File size: 4,924 Bytes
26fd00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
# HuBERT
## Pre-trained and fine-tuned (ASR) models
Model | Pretraining Data | Finetuning Dataset | Model
|---|---|---|---
HuBERT Base (~95M params) | [Librispeech](http://www.openslr.org/12) 960 hr | No finetuning (Pretrained Model) | [download](https://dl.fbaipublicfiles.com/hubert/hubert_base_ls960.pt)
HuBERT Large (~316M params) | [Libri-Light](https://github.com/facebookresearch/libri-light) 60k hr | No finetuning (Pretrained Model) | [download](https://dl.fbaipublicfiles.com/hubert/hubert_large_ll60k.pt)
HuBERT Extra Large (~1B params) | [Libri-Light](https://github.com/facebookresearch/libri-light) 60k hr | No finetuning (Pretrained Model) | [download](https://dl.fbaipublicfiles.com/hubert/hubert_xtralarge_ll60k.pt)
HuBERT Large | [Libri-Light](https://github.com/facebookresearch/libri-light) 60k hr | [Librispeech](http://www.openslr.org/12) 960 hr | [download](https://dl.fbaipublicfiles.com/hubert/hubert_large_ll60k_finetune_ls960.pt)
HuBERT Extra Large | [Libri-Light](https://github.com/facebookresearch/libri-light) 60k hr | [Librispeech](http://www.openslr.org/12) 960 hr | [download](https://dl.fbaipublicfiles.com/hubert/hubert_xtralarge_ll60k_finetune_ls960.pt)
## Load a model
```
ckpt_path = "/path/to/the/checkpoint.pt"
models, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
model = models[0]
```
## Train a new model
### Data preparation
Follow the steps in `./simple_kmeans` to create:
- `{train,valid}.tsv` waveform list files
- `{train,valid}.km` frame-aligned pseudo label files.
The `label_rate` is the same as the feature frame rate used for clustering,
which is 100Hz for MFCC features and 50Hz for HuBERT features by default.
### Pre-train a HuBERT model
Suppose `{train,valid}.tsv` are saved at `/path/to/data`, `{train,valid}.km`
are saved at `/path/to/labels`, and the label rate is 100Hz.
To train a base model (12 layer transformer), run:
```sh
$ python fairseq_cli/hydra_train.py \
--config-dir /path/to/fairseq-py/examples/hubert/config/pretrain \
--config-name hubert_base_librispeech \
task.data=/path/to/data task.label_dir=/path/to/labels model.label_rate=100
```
### Fine-tune a HuBERT model with a CTC loss
Suppose `{train,valid}.tsv` are saved at `/path/to/data`, and their
corresponding character transcripts `{train,valid}.ltr` are saved at
`/path/to/trans`.
To fine-tune a pre-trained HuBERT model at `/path/to/checkpoint`, run
```sh
$ python fairseq_cli/hydra_train.py \
--config-dir /path/to/fairseq-py/examples/hubert/config/finetune \
--config-name base_10h \
task.data=/path/to/data task.label_dir=/path/to/trans \
model.w2v_path=/path/to/checkpoint
```
### Decode a HuBERT model
Suppose the `test.tsv` and `test.ltr` are the waveform list and transcripts of
the split to be decoded, saved at `/path/to/data`, and the fine-tuned model is
saved at `/path/to/checkpoint`. We support three decoding modes:
- Viterbi decoding: greedy decoding without a language model
- KenLM decoding: decoding with an arpa-format KenLM n-gram language model
- Fairseq-LM deocding: decoding with a Fairseq neural language model
#### Viterbi decoding
`task.normalize` needs to be consistent with the value used during fine-tuning.
Decoding results will be saved at
`/path/to/experiment/directory/decode/viterbi/test`.
```sh
$ python examples/speech_recognition/new/infer.py \
--config-dir /path/to/fairseq-py/examples/hubert/config/decode \
--config-name infer_viterbi \
task.data=/path/to/data \
task.normalize=[true|false] \
decoding.exp_dir=/path/to/experiment/directory \
common_eval.path=/path/to/checkpoint
dataset.gen_subset=test \
```
#### KenLM / Fairseq-LM decoding
Suppose the pronunciation lexicon and the n-gram LM are saved at
`/path/to/lexicon` and `/path/to/arpa`, respectively. Decoding results will be
saved at `/path/to/experiment/directory/decode/kenlm/test`.
```sh
$ python examples/speech_recognition/new/infer.py \
--config-dir /path/to/fairseq-py/examples/hubert/config/decode \
--config-name infer_kenlm \
task.data=/path/to/data \
task.normalize=[true|false] \
decoding.exp_dir=/path/to/experiment/directory \
common_eval.path=/path/to/checkpoint
dataset.gen_subset=test \
decoding.decoder.lexicon=/path/to/lexicon \
decoding.decoder.lmpath=/path/to/arpa
```
The command above uses the default decoding hyperparameter, which can be found
in `examples/speech_recognition/hydra/decoder.py`. These parameters can be
configured from the command line. For example, to search with a beam size of
500, we can append the command above with `decoding.decoder.beam=500`.
Important parameters include:
- decoding.decoder.beam
- decoding.decoder.beamthreshold
- decoding.decoder.lmweight
- decoding.decoder.wordscore
- decoding.decoder.silweight
To decode with a Fairseq LM, use `--config-name infer_fsqlm` instead, and
change the path of lexicon and LM accordingly.
|