381
+ 0.6, 0.6,
382
+ ],
383
+ [
384
+ "assets/images/knight__humanoid.jpg",
385
+ None,
386
+ "a 3D model of a person holding a sword and shield",
387
+ "",
388
+ "a photo of a medieval soldier standing on a barren field, raining",
389
+ 0.6, 0.6,
390
+ ],
391
+ [
392
+ "assets/images/person__mesh.jpg",
393
+ None,
394
+ "a 3D mesh of a person",
395
+ "",
396
+ "a photo of a Karate man performing in a cyberpunk city at night",
397
+ 0.5, 0.6,
398
+ ],
399
+ ],
400
+ [
401
+ structure_image,
402
+ appearance_image,
403
+ structure_prompt,
404
+ appearance_prompt,
405
+ prompt,
406
+ structure_schedule,
407
+ appearance_schedule,
408
+ ],
409
+ examples_per_page=50,
410
+ )
411
+
412
+ app.launch(debug=False, share=False)
assets/images/bear_avocado__spatext.jpg ADDED
assets/images/bedroom__sketch.jpg ADDED
assets/images/cat__mesh.jpg ADDED
assets/images/cat__point_cloud.jpg ADDED
assets/images/dog__sketch.jpg ADDED
assets/images/fruit_bowl.jpg ADDED
assets/images/grapes.jpg ADDED
assets/images/horse.jpg ADDED
assets/images/horse__point_cloud.jpg ADDED
assets/images/knight__humanoid.jpg ADDED
assets/images/library__mesh.jpg ADDED
assets/images/living_room__seg.jpg ADDED
assets/images/living_room_modern.jpg ADDED
assets/images/man_park.jpg ADDED
assets/images/person__mesh.jpg ADDED
assets/images/running__pose.jpg ADDED
assets/images/squirrel.jpg ADDED
assets/images/tiger.jpg ADDED
assets/images/van_gogh.jpg ADDED
ctrl_x/__init__.py ADDED
File without changes
ctrl_x/pipelines/__init__.py ADDED
File without changes
ctrl_x/pipelines/pipeline_sdxl.py ADDED
@@ -0,0 +1,665 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from copy import deepcopy
2
+ from dataclasses import dataclass
3
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
4
+
5
+ from diffusers import StableDiffusionXLPipeline
6
+ from diffusers.image_processor import PipelineImageInput
7
+ from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import\
8
+ rescale_noise_cfg, retrieve_latents, retrieve_timesteps
9
+ from diffusers.utils import BaseOutput, deprecate
10
+ from diffusers.utils.torch_utils import randn_tensor
11
+ import numpy as np
12
+ import PIL
13
+ import torch
14
+
15
+ from ..utils import *
16
+ from ..utils.sdxl import *
17
+
18
+
19
+ BATCH_ORDER = [
20
+ "structure_uncond", "appearance_uncond", "uncond", "structure_cond", "appearance_cond", "cond",
21
+ ]
22
+
23
+
24
+ def get_last_control_i(control_schedule, num_inference_steps):
25
+ if control_schedule is None:
26
+ return num_inference_steps, num_inference_steps
27
+
28
+ def max_(l):
29
+ if len(l) == 0:
30
+ return 0.0
31
+ return max(l)
32
+
33
+ structure_max = 0.0
34
+ appearance_max = 0.0
35
+ for block in control_schedule.values():
36
+ if isinstance(block, list): # Handling mid_block
37
+ block = {0: block}
38
+ for layer in block.values():
39
+ structure_max = max(structure_max, max_(layer[0] + layer[1]))
40
+ appearance_max = max(appearance_max, max_(layer[2]))
41
+
42
+ structure_i = round(num_inference_steps * structure_max)
43
+ appearance_i = round(num_inference_steps * appearance_max)
44
+ return structure_i, appearance_i
45
+
46
+
47
+ @dataclass
48
+ class CtrlXStableDiffusionXLPipelineOutput(BaseOutput):
49
+ images: Union[List[PIL.Image.Image], np.ndarray]
50
+ structures = Union[List[PIL.Image.Image], np.ndarray]
51
+ appearances = Union[List[PIL.Image.Image], np.ndarray]
52
+
53
+
54
+ class CtrlXStableDiffusionXLPipeline(StableDiffusionXLPipeline): # diffusers==0.28.0
55
+
56
+ def prepare_latents(
57
+ self, image, batch_size, num_images_per_prompt, num_channels_latents, height, width,
58
+ dtype, device, generator=None, noise=None,
59
+ ):
60
+ batch_size = batch_size * num_images_per_prompt
61
+
62
+ if noise is None:
63
+ shape = (
64
+ batch_size,
65
+ num_channels_latents,
66
+ height // self.vae_scale_factor,
67
+ width // self.vae_scale_factor
68
+ )
69
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
70
+ noise = noise * self.scheduler.init_noise_sigma # Starting noise, need to scale
71
+ else:
72
+ noise = noise.to(device)
73
+
74
+ if image is None:
75
+ return noise, None
76
+
77
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
78
+ raise ValueError(
79
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
80
+ )
81
+
82
+ # Offload text encoder if `enable_model_cpu_offload` was enabled
83
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
84
+ self.text_encoder_2.to("cpu")
85
+ torch.cuda.empty_cache()
86
+
87
+ image = image.to(device=device, dtype=dtype)
88
+
89
+ if image.shape[1] == 4: # Image already in latents form
90
+ init_latents = image
91
+
92
+ else:
93
+ # Make sure the VAE is in float32 mode, as it overflows in float16
94
+ if self.vae.config.force_upcast:
95
+ image = image.to(torch.float32)
96
+ self.vae.to(torch.float32)
97
+
98
+ if isinstance(generator, list) and len(generator) != batch_size:
99
+ raise ValueError(
100
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
101
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
102
+ )
103
+ elif isinstance(generator, list):
104
+ init_latents = [
105
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
106
+ for i in range(batch_size)
107
+ ]
108
+ init_latents = torch.cat(init_latents, dim=0)
109
+ else:
110
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
111
+
112
+ if self.vae.config.force_upcast:
113
+ self.vae.to(dtype)
114
+
115
+ init_latents = init_latents.to(dtype)
116
+ init_latents = self.vae.config.scaling_factor * init_latents
117
+
118
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
119
+ # Expand init_latents for batch_size
120
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
121
+ init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
122
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
123
+ raise ValueError(
124
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
125
+ )
126
+ else:
127
+ init_latents = torch.cat([init_latents], dim=0)
128
+
129
+ return noise, init_latents
130
+
131
+ @property
132
+ def structure_guidance_scale(self):
133
+ return self._guidance_scale if self._structure_guidance_scale is None else self._structure_guidance_scale
134
+
135
+ @property
136
+ def appearance_guidance_scale(self):
137
+ return self._guidance_scale if self._appearance_guidance_scale is None else self._appearance_guidance_scale
138
+
139
+ @torch.no_grad()
140
+ def __call__(
141
+ self,
142
+ prompt: Union[str, List[str]] = None, # TODO: Support prompt_2 and negative_prompt_2
143
+ structure_prompt: Optional[Union[str, List[str]]] = None,
144
+ appearance_prompt: Optional[Union[str, List[str]]] = None,
145
+ structure_image: Optional[PipelineImageInput] = None,
146
+ appearance_image: Optional[PipelineImageInput] = None,
147
+ num_inference_steps: int = 50,
148
+ timesteps: List[int] = None,
149
+ negative_prompt: Optional[Union[str, List[str]]] = None,
150
+ positive_prompt: Optional[Union[str, List[str]]] = None,
151
+ height: Optional[int] = None,
152
+ width: Optional[int] = None,
153
+ guidance_scale: float = 5.0,
154
+ structure_guidance_scale: Optional[float] = None,
155
+ appearance_guidance_scale: Optional[float] = None,
156
+ num_images_per_prompt: Optional[int] = 1,
157
+ eta: float = 0.0,
158
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
159
+ latents: Optional[torch.Tensor] = None,
160
+ structure_latents: Optional[torch.Tensor] = None,
161
+ appearance_latents: Optional[torch.Tensor] = None,
162
+ prompt_embeds: Optional[torch.Tensor] = None, # Positive prompt is concatenated with prompt, so no embeddings
163
+ structure_prompt_embeds: Optional[torch.Tensor] = None,
164
+ appearance_prompt_embeds: Optional[torch.Tensor] = None,
165
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
166
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
167
+ structure_pooled_prompt_embeds: Optional[torch.Tensor] = None,
168
+ appearance_pooled_prompt_embeds: Optional[torch.Tensor] = None,
169
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
170
+ control_schedule: Optional[Dict] = None,
171
+ self_recurrence_schedule: Optional[List[int]] = [], # Format: [(start, end, num_repeat)]
172
+ decode_structure: Optional[bool] = True,
173
+ decode_appearance: Optional[bool] = True,
174
+ output_type: Optional[str] = "pil",
175
+ return_dict: bool = True,
176
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
177
+ guidance_rescale: float = 0.0,
178
+ original_size: Tuple[int, int] = None,
179
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
180
+ target_size: Tuple[int, int] = None,
181
+ clip_skip: Optional[int] = None,
182
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
183
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
184
+ **kwargs,
185
+ ):
186
+ # TODO: Add function argument documentation
187
+
188
+ callback = kwargs.pop("callback", None)
189
+ callback_steps = kwargs.pop("callback_steps", None)
190
+
191
+ if callback is not None:
192
+ deprecate(
193
+ "callback",
194
+ "1.0.0",
195
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
196
+ )
197
+ if callback_steps is not None:
198
+ deprecate(
199
+ "callback_steps",
200
+ "1.0.0",
201
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
202
+ )
203
+
204
+ # 0. Default height and width to U-Net
205
+ height = height or self.default_sample_size * self.vae_scale_factor
206
+ width = width or self.default_sample_size * self.vae_scale_factor
207
+ original_size = original_size or (height, width)
208
+ target_size = target_size or (height, width)
209
+
210
+ # 1. Check inputs. Raise error if not correct
211
+ self.check_inputs( # TODO: Custom check_inputs for our method
212
+ prompt,
213
+ None, # prompt_2
214
+ height,
215
+ width,
216
+ callback_steps,
217
+ negative_prompt = negative_prompt,
218
+ negative_prompt_2 = None, # negative_prompt_2
219
+ prompt_embeds = prompt_embeds,
220
+ negative_prompt_embeds = negative_prompt_embeds,
221
+ pooled_prompt_embeds = pooled_prompt_embeds,
222
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds,
223
+ callback_on_step_end_tensor_inputs = callback_on_step_end_tensor_inputs,
224
+ )
225
+
226
+ self._guidance_scale = guidance_scale
227
+ self._structure_guidance_scale = structure_guidance_scale
228
+ self._appearance_guidance_scale = appearance_guidance_scale
229
+ self._guidance_rescale = guidance_rescale
230
+ self._clip_skip = clip_skip
231
+ self._cross_attention_kwargs = cross_attention_kwargs
232
+ self._denoising_end = None # denoising_end
233
+ self._denoising_start = None # denoising_start
234
+ self._interrupt = False
235
+
236
+ # 2. Define call parameters
237
+ if prompt is not None and isinstance(prompt, str):
238
+ batch_size = 1
239
+ elif prompt is not None and isinstance(prompt, list):
240
+ batch_size = len(prompt)
241
+ else:
242
+ batch_size = prompt_embeds.shape[0]
243
+
244
+ if batch_size * num_images_per_prompt != 1:
245
+ raise ValueError(
246
+ f"Pipeline currently does not support batch_size={batch_size} and num_images_per_prompt=1. "
247
+ "Effective batch size (batch_size * num_images_per_prompt) must be 1."
248
+ )
249
+
250
+ device = self._execution_device
251
+
252
+ # 3. Encode input prompt
253
+ text_encoder_lora_scale = (
254
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
255
+ )
256
+
257
+ if positive_prompt is not None and positive_prompt != "":
258
+ prompt = prompt + ", " + positive_prompt # Add positive prompt with comma
259
+ # By default, only add positive prompt to the appearance prompt and not the structure prompt
260
+ if appearance_prompt is not None and appearance_prompt != "":
261
+ appearance_prompt = appearance_prompt + ", " + positive_prompt
262
+
263
+ (
264
+ prompt_embeds_,
265
+ negative_prompt_embeds,
266
+ pooled_prompt_embeds_,
267
+ negative_pooled_prompt_embeds,
268
+ ) = self.encode_prompt(
269
+ prompt = prompt,
270
+ prompt_2 = None, # prompt_2
271
+ device = device,
272
+ num_images_per_prompt = num_images_per_prompt,
273
+ do_classifier_free_guidance = True, # self.do_classifier_free_guidance, TODO: Support no CFG
274
+ negative_prompt = negative_prompt,
275
+ negative_prompt_2 = None, # negative_prompt_2
276
+ prompt_embeds = prompt_embeds,
277
+ negative_prompt_embeds = negative_prompt_embeds,
278
+ pooled_prompt_embeds = pooled_prompt_embeds,
279
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds,
280
+ lora_scale = text_encoder_lora_scale,
281
+ clip_skip = self.clip_skip,
282
+ )
283
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds_], dim=0).to(device)
284
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds_], dim=0).to(device)
285
+
286
+ # 3.1. Structure prompt embeddings
287
+ if structure_prompt is not None and structure_prompt != "":
288
+ (
289
+ structure_prompt_embeds,
290
+ negative_structure_prompt_embeds,
291
+ structure_pooled_prompt_embeds,
292
+ negative_structure_pooled_prompt_embeds,
293
+ ) = self.encode_prompt(
294
+ prompt = structure_prompt,
295
+ prompt_2 = None, # prompt_2
296
+ device = device,
297
+ num_images_per_prompt = num_images_per_prompt,
298
+ do_classifier_free_guidance = True, # self.do_classifier_free_guidance, TODO: Support no CFG
299
+ negative_prompt = negative_prompt if structure_image is None else "",
300
+ negative_prompt_2 = None, # negative_prompt_2
301
+ prompt_embeds = structure_prompt_embeds,
302
+ negative_prompt_embeds = None, # negative_prompt_embeds
303
+ pooled_prompt_embeds = structure_pooled_prompt_embeds,
304
+ negative_pooled_prompt_embeds = None, # negative_pooled_prompt_embeds
305
+ lora_scale = text_encoder_lora_scale,
306
+ clip_skip = self.clip_skip,
307
+ )
308
+ structure_prompt_embeds = torch.cat(
309
+ [negative_structure_prompt_embeds, structure_prompt_embeds], dim=0
310
+ ).to(device)
311
+ structure_add_text_embeds = torch.cat(
312
+ [negative_structure_pooled_prompt_embeds, structure_pooled_prompt_embeds], dim=0
313
+ ).to(device)
314
+ else:
315
+ structure_prompt_embeds = prompt_embeds
316
+ structure_add_text_embeds = add_text_embeds
317
+
318
+ # 3.2. Appearance prompt embeddings
319
+ if appearance_prompt is not None and appearance_prompt != "":
320
+ (
321
+ appearance_prompt_embeds,
322
+ negative_appearance_prompt_embeds,
323
+ appearance_pooled_prompt_embeds,
324
+ negative_appearance_pooled_prompt_embeds,
325
+ ) = self.encode_prompt(
326
+ prompt = appearance_prompt,
327
+ prompt_2 = None, # prompt_2
328
+ device = device,
329
+ num_images_per_prompt = num_images_per_prompt,
330
+ do_classifier_free_guidance = True, # self.do_classifier_free_guidance, TODO: Support no CFG
331
+ negative_prompt = negative_prompt if appearance_image is None else "",
332
+ negative_prompt_2 = None, # negative_prompt_2
333
+ prompt_embeds = appearance_prompt_embeds,
334
+ negative_prompt_embeds = None, # negative_prompt_embeds
335
+ pooled_prompt_embeds = appearance_pooled_prompt_embeds, # pooled_prompt_embeds
336
+ negative_pooled_prompt_embeds = None, # negative_pooled_prompt_embeds
337
+ lora_scale = text_encoder_lora_scale,
338
+ clip_skip = self.clip_skip,
339
+ )
340
+ appearance_prompt_embeds = torch.cat(
341
+ [negative_appearance_prompt_embeds, appearance_prompt_embeds], dim=0
342
+ ).to(device)
343
+ appearance_add_text_embeds = torch.cat(
344
+ [negative_appearance_pooled_prompt_embeds, appearance_pooled_prompt_embeds], dim=0
345
+ ).to(device)
346
+ else:
347
+ appearance_prompt_embeds = prompt_embeds
348
+ appearance_add_text_embeds = add_text_embeds
349
+
350
+ # 3.3. Prepare added time ids & embeddings, TODO: Support no CFG
351
+ if self.text_encoder_2 is None:
352
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
353
+ else:
354
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
355
+
356
+ add_time_ids = self._get_add_time_ids(
357
+ original_size,
358
+ crops_coords_top_left,
359
+ target_size,
360
+ dtype = prompt_embeds.dtype,
361
+ text_encoder_projection_dim = text_encoder_projection_dim,
362
+ )
363
+ negative_add_time_ids = add_time_ids
364
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0).to(device)
365
+
366
+ # 4. Prepare timesteps
367
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
368
+
369
+ # 5. Prepare latent variables
370
+ num_channels_latents = self.unet.config.in_channels
371
+
372
+ latents, _ = self.prepare_latents(
373
+ None, batch_size, num_images_per_prompt, num_channels_latents, height, width,
374
+ prompt_embeds.dtype, device, generator, latents
375
+ )
376
+
377
+ if structure_image is not None:
378
+ structure_image = preprocess( # Center crop + resize
379
+ structure_image, self.image_processor, height=height, width=width, resize_mode="crop"
380
+ )
381
+ _, clean_structure_latents = self.prepare_latents(
382
+ structure_image, batch_size, num_images_per_prompt, num_channels_latents, height, width,
383
+ prompt_embeds.dtype, device, generator, structure_latents,
384
+ )
385
+ else:
386
+ clean_structure_latents = None
387
+ structure_latents = latents if structure_latents is None else structure_latents
388
+
389
+ if appearance_image is not None:
390
+ appearance_image = preprocess( # Center crop + resize
391
+ appearance_image, self.image_processor, height=height, width=width, resize_mode="crop"
392
+ )
393
+ _, clean_appearance_latents = self.prepare_latents(
394
+ appearance_image, batch_size, num_images_per_prompt, num_channels_latents, height, width,
395
+ prompt_embeds.dtype, device, generator, appearance_latents,
396
+ )
397
+ else:
398
+ clean_appearance_latents = None
399
+ appearance_latents = latents if appearance_latents is None else appearance_latents
400
+
401
+ # 6. Prepare extra step kwargs
402
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
403
+
404
+ # 7. Denoising loop
405
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
406
+
407
+ # 7.1 Apply denoising_end
408
+ def denoising_value_valid(dnv):
409
+ return isinstance(self.denoising_end, float) and 0 < dnv < 1
410
+
411
+ if (
412
+ self.denoising_end is not None
413
+ and self.denoising_start is not None
414
+ and denoising_value_valid(self.denoising_end)
415
+ and denoising_value_valid(self.denoising_start)
416
+ and self.denoising_start >= self.denoising_end
417
+ ):
418
+ raise ValueError(
419
+ f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
420
+ + f" {self.denoising_end} when using type float."
421
+ )
422
+ elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
423
+ discrete_timestep_cutoff = int(
424
+ round(
425
+ self.scheduler.config.num_train_timesteps
426
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
427
+ )
428
+ )
429
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
430
+ timesteps = timesteps[:num_inference_steps]
431
+
432
+ # 7.2 Optionally get guidance scale embedding
433
+ timestep_cond = None
434
+ if self.unet.config.time_cond_proj_dim is not None: # TODO: Make guidance scale embedding work with batch_order
435
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
436
+ timestep_cond = self.get_guidance_scale_embedding(
437
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
438
+ ).to(device=device, dtype=latents.dtype)
439
+
440
+ # 7.3 Get batch order
441
+ batch_order = deepcopy(BATCH_ORDER)
442
+ if structure_image is not None: # If image is provided, not generating, so no CFG needed
443
+ batch_order.remove("structure_uncond")
444
+ if appearance_image is not None:
445
+ batch_order.remove("appearance_uncond")
446
+
447
+ structure_control_stop_i, appearance_control_stop_i = get_last_control_i(control_schedule, num_inference_steps)
448
+ if self_recurrence_schedule is None:
449
+ self_recurrence_schedule = [0] * num_inference_steps
450
+
451
+ self._num_timesteps = len(timesteps)
452
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
453
+ for i, t in enumerate(timesteps):
454
+ if self.interrupt:
455
+ continue
456
+
457
+ if i == structure_control_stop_i: # If not generating structure/appearance, drop after last control
458
+ if "structure_uncond" not in batch_order:
459
+ batch_order.remove("structure_cond")
460
+ if i == appearance_control_stop_i:
461
+ if "appearance_uncond" not in batch_order:
462
+ batch_order.remove("appearance_cond")
463
+
464
+ register_attr(self, t=t.item(), do_control=True, batch_order=batch_order)
465
+
466
+ # TODO: For now, assume we are doing classifier-free guidance, support no CF-guidance later
467
+ latent_model_input = self.scheduler.scale_model_input(latents, t)
468
+ structure_latent_model_input = self.scheduler.scale_model_input(structure_latents, t)
469
+ appearance_latent_model_input = self.scheduler.scale_model_input(appearance_latents, t)
470
+
471
+ all_latent_model_input = {
472
+ "structure_uncond": structure_latent_model_input[0:1],
473
+ "appearance_uncond": appearance_latent_model_input[0:1],
474
+ "uncond": latent_model_input[0:1],
475
+ "structure_cond": structure_latent_model_input[0:1],
476
+ "appearance_cond": appearance_latent_model_input[0:1],
477
+ "cond": latent_model_input[0:1],
478
+ }
479
+ all_prompt_embeds = {
480
+ "structure_uncond": structure_prompt_embeds[0:1],
481
+ "appearance_uncond": appearance_prompt_embeds[0:1],
482
+ "uncond": prompt_embeds[0:1],
483
+ "structure_cond": structure_prompt_embeds[1:2],
484
+ "appearance_cond": appearance_prompt_embeds[1:2],
485
+ "cond": prompt_embeds[1:2],
486
+ }
487
+ all_add_text_embeds = {
488
+ "structure_uncond": structure_add_text_embeds[0:1],
489
+ "appearance_uncond": appearance_add_text_embeds[0:1],
490
+ "uncond": add_text_embeds[0:1],
491
+ "structure_cond": structure_add_text_embeds[1:2],
492
+ "appearance_cond": appearance_add_text_embeds[1:2],
493
+ "cond": add_text_embeds[1:2],
494
+ }
495
+ all_time_ids = {
496
+ "structure_uncond": add_time_ids[0:1],
497
+ "appearance_uncond": add_time_ids[0:1],
498
+ "uncond": add_time_ids[0:1],
499
+ "structure_cond": add_time_ids[1:2],
500
+ "appearance_cond": add_time_ids[1:2],
501
+ "cond": add_time_ids[1:2],
502
+ }
503
+
504
+ concat_latent_model_input = batch_dict_to_tensor(all_latent_model_input, batch_order)
505
+ concat_prompt_embeds = batch_dict_to_tensor(all_prompt_embeds, batch_order)
506
+ concat_add_text_embeds = batch_dict_to_tensor(all_add_text_embeds, batch_order)
507
+ concat_add_time_ids = batch_dict_to_tensor(all_time_ids, batch_order)
508
+
509
+ # Predict the noise residual
510
+ added_cond_kwargs = {"text_embeds": concat_add_text_embeds, "time_ids": concat_add_time_ids}
511
+
512
+ concat_noise_pred = self.unet(
513
+ concat_latent_model_input,
514
+ t,
515
+ encoder_hidden_states = concat_prompt_embeds,
516
+ timestep_cond = timestep_cond,
517
+ cross_attention_kwargs = self.cross_attention_kwargs,
518
+ added_cond_kwargs = added_cond_kwargs,
519
+ ).sample
520
+ all_noise_pred = batch_tensor_to_dict(concat_noise_pred, batch_order)
521
+
522
+ # Classifier-free guidance, TODO: Support no CFG
523
+ noise_pred = all_noise_pred["uncond"] +\
524
+ self.guidance_scale * (all_noise_pred["cond"] - all_noise_pred["uncond"])
525
+
526
+ structure_noise_pred = all_noise_pred["structure_cond"]\
527
+ if "structure_cond" in batch_order else noise_pred
528
+ if "structure_uncond" in all_noise_pred:
529
+ structure_noise_pred = all_noise_pred["structure_uncond"] +\
530
+ self.structure_guidance_scale * (structure_noise_pred - all_noise_pred["structure_uncond"])
531
+
532
+ appearance_noise_pred = all_noise_pred["appearance_cond"]\
533
+ if "appearance_cond" in batch_order else noise_pred
534
+ if "appearance_uncond" in all_noise_pred:
535
+ appearance_noise_pred = all_noise_pred["appearance_uncond"] +\
536
+ self.appearance_guidance_scale * (appearance_noise_pred - all_noise_pred["appearance_uncond"])
537
+
538
+ if self.guidance_rescale > 0.0:
539
+ noise_pred = rescale_noise_cfg(
540
+ noise_pred, all_noise_pred["cond"], guidance_rescale=self.guidance_rescale
541
+ )
542
+ if "structure_uncond" in all_noise_pred:
543
+ structure_noise_pred = rescale_noise_cfg(
544
+ structure_noise_pred, all_noise_pred["structure_cond"],
545
+ guidance_rescale=self.guidance_rescale
546
+ )
547
+ if "appearance_uncond" in all_noise_pred:
548
+ appearance_noise_pred = rescale_noise_cfg(
549
+ appearance_noise_pred, all_noise_pred["appearance_cond"],
550
+ guidance_rescale=self.guidance_rescale
551
+ )
552
+
553
+ # Compute the previous noisy sample x_t -> x_t-1
554
+ concat_noise_pred = torch.cat(
555
+ [structure_noise_pred, appearance_noise_pred, noise_pred], dim=0,
556
+ )
557
+ concat_latents = torch.cat(
558
+ [structure_latents, appearance_latents, latents], dim=0,
559
+ )
560
+ structure_latents, appearance_latents, latents = self.scheduler.step(
561
+ concat_noise_pred, t, concat_latents, **extra_step_kwargs,
562
+ ).prev_sample.chunk(3)
563
+
564
+ if clean_structure_latents is not None:
565
+ structure_latents = noise_prev(self.scheduler, t, clean_structure_latents)
566
+ if clean_appearance_latents is not None:
567
+ appearance_latents = noise_prev(self.scheduler, t, clean_appearance_latents)
568
+
569
+ # Self-recurrence
570
+ for _ in range(self_recurrence_schedule[i]):
571
+ if hasattr(self.scheduler, "_step_index"): # For fancier schedulers
572
+ self.scheduler._step_index -= 1 # TODO: Does this actually work?
573
+
574
+ t_prev = 0 if i + 1 >= num_inference_steps else timesteps[i + 1]
575
+ latents = noise_t2t(self.scheduler, t_prev, t, latents)
576
+ latent_model_input = torch.cat([latents] * 2)
577
+
578
+ register_attr(self, t=t.item(), do_control=False, batch_order=["uncond", "cond"])
579
+
580
+ # Predict the noise residual
581
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
582
+ noise_pred_uncond, noise_pred_ = self.unet(
583
+ latent_model_input,
584
+ t,
585
+ encoder_hidden_states = prompt_embeds,
586
+ timestep_cond = timestep_cond,
587
+ cross_attention_kwargs = self.cross_attention_kwargs,
588
+ added_cond_kwargs = added_cond_kwargs,
589
+ ).sample.chunk(2)
590
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_ - noise_pred_uncond)
591
+
592
+ if self.guidance_rescale > 0.0:
593
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_, guidance_rescale=self.guidance_rescale)
594
+
595
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
596
+
597
+ # Callbacks
598
+ if callback_on_step_end is not None:
599
+ callback_kwargs = {}
600
+ for k in callback_on_step_end_tensor_inputs:
601
+ callback_kwargs[k] = locals()[k]
602
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
603
+
604
+ latents = callback_outputs.pop("latents", latents)
605
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
606
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
607
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
608
+ negative_pooled_prompt_embeds = callback_outputs.pop(
609
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
610
+ )
611
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
612
+ add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
613
+
614
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
615
+ progress_bar.update()
616
+ if callback is not None and i % callback_steps == 0:
617
+ step_idx = i // getattr(self.scheduler, "order", 1)
618
+ callback(step_idx, t, latents)
619
+
620
+ # "Reconstruction"
621
+ if clean_structure_latents is not None:
622
+ structure_latents = clean_structure_latents
623
+ if clean_appearance_latents is not None:
624
+ appearance_latents = clean_appearance_latents
625
+
626
+ # For passing important information onto the refiner
627
+ self.refiner_args = {"latents": latents.detach(), "prompt": prompt, "negative_prompt": negative_prompt}
628
+
629
+ if not output_type == "latent":
630
+ # Make sure the VAE is in float32 mode, as it overflows in float16
631
+ if self.vae.config.force_upcast:
632
+ self.vae.to(torch.float32) # self.upcast_vae() is buggy
633
+ latents = latents.to(torch.float32)
634
+ structure_latents = structure_latents.to(torch.float32)
635
+ appearance_latents = appearance_latents.to(torch.float32)
636
+
637
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
638
+ image = self.image_processor.postprocess(image, output_type=output_type)
639
+ if decode_structure:
640
+ structure = self.vae.decode(structure_latents / self.vae.config.scaling_factor, return_dict=False)[0]
641
+ structure = self.image_processor.postprocess(structure, output_type=output_type)
642
+ else:
643
+ structure = structure_latents
644
+ if decode_appearance:
645
+ appearance = self.vae.decode(appearance_latents / self.vae.config.scaling_factor, return_dict=False)[0]
646
+ appearance = self.image_processor.postprocess(appearance, output_type=output_type)
647
+ else:
648
+ appearance = appearance_latents
649
+
650
+ # Cast back to fp16 if needed
651
+ if self.vae.config.force_upcast:
652
+ self.vae.to(dtype=torch.float16)
653
+
654
+ else:
655
+ return CtrlXStableDiffusionXLPipelineOutput(
656
+ images=latents, structures=structure_latents, appearances=appearance_latents
657
+ )
658
+
659
+ # Offload all models
660
+ self.maybe_free_model_hooks()
661
+
662
+ if not return_dict:
663
+ return (image, structure, appearance)
664
+
665
+ return CtrlXStableDiffusionXLPipelineOutput(images=image, structures=structure, appearances=appearance)
ctrl_x/utils/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .feature import *
2
+ from .media import *
3
+ from .utils import *
ctrl_x/utils/feature.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch.nn.functional as F
4
+
5
+ from .utils import *
6
+
7
+
8
+ def get_schedule(timesteps, schedule):
9
+ end = round(len(timesteps) * schedule)
10
+ timesteps = timesteps[:end]
11
+ return timesteps
12
+
13
+
14
+ def get_elem(l, i, default=0.0):
15
+ if i >= len(l):
16
+ return default
17
+ return l[i]
18
+
19
+
20
+ def pad_list(l_1, l_2, pad=0.0):
21
+ max_len = max(len(l_1), len(l_2))
22
+ l_1 = l_1 + [pad] * (max_len - len(l_1))
23
+ l_2 = l_2 + [pad] * (max_len - len(l_2))
24
+ return l_1, l_2
25
+
26
+
27
+ def normalize(x, dim):
28
+ x_mean = x.mean(dim=dim, keepdim=True)
29
+ x_std = x.std(dim=dim, keepdim=True)
30
+ x_normalized = (x - x_mean) / x_std
31
+ return x_normalized
32
+
33
+
34
+ # https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
35
+ def appearance_mean_std(q_c_normed, k_s_normed, v_s): # c: content, s: style
36
+ q_c = q_c_normed # q_c and k_s must be projected from normalized features
37
+ k_s = k_s_normed
38
+ scale_factor = 1 / math.sqrt(q_c.shape[-1])
39
+
40
+ # My notation below is very jank: D = (H W) is number of tokens, and C is token dimension
41
+ # Horrible notation coming from how self-attention dimensions work in Stable Diffusion
42
+ A = q_c @ k_s.mT # (B H D C/H) (B H C/H D)^T -> (B H D D)
43
+ A = F.softmax(A * scale_factor, dim=-1) # Softmax on last D in (B H D D)
44
+ mean = A @ v_s # (B H D D) (B H D C/H) -> (B H D C/H)
45
+ std = (A @ v_s.square() - mean.square()).relu().sqrt()
46
+
47
+ return mean, std
48
+
49
+
50
+ def feature_injection(features, batch_order):
51
+ assert features.shape[0] % len(batch_order) == 0
52
+ features_dict = batch_tensor_to_dict(features, batch_order)
53
+ features_dict["cond"] = features_dict["structure_cond"]
54
+ features = batch_dict_to_tensor(features_dict, batch_order)
55
+ return features
56
+
57
+
58
+ def appearance_transfer(features, q_normed, k_normed, batch_order, v=None, reshape_fn=None):
59
+ assert features.shape[0] % len(batch_order) == 0
60
+
61
+ features_dict = batch_tensor_to_dict(features, batch_order)
62
+ q_normed_dict = batch_tensor_to_dict(q_normed, batch_order)
63
+ k_normed_dict = batch_tensor_to_dict(k_normed, batch_order)
64
+ v_dict = features_dict
65
+ if v is not None:
66
+ v_dict = batch_tensor_to_dict(v, batch_order)
67
+
68
+ mean_cond, std_cond = appearance_mean_std(
69
+ q_normed_dict["cond"], k_normed_dict["appearance_cond"], v_dict["appearance_cond"],
70
+ )
71
+
72
+ if reshape_fn is not None:
73
+ mean_cond = reshape_fn(mean_cond)
74
+ std_cond = reshape_fn(std_cond)
75
+
76
+ features_dict["cond"] = std_cond * normalize(features_dict["cond"], dim=-2) + mean_cond
77
+
78
+ features = batch_dict_to_tensor(features_dict, batch_order)
79
+ return features
ctrl_x/utils/media.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torchvision.transforms.functional as vF
4
+ import PIL
5
+
6
+
7
+ JPEG_QUALITY = 95
8
+
9
+
10
+ def preprocess(image, processor, **kwargs):
11
+ if isinstance(image, PIL.Image.Image):
12
+ pass
13
+ elif isinstance(image, np.ndarray):
14
+ image = PIL.Image.fromarray(image)
15
+ elif isinstance(image, torch.Tensor):
16
+ image = vF.to_pil_image(image)
17
+ else:
18
+ raise TypeError(f"Image must be of type PIL.Image, np.ndarray, or torch.Tensor, got {type(image)} instead.")
19
+
20
+ image = processor.preprocess(image, **kwargs)
21
+ return image
ctrl_x/utils/sdxl.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from types import MethodType
2
+ from typing import Optional
3
+
4
+ from diffusers.models.attention_processor import Attention
5
+ import torch
6
+ import torch.nn.functional as F
7
+
8
+ from .feature import *
9
+ from .utils import *
10
+
11
+
12
+ def convolution_forward( # From <class 'diffusers.models.resnet.ResnetBlock2D'>, forward (diffusers==0.28.0)
13
+ self,
14
+ input_tensor: torch.Tensor,
15
+ temb: torch.Tensor,
16
+ *args,
17
+ **kwargs,
18
+ ) -> torch.Tensor:
19
+ do_structure_control = self.do_control and self.t in self.structure_schedule
20
+
21
+ hidden_states = input_tensor
22
+
23
+ hidden_states = self.norm1(hidden_states)
24
+ hidden_states = self.nonlinearity(hidden_states)
25
+
26
+ if self.upsample is not None:
27
+ # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
28
+ if hidden_states.shape[0] >= 64:
29
+ input_tensor = input_tensor.contiguous()
30
+ hidden_states = hidden_states.contiguous()
31
+ input_tensor = self.upsample(input_tensor)
32
+ hidden_states = self.upsample(hidden_states)
33
+ elif self.downsample is not None:
34
+ input_tensor = self.downsample(input_tensor)
35
+ hidden_states = self.downsample(hidden_states)
36
+
37
+ hidden_states = self.conv1(hidden_states)
38
+
39
+ if self.time_emb_proj is not None:
40
+ if not self.skip_time_act:
41
+ temb = self.nonlinearity(temb)
42
+ temb = self.time_emb_proj(temb)[:, :, None, None]
43
+
44
+ if self.time_embedding_norm == "default":
45
+ if temb is not None:
46
+ hidden_states = hidden_states + temb
47
+ hidden_states = self.norm2(hidden_states)
48
+ elif self.time_embedding_norm == "scale_shift":
49
+ if temb is None:
50
+ raise ValueError(
51
+ f" `temb` should not be None when `time_embedding_norm` is {self.time_embedding_norm}"
52
+ )
53
+ time_scale, time_shift = torch.chunk(temb, 2, dim=1)
54
+ hidden_states = self.norm2(hidden_states)
55
+ hidden_states = hidden_states * (1 + time_scale) + time_shift
56
+ else:
57
+ hidden_states = self.norm2(hidden_states)
58
+
59
+ hidden_states = self.nonlinearity(hidden_states)
60
+
61
+ hidden_states = self.dropout(hidden_states)
62
+ hidden_states = self.conv2(hidden_states)
63
+
64
+ # Feature injection and AdaIN (hidden_states)
65
+ if do_structure_control and "hidden_states" in self.structure_target:
66
+ hidden_states = feature_injection(hidden_states, batch_order=self.batch_order)
67
+
68
+ if self.conv_shortcut is not None:
69
+ input_tensor = self.conv_shortcut(input_tensor)
70
+
71
+ output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
72
+
73
+ # Feature injection and AdaIN (output_tensor)
74
+ if do_structure_control and "output_tensor" in self.structure_target:
75
+ output_tensor = feature_injection(output_tensor, batch_order=self.batch_order)
76
+
77
+ return output_tensor
78
+
79
+
80
+ class AttnProcessor2_0: # From <class 'diffusers.models.attention_processor.AttnProcessor2_0'> (diffusers==0.28.0)
81
+
82
+ def __init__(self):
83
+ if not hasattr(F, "scaled_dot_product_attention"):
84
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
85
+
86
+ def __call__(
87
+ self,
88
+ attn: Attention,
89
+ hidden_states: torch.FloatTensor,
90
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
91
+ attention_mask: Optional[torch.FloatTensor] = None,
92
+ temb: Optional[torch.FloatTensor] = None,
93
+ *args,
94
+ **kwargs,
95
+ ) -> torch.FloatTensor:
96
+ do_structure_control = attn.do_control and attn.t in attn.structure_schedule
97
+ do_appearance_control = attn.do_control and attn.t in attn.appearance_schedule
98
+
99
+ residual = hidden_states
100
+ if attn.spatial_norm is not None:
101
+ hidden_states = attn.spatial_norm(hidden_states, temb)
102
+
103
+ input_ndim = hidden_states.ndim
104
+
105
+ if input_ndim == 4:
106
+ batch_size, channel, height, width = hidden_states.shape
107
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
108
+
109
+ batch_size, sequence_length, _ = (
110
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
111
+ )
112
+
113
+ if attention_mask is not None:
114
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
115
+ # scaled_dot_product_attention expects attention_mask shape to be
116
+ # (batch, heads, source_length, target_length)
117
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
118
+
119
+ if attn.group_norm is not None:
120
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
121
+
122
+ no_encoder_hidden_states = encoder_hidden_states is None
123
+ if no_encoder_hidden_states:
124
+ encoder_hidden_states = hidden_states
125
+ elif attn.norm_cross:
126
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
127
+
128
+ if do_appearance_control: # Assume we only have this for self attention
129
+ hidden_states_normed = normalize(hidden_states, dim=-2) # B H D C
130
+ encoder_hidden_states_normed = normalize(encoder_hidden_states, dim=-2)
131
+
132
+ query_normed = attn.to_q(hidden_states_normed)
133
+ key_normed = attn.to_k(encoder_hidden_states_normed)
134
+
135
+ inner_dim = key_normed.shape[-1]
136
+ head_dim = inner_dim // attn.heads
137
+ query_normed = query_normed.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
138
+ key_normed = key_normed.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
139
+
140
+ # Match query and key injection with structure injection (if injection is happening this layer)
141
+ if do_structure_control:
142
+ if "query" in attn.structure_target:
143
+ query_normed = feature_injection(query_normed, batch_order=attn.batch_order)
144
+ if "key" in attn.structure_target:
145
+ key_normed = feature_injection(key_normed, batch_order=attn.batch_order)
146
+
147
+ # Appearance transfer (before)
148
+ if do_appearance_control and "before" in attn.appearance_target:
149
+ hidden_states = hidden_states.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
150
+ hidden_states = appearance_transfer(hidden_states, query_normed, key_normed, batch_order=attn.batch_order)
151
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
152
+
153
+ if no_encoder_hidden_states:
154
+ encoder_hidden_states = hidden_states
155
+ elif attn.norm_cross:
156
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
157
+
158
+ query = attn.to_q(hidden_states)
159
+
160
+ key = attn.to_k(encoder_hidden_states)
161
+ value = attn.to_v(encoder_hidden_states)
162
+
163
+ inner_dim = key.shape[-1]
164
+ head_dim = inner_dim // attn.heads
165
+
166
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
167
+
168
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
169
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
170
+
171
+ # Feature injection (query, key, and/or value)
172
+ if do_structure_control:
173
+ if "query" in attn.structure_target:
174
+ query = feature_injection(query, batch_order=attn.batch_order)
175
+ if "key" in attn.structure_target:
176
+ key = feature_injection(key, batch_order=attn.batch_order)
177
+ if "value" in attn.structure_target:
178
+ value = feature_injection(value, batch_order=attn.batch_order)
179
+
180
+ # Appearance transfer (value)
181
+ if do_appearance_control and "value" in attn.appearance_target:
182
+ value = appearance_transfer(value, query_normed, key_normed, batch_order=attn.batch_order)
183
+
184
+ # The output of sdp = (batch, num_heads, seq_len, head_dim)
185
+ # TODO: add support for attn.scale when we move to Torch 2.1
186
+ hidden_states = F.scaled_dot_product_attention(
187
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
188
+ )
189
+
190
+ # Appearance transfer (after)
191
+ if do_appearance_control and "after" in attn.appearance_target:
192
+ hidden_states = appearance_transfer(hidden_states, query_normed, key_normed, batch_order=attn.batch_order)
193
+
194
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
195
+ hidden_states = hidden_states.to(query.dtype)
196
+
197
+ # Linear projection
198
+ hidden_states = attn.to_out[0](hidden_states, *args)
199
+ # Dropout
200
+ hidden_states = attn.to_out[1](hidden_states)
201
+
202
+ if input_ndim == 4:
203
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
204
+
205
+ if attn.residual_connection:
206
+ hidden_states = hidden_states + residual
207
+
208
+ hidden_states = hidden_states / attn.rescale_output_factor
209
+
210
+ return hidden_states
211
+
212
+
213
+ def register_control(
214
+ model,
215
+ timesteps,
216
+ control_schedule, # structure_conv, structure_attn, appearance_attn
217
+ control_target = [["output_tensor"], ["query", "key"], ["before"]],
218
+ ):
219
+ # Assume timesteps in reverse order (T -> 0)
220
+ for block_type in ["encoder", "decoder", "middle"]:
221
+ blocks = {
222
+ "encoder": model.unet.down_blocks,
223
+ "decoder": model.unet.up_blocks,
224
+ "middle": [model.unet.mid_block],
225
+ }[block_type]
226
+
227
+ control_schedule_block = control_schedule[block_type]
228
+ if block_type == "middle":
229
+ control_schedule_block = [control_schedule_block]
230
+
231
+ for layer in range(len(control_schedule_block)):
232
+ # Convolution
233
+ num_blocks = len(blocks[layer].resnets) if hasattr(blocks[layer], "resnets") else 0
234
+ for block in range(num_blocks):
235
+ convolution = blocks[layer].resnets[block]
236
+ convolution.structure_target = control_target[0]
237
+ convolution.structure_schedule = get_schedule(
238
+ timesteps, get_elem(control_schedule_block[layer][0], block)
239
+ )
240
+ convolution.forward = MethodType(convolution_forward, convolution)
241
+
242
+ # Self-attention
243
+ num_blocks = len(blocks[layer].attentions) if hasattr(blocks[layer], "attentions") else 0
244
+ for block in range(num_blocks):
245
+ for transformer_block in blocks[layer].attentions[block].transformer_blocks:
246
+ attention = transformer_block.attn1
247
+ attention.structure_target = control_target[1]
248
+ attention.structure_schedule = get_schedule(
249
+ timesteps, get_elem(control_schedule_block[layer][1], block)
250
+ )
251
+ attention.appearance_target = control_target[2]
252
+ attention.appearance_schedule = get_schedule(
253
+ timesteps, get_elem(control_schedule_block[layer][2], block)
254
+ )
255
+ attention.processor = AttnProcessor2_0()
256
+
257
+
258
+ def register_attr(model, t, do_control, batch_order):
259
+ for layer_type in ["encoder", "decoder", "middle"]:
260
+ blocks = {"encoder": model.unet.down_blocks, "decoder": model.unet.up_blocks,
261
+ "middle": [model.unet.mid_block]}[layer_type]
262
+ for layer in blocks:
263
+ # Convolution
264
+ for module in layer.resnets:
265
+ module.t = t
266
+ module.do_control = do_control
267
+ module.batch_order = batch_order
268
+ # Self-attention
269
+ if hasattr(layer, "attentions"):
270
+ for block in layer.attentions:
271
+ for module in block.transformer_blocks:
272
+ module.attn1.t = t
273
+ module.attn1.do_control = do_control
274
+ module.attn1.batch_order = batch_order
ctrl_x/utils/utils.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ JPEG_QUALITY = 95
5
+
6
+
7
+ def exists(x):
8
+ return x is not None
9
+
10
+
11
+ def get(x, default):
12
+ if exists(x):
13
+ return x
14
+ return default
15
+
16
+
17
+ def get_self_recurrence_schedule(schedule, num_inference_steps):
18
+ self_recurrence_schedule = [0] * num_inference_steps
19
+ for schedule_current in reversed(schedule):
20
+ if schedule_current is None or len(schedule_current) == 0:
21
+ continue
22
+ [start, end, repeat] = schedule_current
23
+ start_i = round(num_inference_steps * start)
24
+ end_i = round(num_inference_steps * end)
25
+ for i in range(start_i, end_i):
26
+ self_recurrence_schedule[i] = repeat
27
+ return self_recurrence_schedule
28
+
29
+
30
+ def batch_dict_to_tensor(batch_dict, batch_order):
31
+ batch_tensor = []
32
+ for batch_type in batch_order:
33
+ batch_tensor.append(batch_dict[batch_type])
34
+ batch_tensor = torch.cat(batch_tensor, dim=0)
35
+ return batch_tensor
36
+
37
+
38
+ def batch_tensor_to_dict(batch_tensor, batch_order):
39
+ batch_tensor_chunk = batch_tensor.chunk(len(batch_order))
40
+ batch_dict = {}
41
+ for i, batch_type in enumerate(batch_order):
42
+ batch_dict[batch_type] = batch_tensor_chunk[i]
43
+ return batch_dict
44
+
45
+
46
+ def noise_prev(scheduler, timestep, x_0, noise=None):
47
+ if scheduler.num_inference_steps is None:
48
+ raise ValueError(
49
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
50
+ )
51
+
52
+ if noise is None:
53
+ noise = torch.randn_like(x_0).to(x_0)
54
+
55
+ # From DDIMScheduler step function (hopefully this works)
56
+ timestep_i = (scheduler.timesteps == timestep).nonzero(as_tuple=True)[0][0].item()
57
+ if timestep_i + 1 >= scheduler.timesteps.shape[0]: # We are at t = 0 (ish)
58
+ return x_0
59
+ prev_timestep = scheduler.timesteps[timestep_i + 1:timestep_i + 2] # Make sure t is not 0-dim
60
+
61
+ x_t_prev = scheduler.add_noise(x_0, noise, prev_timestep)
62
+ return x_t_prev
63
+
64
+
65
+ def noise_t2t(scheduler, timestep, timestep_target, x_t, noise=None):
66
+ assert timestep_target >= timestep
67
+ if noise is None:
68
+ noise = torch.randn_like(x_t).to(x_t)
69
+
70
+ alphas_cumprod = scheduler.alphas_cumprod.to(device=x_t.device, dtype=x_t.dtype)
71
+
72
+ timestep = timestep.to(torch.long)
73
+ timestep_target = timestep_target.to(torch.long)
74
+
75
+ alpha_prod_t = alphas_cumprod[timestep]
76
+ alpha_prod_tt = alphas_cumprod[timestep_target]
77
+ alpha_prod = alpha_prod_tt / alpha_prod_t
78
+
79
+ sqrt_alpha_prod = (alpha_prod ** 0.5).flatten()
80
+ while len(sqrt_alpha_prod.shape) < len(x_t.shape):
81
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
82
+
83
+ sqrt_one_minus_alpha_prod = ((1 - alpha_prod) ** 0.5).flatten()
84
+ while len(sqrt_one_minus_alpha_prod.shape) < len(x_t.shape):
85
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
86
+
87
+ x_tt = sqrt_alpha_prod * x_t + sqrt_one_minus_alpha_prod * noise
88
+ return x_tt
docs/assets/bootstrap.min.css ADDED
The diff for this file is too large to render. See raw diff
 
docs/assets/cross_image_attention.jpg ADDED

Git LFS Details

  • SHA256: 74471768c9fff458ad3091524e97995ba1f7c2768b175026c3238a0f92f11ebe
  • Pointer size: 132 Bytes
  • Size of remote file: 2.3 MB
docs/assets/ctrl-x.jpg ADDED

Git LFS Details

  • SHA256: b5eee53a38a4a4c013487588a6ea771b85a8f3ef9cb6047da8550df731aba5a2
  • Pointer size: 132 Bytes
  • Size of remote file: 2.85 MB
docs/assets/font.css ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* Homepage Font */
2
+
3
+ /* latin-ext */
4
+ @font-face {
5
+ font-family: 'Lato';
6
+ font-style: normal;
7
+ font-weight: 400;
8
+ src: local('Lato Regular'), local('Lato-Regular'), url(https://fonts.gstatic.com/s/lato/v16/S6uyw4BMUTPHjxAwXjeu.woff2) format('woff2');
9
+ unicode-range: U+0100-024F, U+0259, U+1E00-1EFF, U+2020, U+20A0-20AB, U+20AD-20CF, U+2113, U+2C60-2C7F, U+A720-A7FF;
10
+ }
11
+
12
+ /* latin */
13
+ @font-face {
14
+ font-family: 'Lato';
15
+ font-style: normal;
16
+ font-weight: 400;
17
+ src: local('Lato Regular'), local('Lato-Regular'), url(https://fonts.gstatic.com/s/lato/v16/S6uyw4BMUTPHjx4wXg.woff2) format('woff2');
18
+ unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD;
19
+ }
20
+
21
+ /* latin-ext */
22
+ @font-face {
23
+ font-family: 'Lato';
24
+ font-style: normal;
25
+ font-weight: 700;
26
+ src: local('Lato Bold'), local('Lato-Bold'), url(https://fonts.gstatic.com/s/lato/v16/S6u9w4BMUTPHh6UVSwaPGR_p.woff2) format('woff2');
27
+ unicode-range: U+0100-024F, U+0259, U+1E00-1EFF, U+2020, U+20A0-20AB, U+20AD-20CF, U+2113, U+2C60-2C7F, U+A720-A7FF;
28
+ }
29
+
30
+ /* latin */
31
+ @font-face {
32
+ font-family: 'Lato';
33
+ font-style: normal;
34
+ font-weight: 700;
35
+ src: local('Lato Bold'), local('Lato-Bold'), url(https://fonts.gstatic.com/s/lato/v16/S6u9w4BMUTPHh6UVSwiPGQ.woff2) format('woff2');
36
+ unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD;
37
+ }
docs/assets/freecontrol.jpg ADDED

Git LFS Details

  • SHA256: dd3ecd3e30ab1bb2b2a4975cdc28cbc158147eb1a8281e11c24d3d1555d52162
  • Pointer size: 132 Bytes
  • Size of remote file: 1.19 MB
docs/assets/genforce.png ADDED
docs/assets/pipeline.jpg ADDED

Git LFS Details

  • SHA256: af6388fc737245419b8ac5a827802aba023433a5b13a9d4c4b88337938ac1a4c
  • Pointer size: 132 Bytes
  • Size of remote file: 1.12 MB
docs/assets/results_animatediff.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43e29629924da2f368048016b2bb4ee973d0d38dc6f868098b0d9fbd6ac2e8ea
3
+ size 20573323
docs/assets/results_multi_subject.jpg ADDED

Git LFS Details

  • SHA256: 4ef6fdeb2edb368677da193271af001db94509566fec6c9fce84d95c0ee3e893
  • Pointer size: 132 Bytes
  • Size of remote file: 2.82 MB
docs/assets/results_struct+app.jpg ADDED

Git LFS Details

  • SHA256: 0a92eb6caf1365b7877968b308638d33ca3a4fe440a62a244c9dee060a35f59f
  • Pointer size: 132 Bytes
  • Size of remote file: 3.44 MB
docs/assets/results_struct+app_2.jpg ADDED

Git LFS Details

  • SHA256: f8e2baf23f336abb76aeefa1d960378c8e01acc47194e59026914047004d1c1d
  • Pointer size: 132 Bytes
  • Size of remote file: 2.52 MB
docs/assets/results_struct+prompt.jpg ADDED

Git LFS Details

  • SHA256: 9e2de2a7e09ea9da9e962b4bcffaea69179bbb6470977353a172e55b06df3d20
  • Pointer size: 132 Bytes
  • Size of remote file: 3.53 MB
docs/assets/style.css ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* Body */
2
+ body {
3
+ background: #e3e5e8;
4
+ color: #ffffff;
5
+ font-family: 'Lato', Verdana, Helvetica, sans-serif;
6
+ font-weight: 300;
7
+ font-size: 14pt;
8
+ }
9
+
10
+ /* Hyperlinks */
11
+ a {text-decoration: none;}
12
+ a:link {color: #1772d0;}
13
+ a:visited {color: #1772d0;}
14
+ a:active {color: red;}
15
+ a:hover {color: #f09228;}
16
+
17
+ /* Pre-formatted Text */
18
+ pre {
19
+ margin: 5pt 0;
20
+ border: 0;
21
+ font-size: 12pt;
22
+ background: #fcfcfc;
23
+ }
24
+
25
+ /* Project Page Style */
26
+ /* Section */
27
+ .section {
28
+ width: 768pt;
29
+ min-height: 100pt;
30
+ margin: 15pt auto;
31
+ padding: 20pt 30pt;
32
+ border: 1pt hidden #000;
33
+ text-align: justify;
34
+ color: #000000;
35
+ background: #ffffff;
36
+ }
37
+
38
+ /* Header (Title and Logo) */
39
+ .section .header {
40
+ min-height: 80pt;
41
+ margin-top: 30pt;
42
+ }
43
+ .section .header .logo {
44
+ width: 80pt;
45
+ margin-left: 10pt;
46
+ float: left;
47
+ }
48
+ .section .header .logo img {
49
+ width: 80pt;
50
+ object-fit: cover;
51
+ }
52
+ .section .header .title {
53
+ margin: 0 120pt;
54
+ text-align: center;
55
+ font-size: 22pt;
56
+ }
57
+
58
+ /* Author */
59
+ .section .author {
60
+ margin: 5pt 0;
61
+ text-align: center;
62
+ font-size: 16pt;
63
+ }
64
+
65
+ /* Institution */
66
+ .section .institution {
67
+ margin: 5pt 0;
68
+ text-align: center;
69
+ font-size: 16pt;
70
+ }
71
+
72
+ /* Note */
73
+ .section .note {
74
+ margin: 5pt 0;
75
+ text-align: center;
76
+ font-size: 12pt;
77
+ }
78
+
79
+ /* Hyperlink (such as Paper and Code) */
80
+ .section .link {
81
+ margin: 5pt 0;
82
+ text-align: center;
83
+ font-size: 16pt;
84
+ }
85
+
86
+ /* Teaser */
87
+ .section .teaser {
88
+ margin: 20pt 0;
89
+ text-align: center;
90
+ }
91
+
92
+ /* Section Title */
93
+ .section .title {
94
+ text-align: center;
95
+ font-size: 22pt;
96
+ margin: 5pt 0 15pt 0; /* top right bottom left */
97
+ }
98
+
99
+ /* Section Body */
100
+ .section .body {
101
+ margin-bottom: 15pt;
102
+ text-align: justify;
103
+ font-size: 14pt;
104
+ }
105
+
106
+ /* BibTeX */
107
+ .section .bibtex {
108
+ margin: 5pt 0;
109
+ text-align: left;
110
+ font-size: 22pt;
111
+ }
112
+
113
+ /* Related Work */
114
+ .section .ref {
115
+ margin: 20pt 0 10pt 0; /* top right bottom left */
116
+ text-align: left;
117
+ font-size: 18pt;
118
+ font-weight: bold;
119
+ }
120
+
121
+ /* Citation */
122
+ .section .citation {
123
+ min-height: 60pt;
124
+ margin: 10pt 0;
125
+ }
126
+ .section .citation .image {
127
+ width: 120pt;
128
+ float: left;
129
+ }
130
+ .section .citation .image img {
131
+ max-height: 60pt;
132
+ width: 120pt;
133
+ object-fit: cover;
134
+ }
135
+ .section .citation .comment{
136
+ margin-left: 130pt;
137
+ text-align: left;
138
+ font-size: 14pt;
139
+ }
docs/assets/teaser_github.jpg ADDED

Git LFS Details

  • SHA256: 403e32b1fad7e2a24e47da71f345b9028f08f09419b309ad5c739db7a45564d3
  • Pointer size: 132 Bytes
  • Size of remote file: 2.23 MB
docs/assets/teaser_small.jpg ADDED

Git LFS Details

  • SHA256: ceb5deec9fff40573b3b5dea7314854cd6d54e575af413f8b97a3feeaa4a1606
  • Pointer size: 132 Bytes
  • Size of remote file: 2.22 MB
docs/index.html ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!doctype html>
2
+ <html lang="en">
3
+
4
+
5
+ <!-- === Header Starts === -->
6
+ <head>
7
+ <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
8
+
9
+ <title>Ctrl-X</title>
10
+
11
+ <link href="./assets/bootstrap.min.css" rel="stylesheet">
12
+ <link href="./assets/font.css" rel="stylesheet" type="text/css">
13
+ <link href="./assets/style.css" rel="stylesheet" type="text/css">
14
+ </head>
15
+ <!-- === Header Ends === -->
16
+
17
+
18
+ <body>
19
+
20
+
21
+ <!-- === Home Section Starts === -->
22
+ <div class="section">
23
+ <!-- === Title Starts === -->
24
+ <div class="header">
25
+ <div class="logo">
26
+ <a href="https://genforce.github.io/" target="_blank"><img src="./assets/genforce.png"></a>
27
+ </div>
28
+ <div class="title", style="padding-top: 25pt;"> <!-- Set padding as 10 if title is with two lines. -->
29
+ Ctrl-X: Controlling Structure and Appearance for Text-To-Image Generation Without Guidance
30
+ </div>
31
+ </div>
32
+ <!-- === Title Ends === -->
33
+ <div class="author">
34
+ <a href="https://kuanhenglin.github.io" target="_blank">Kuan Heng Lin</a><sup>1</sup>*&nbsp;&nbsp;&nbsp;
35
+ <a href="https://sichengmo.github.io/" target="_blank">Sicheng Mo</a><sup>1</sup>*&nbsp;&nbsp;&nbsp;
36
+ <a href="https://bklingher.github.io" target="_blank">Ben Klingher</a><sup>1</sup>&nbsp;&nbsp;&nbsp;
37
+ <a href="https://pages.cs.wisc.edu/~fmu/" target="_blank">Fangzhou Mu</a><sup>2</sup>&nbsp;&nbsp;&nbsp;
38
+ <a href="https://boleizhou.github.io/" target="_blank">Bolei Zhou</a><sup>1</sup>
39
+ </div>
40
+ <div class="institution">
41
+ <sup>1</sup>UCLA&nbsp;&nbsp;&nbsp;
42
+ <sup>2</sup>NVIDIA
43
+ </div>
44
+ <div class="note">
45
+ *Equal contribution
46
+ </div>
47
+ <div class="title" style="font-size: 18pt;margin: 15pt 0 15pt 0">
48
+ NeurIPS 2024
49
+ </div>
50
+ <div class="link">
51
+ [<a href="https://arxiv.org/abs/2406.07540" target="_blank">Paper</a>]&nbsp;&nbsp;&nbsp;
52
+ [<a href="https://github.com/genforce/ctrl-x" target="_blank">Code</a>]
53
+ </div>
54
+ <div class="teaser">
55
+ <img src="assets/ctrl-x.jpg" width="85%">
56
+ </div>
57
+ </div>
58
+ <!-- === Home Section Ends === -->
59
+
60
+
61
+ <!-- === Overview Section Starts === -->
62
+ <div class="section">
63
+ <div class="title">Overview</div>
64
+ <div class="body">
65
+ We present <b>Ctrl-X</b>, a simple <i>training-free</i> and <i>guidance-free</i> framework for text-to-image (T2I) generation with structure and appearance control. Given user-provided structure and appearance images, Ctrl-X designs feedforward structure control to enable structure alignment with the structure image and semantic-aware appearance transfer to facilitate the appearance transfer from the appearance image. Ctrl-X supports novel structure control with arbitrary condition images of any modality, is significantly faster than prior training-free appearance transfer methods, and provides instant plug-and-play to any T2I and text-to-video (T2V) diffusion model.
66
+ <table width="100%" style="margin: 20pt 0; text-align: center;">
67
+ <tr>
68
+ <td><img src="assets/pipeline.jpg" width="85%"></td>
69
+ </tr>
70
+ </table>
71
+
72
+ <b>How does it work?</b>&nbsp;&nbsp;&nbsp;Given clean structure and appearance latents, we first obtain noised structure and appearance latents via the diffusion forward process, then extracting their U-Net features from a pretrained T2I diffusion model. When denoising the output latent, we inject convolution and self-attention features from the structure latent and leverage self-attention correspondence to transfer spatially-aware appearance statistics from the appearance latent to achieve structure and appearance control. We name our method "Ctrl-X" because we reformulate the controllable generation problem by 'cutting' (and 'pasting') structure preservation and semantic-aware stylization together.
73
+ </div>
74
+ </div>
75
+ <!-- === Overview Section Ends === -->
76
+
77
+
78
+ <!-- === Result Section Starts === -->
79
+ <div class="section">
80
+ <div class="title">Results: Structure and appearance control</div>
81
+ <div class="body">
82
+ Results of training-free and guidance-free T2I diffusion with structure and appearance control, where Ctrl-X supports a diverse variety of structure images, including natural images, ControlNet-supported conditions (e.g., canny maps, normal maps), and in-the-wild conditions (e.g., wireframes, 3D meshes). The base model here is <a href="https://arxiv.org/abs/2307.01952" target="_blank">Stable Diffusion XL v1.0</a>.
83
+
84
+ <!-- Adjust the number of rows and columns (EVERY project differs). -->
85
+ <table width="100%" style="margin: 20pt 0; text-align: center;">
86
+ <tr>
87
+ <td><img src="assets/results_struct+app.jpg" width="100%"></td>
88
+ </tr>
89
+ </table>
90
+ <table width="100%" style="margin: 20pt 0; text-align: center;">
91
+ <tr>
92
+ <td><img src="assets/results_struct+app_2.jpg" width="85%"></td>
93
+ </tr>
94
+ </table>
95
+ </div>
96
+ </div>
97
+
98
+ <div class="section">
99
+ <div class="title">Results: Multi-subject structure and appearance control</div>
100
+ <div class="body">
101
+ Ctrl-X is capable of multi-subject generation with semantic correspondence between appearance and structure images across both subjects and backgrounds. In comparison, <a href="https://arxiv.org/abs/2302.05543" target="_blank">ControlNet</a> + <a href="https://arxiv.org/abs/2308.06721" target="_blank">IP-Adapter</a> often fails at transferring all subject and background appearances.
102
+
103
+ <!-- Adjust the number of rows and columns (EVERY project differs). -->
104
+ <table width="100%" style="margin: 20pt 0; text-align: center;">
105
+ <tr>
106
+ <td><img src="assets/results_multi_subject.jpg" width="90%"></td>
107
+ </tr>
108
+ </table>
109
+ </div>
110
+ </div>
111
+
112
+ <div class="section">
113
+ <div class="title">Results: Prompt-driven conditional generation</div>
114
+ <div class="body">
115
+ Ctrl-X also supports prompt-driven conditional generation, where it generates an output image complying with the given text prompt while aligning with the structure of the structure image. Ctrl-X continues to support any structure image/condition type here as well. The base model here is <a href="https://arxiv.org/abs/2307.01952" target="_blank">Stable Diffusion XL v1.0</a>.
116
+
117
+ <!-- Adjust the number of rows and columns (EVERY project differs). -->
118
+ <table width="100%" style="margin: 20pt 0; text-align: center;">
119
+ <tr>
120
+ <td><img src="assets/results_struct+prompt.jpg" width="100%"></td>
121
+ </tr>
122
+ </table>
123
+ </div>
124
+ </div>
125
+
126
+ <div class="section">
127
+ <div class="title">Results: Extension to video generation</div>
128
+ <div class="body">
129
+ We can directly apply Ctrl-X to text-to-video (T2V) models. We show results of <a href="https://animatediff.github.io/" target="_blank">AnimateDiff v1.5.3</a> (with base model <a href="https://huggingface.co/SG161222/Realistic_Vision_V5.1_noVAE" target="_blank">Realistic Vision v5.1</a>) here.
130
+
131
+ <!-- Demo video here. Adjust the frame size based on the demo (EVERY project differs). -->
132
+ <div style="position: relative; padding-top: 50%; margin: 20pt 0; text-align: center;">
133
+ <iframe src="assets/results_animatediff.mp4" frameborder=0
134
+ style="position: absolute; top: 2.5%; left: 0%; width: 100%; height: 100%;"
135
+ allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
136
+ allowfullscreen></iframe>
137
+ </div>
138
+ </div>
139
+ </div>
140
+
141
+ <!-- === Result Section Ends === -->
142
+
143
+
144
+ <!-- === Reference Section Starts === -->
145
+ <div class="section">
146
+ <div class="bibtex">BibTeX</div>
147
+ <pre>
148
+ @inproceedings{lin2024ctrlx,
149
+ author = {Lin, {Kuan Heng} and Mo, Sicheng and Klingher, Ben and Mu, Fangzhou and Zhou, Bolei},
150
+ booktitle = {Advances in Neural Information Processing Systems},
151
+ title = {Ctrl-X: Controlling Structure and Appearance for Text-To-Image Generation Without Guidance},
152
+ year = {2024}
153
+ }
154
+ </pre>
155
+
156
+ <!-- BZ: we should give other related work enough credits, -->
157
+ <!-- so please include some most relevant work and leave some comment to summarize work and the difference. -->
158
+ <div class="ref">Related Work</div>
159
+ <div class="citation">
160
+ <div class="image"><img src="assets/freecontrol.jpg"></div>
161
+ <div class="comment">
162
+ <a href="https://genforce.github.io/freecontrol/" target="_blank">
163
+ Sicheng Mo, Fangzhou Mu, Kuan Heng Lin, Yanli Liu, Bochen Guan, Yin Li, Bolei Zhou.
164
+ FreeControl: Training-Free Spatial Control of Any Text-to-Image Diffusion Model with Any Condition.
165
+ CVPR 2024.</a><br>
166
+ <b>Comment:</b>
167
+ Training-free conditional generation by guidance in diffusion U-Net subspaces for structure control and appearance regularization.
168
+ </div>
169
+ </div>
170
+ <div class="citation">
171
+ <div class="image"><img src="assets/cross_image_attention.jpg"></div>
172
+ <div class="comment">
173
+ <a href="https://garibida.github.io/cross-image-attention/" target="_blank">
174
+ Yuval Alaluf, Daniel Garibi, Or Patashnik, Hadar Averbuch-Elor, Daniel Cohen-Or.
175
+ Cross-Image Attention for Zero-Shot Appearance Transfer.
176
+ SIGGRAPH 2024.</a><br>
177
+ <b>Comment:</b>
178
+ Guidance-free appearance transfer to natural images with self-attention key + value swaps via cross-image correspondence.
179
+ </div>
180
+ </div>
181
+ </div>
182
+ <!-- === Reference Section Ends === -->
183
+
184
+
185
+ </body>
186
+ </html>
environment.yaml ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: ctrlx
2
+ channels:
3
+ - defaults
4
+ dependencies:
5
+ - _libgcc_mutex=0.1=main
6
+ - _openmp_mutex=5.1=1_gnu
7
+ - bzip2=1.0.8=h5eee18b_6
8
+ - ca-certificates=2024.3.11=h06a4308_0
9
+ - ld_impl_linux-64=2.38=h1181459_1
10
+ - libffi=3.4.4=h6a678d5_1
11
+ - libgcc-ng=11.2.0=h1234567_1
12
+ - libgomp=11.2.0=h1234567_1
13
+ - libstdcxx-ng=11.2.0=h1234567_1
14
+ - libuuid=1.41.5=h5eee18b_0
15
+ - ncurses=6.4=h6a678d5_0
16
+ - openssl=3.0.13=h7f8727e_2
17
+ - pip=24.0=py310h06a4308_0
18
+ - python=3.10.14=h955ad1f_1
19
+ - readline=8.2=h5eee18b_0
20
+ - setuptools=69.5.1=py310h06a4308_0
21
+ - sqlite=3.45.3=h5eee18b_0
22
+ - tk=8.6.14=h39e8969_0
23
+ - wheel=0.43.0=py310h06a4308_0
24
+ - xz=5.4.6=h5eee18b_1
25
+ - zlib=1.2.13=h5eee18b_1
26
+ - pip:
27
+ - aiofiles==23.2.1
28
+ - altair==5.3.0
29
+ - annotated-types==0.7.0
30
+ - anyio==4.4.0
31
+ - attrs==23.2.0
32
+ - certifi==2024.2.2
33
+ - charset-normalizer==3.3.2
34
+ - click==8.1.7
35
+ - contourpy==1.2.1
36
+ - cycler==0.12.1
37
+ - diffusers==0.28.0
38
+ - dnspython==2.6.1
39
+ - einops==0.8.0
40
+ - email-validator==2.1.1
41
+ - exceptiongroup==1.2.1
42
+ - fastapi==0.111.0
43
+ - fastapi-cli==0.0.4
44
+ - ffmpy==0.3.2
45
+ - filelock==3.14.0
46
+ - fonttools==4.52.4
47
+ - fsspec==2024.5.0
48
+ - gradio==4.31.5
49
+ - gradio-client==0.16.4
50
+ - h11==0.14.0
51
+ - httpcore==1.0.5
52
+ - httptools==0.6.1
53
+ - httpx==0.27.0
54
+ - huggingface-hub==0.23.2
55
+ - idna==3.7
56
+ - importlib-metadata==7.1.0
57
+ - importlib-resources==6.4.0
58
+ - jinja2==3.1.4
59
+ - jsonschema==4.22.0
60
+ - jsonschema-specifications==2023.12.1
61
+ - kiwisolver==1.4.5
62
+ - markdown-it-py==3.0.0
63
+ - markupsafe==2.1.5
64
+ - matplotlib==3.9.0
65
+ - mdurl==0.1.2
66
+ - mpmath==1.3.0
67
+ - networkx==3.3
68
+ - numpy==1.26.4
69
+ - nvidia-cublas-cu12==12.1.3.1
70
+ - nvidia-cuda-cupti-cu12==12.1.105
71
+ - nvidia-cuda-nvrtc-cu12==12.1.105
72
+ - nvidia-cuda-runtime-cu12==12.1.105
73
+ - nvidia-cudnn-cu12==8.9.2.26
74
+ - nvidia-cufft-cu12==11.0.2.54
75
+ - nvidia-curand-cu12==10.3.2.106
76
+ - nvidia-cusolver-cu12==11.4.5.107
77
+ - nvidia-cusparse-cu12==12.1.0.106
78
+ - nvidia-nccl-cu12==2.20.5
79
+ - nvidia-nvjitlink-cu12==12.5.40
80
+ - nvidia-nvtx-cu12==12.1.105
81
+ - orjson==3.10.3
82
+ - packaging==24.0
83
+ - pandas==2.2.2
84
+ - pillow==10.3.0
85
+ - pydantic==2.7.2
86
+ - pydantic-core==2.18.3
87
+ - pydub==0.25.1
88
+ - pygments==2.18.0
89
+ - pyparsing==3.1.2
90
+ - python-dateutil==2.9.0.post0
91
+ - python-dotenv==1.0.1
92
+ - python-multipart==0.0.9
93
+ - pytz==2024.1
94
+ - pyyaml==6.0.1
95
+ - referencing==0.35.1
96
+ - regex==2024.5.15
97
+ - requests==2.32.2
98
+ - rich==13.7.1
99
+ - rpds-py==0.18.1
100
+ - ruff==0.4.6
101
+ - safetensors==0.4.3
102
+ - semantic-version==2.10.0
103
+ - shellingham==1.5.4
104
+ - six==1.16.0
105
+ - sniffio==1.3.1
106
+ - starlette==0.37.2
107
+ - sympy==1.12
108
+ - tokenizers==0.19.1
109
+ - tomlkit==0.12.0
110
+ - toolz==0.12.1
111
+ - torch==2.3.0
112
+ - torchvision==0.18.0
113
+ - tqdm==4.66.4
114
+ - transformers==4.41.1
115
+ - triton==2.3.0
116
+ - typer==0.12.3
117
+ - typing-extensions==4.12.0
118
+ - tzdata==2024.1
119
+ - ujson==5.10.0
120
+ - urllib3==2.2.1
121
+ - uvicorn==0.30.0
122
+ - uvloop==0.19.0
123
+ - watchfiles==0.22.0
124
+ - websockets==11.0.3
125
+ - zipp==3.19.0