mshukor commited on
Commit
26fd00c
·
1 Parent(s): 0fee199
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Audio_Captioning.ipynb +0 -0
  2. Captioning.ipynb +0 -0
  3. Image_gen.ipynb +301 -0
  4. LICENSE +201 -0
  5. README.md +618 -12
  6. README_EncouragingLoss.md +34 -0
  7. VG.ipynb +0 -0
  8. VQA.ipynb +0 -0
  9. Video_Captioning.ipynb +0 -0
  10. __pycache__/trainer.cpython-37.pyc +0 -0
  11. __pycache__/trainer.cpython-38.pyc +0 -0
  12. __pycache__/trainer.cpython-39.pyc +0 -0
  13. app.py +297 -0
  14. checkpoints.md +36 -0
  15. checkpoints/unival_s2_hs/checkpoint1.pt +3 -0
  16. checkpoints_cn.md +82 -0
  17. colab.md +9 -0
  18. criterions/__init__.py +5 -0
  19. criterions/__pycache__/__init__.cpython-37.pyc +0 -0
  20. criterions/__pycache__/__init__.cpython-38.pyc +0 -0
  21. criterions/__pycache__/__init__.cpython-39.pyc +0 -0
  22. criterions/__pycache__/clip_scst_loss.cpython-37.pyc +0 -0
  23. criterions/__pycache__/clip_scst_loss.cpython-38.pyc +0 -0
  24. criterions/__pycache__/clip_scst_loss.cpython-39.pyc +0 -0
  25. criterions/__pycache__/label_smoothed_cross_entropy.cpython-37.pyc +0 -0
  26. criterions/__pycache__/label_smoothed_cross_entropy.cpython-38.pyc +0 -0
  27. criterions/__pycache__/label_smoothed_cross_entropy.cpython-39.pyc +0 -0
  28. criterions/__pycache__/label_smoothed_cross_entropy_scst.cpython-39.pyc +0 -0
  29. criterions/__pycache__/label_smoothed_encouraging_loss.cpython-37.pyc +0 -0
  30. criterions/__pycache__/label_smoothed_encouraging_loss.cpython-38.pyc +0 -0
  31. criterions/__pycache__/label_smoothed_encouraging_loss.cpython-39.pyc +0 -0
  32. criterions/__pycache__/refcoco_scst_loss.cpython-39.pyc +0 -0
  33. criterions/__pycache__/scst_loss.cpython-37.pyc +0 -0
  34. criterions/__pycache__/scst_loss.cpython-38.pyc +0 -0
  35. criterions/__pycache__/scst_loss.cpython-39.pyc +0 -0
  36. criterions/clip_scst_loss.py +277 -0
  37. criterions/label_smoothed_cross_entropy.py +346 -0
  38. criterions/label_smoothed_cross_entropy_scst.py +555 -0
  39. criterions/label_smoothed_encouraging_loss.py +395 -0
  40. criterions/refcoco_scst_loss.py +427 -0
  41. data/.ipynb_checkpoints/file_dataset-checkpoint.py +107 -0
  42. data/__init__.py +0 -0
  43. data/__pycache__/__init__.cpython-37.pyc +0 -0
  44. data/__pycache__/__init__.cpython-38.pyc +0 -0
  45. data/__pycache__/__init__.cpython-39.pyc +0 -0
  46. data/__pycache__/audio_utils.cpython-37.pyc +0 -0
  47. data/__pycache__/audio_utils.cpython-39.pyc +0 -0
  48. data/__pycache__/data_utils.cpython-37.pyc +0 -0
  49. data/__pycache__/data_utils.cpython-38.pyc +0 -0
  50. data/__pycache__/data_utils.cpython-39.pyc +0 -0
Audio_Captioning.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
Captioning.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
Image_gen.ipynb ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "399f2fcf-9241-4910-a30d-6ca19880d0ad",
6
+ "metadata": {},
7
+ "source": [
8
+ "## Import"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": 15,
14
+ "id": "97e68340-0096-475e-8ed8-22f5d627e3ad",
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "import torch\n",
19
+ "import numpy as np\n",
20
+ "from fairseq import utils, tasks\n",
21
+ "from fairseq import checkpoint_utils\n",
22
+ "from utils.eval_utils import eval_step\n",
23
+ "from tasks.mm_tasks import ImageGenTask\n",
24
+ "from models.unival import UnIVALModel\n",
25
+ "from PIL import Image\n",
26
+ "from torchvision import transforms\n",
27
+ "import time\n",
28
+ "\n",
29
+ "\n",
30
+ "# turn on cuda if GPU is available\n",
31
+ "use_cuda = torch.cuda.is_available()\n",
32
+ "# use fp16 only when GPU is available\n",
33
+ "use_fp16 = True if use_cuda else False"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": 16,
39
+ "id": "719cef65-c00c-4c9c-90b2-e660b386c3d5",
40
+ "metadata": {},
41
+ "outputs": [
42
+ {
43
+ "data": {
44
+ "text/plain": [
45
+ "<function fairseq.tasks.register_task.<locals>.register_task_cls(cls)>"
46
+ ]
47
+ },
48
+ "execution_count": 16,
49
+ "metadata": {},
50
+ "output_type": "execute_result"
51
+ }
52
+ ],
53
+ "source": [
54
+ "# Register caption task\n",
55
+ "tasks.register_task('image_gen', ImageGenTask)\n"
56
+ ]
57
+ },
58
+ {
59
+ "cell_type": "markdown",
60
+ "id": "cc9c1d7b-898b-4ac4-adf3-832891d9e4be",
61
+ "metadata": {},
62
+ "source": [
63
+ "### Load model "
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "code",
68
+ "execution_count": 12,
69
+ "id": "568bb6ea-eef9-4024-98e6-35e74b5ffeec",
70
+ "metadata": {},
71
+ "outputs": [
72
+ {
73
+ "name": "stdout",
74
+ "output_type": "stream",
75
+ "text": [
76
+ "self.sample_patch_num 784\n",
77
+ "self.sample_audio_patch_num None\n",
78
+ "self.sample_video_patch_num None\n",
79
+ "self.with_cls False\n",
80
+ "Frozen image bn <class 'models.ofa.frozen_bn.FrozenBatchNorm2d'>\n",
81
+ "Loading: all_resnext101\n",
82
+ "use bn: <class 'torch.nn.modules.batchnorm.BatchNorm3d'>\n",
83
+ "load pretrained_model /data/mshukor/logs/ofa/best_models/resnext-101-kinetics.pth\n",
84
+ "_IncompatibleKeys(missing_keys=[], unexpected_keys=['fc.weight', 'fc.bias'])\n",
85
+ "load resnet /data/mshukor/logs/ofa/best_models/resnet101-5d3b4d8f.pth\n",
86
+ "<All keys matched successfully>\n",
87
+ "RAM memory % used: 10.5\n",
88
+ "RAM Used (GB): 19.574349824\n",
89
+ "encoder\n",
90
+ "RAM memory % used: 10.5\n",
91
+ "decoder\n",
92
+ "RAM memory % used: 10.5\n",
93
+ "ofa\n",
94
+ "Working with z of shape (1, 256, 32, 32) = 262144 dimensions.\n"
95
+ ]
96
+ }
97
+ ],
98
+ "source": [
99
+ "# Load pretrained ckpt & config\n",
100
+ "clip_model_path='/data/mshukor/data/ofa/clip/ViT-B-16.pt'\n",
101
+ "vqgan_model_path='/data/mshukor/data/ofa/vqgan/last.ckpt'\n",
102
+ "vqgan_config_path='/data/mshukor/data/ofa/vqgan/model.yaml'\n",
103
+ "\n",
104
+ "# checkpoint_path = '/data/mshukor/logs/ofa/best_models/image_gen_ofa_stage_1_base_s2_hsep1_long/checkpoint_best.pt'\n",
105
+ "# checkpoint_path = '/data/mshukor/logs/ofa/best_models/image_gen_ofaplus_stage_1_base_s2_long/checkpoint_best.pt'\n",
106
+ "# checkpoint_path = '/data/mshukor/logs/ofa/best_models/image_gen_base_best.pt'\n",
107
+ "# checkpoint_path = '/data/mshukor/logs/ofa/best_models/image_gen_large_best.pt'\n",
108
+ "\n",
109
+ "# checkpoint_path = '/data/mshukor/logs/ofa/best_models/image_gen_ofaplus_stage_1_base_s2_hsep1_long/checkpoint_best.pt'\n",
110
+ "checkpoint_path = '/data/mshukor/logs/ofa/best_models/image_gen_ofaplus_stage_2_base_s2_hsep1_long/checkpoint_best.pt'\n",
111
+ "\n",
112
+ "\n",
113
+ "\n",
114
+ "video_model_path = '/data/mshukor/logs/ofa/best_models/resnext-101-kinetics.pth'\n",
115
+ "resnet_model_path = '/data/mshukor/logs/ofa/best_models/resnet101-5d3b4d8f.pth'\n",
116
+ "\n",
117
+ "gen_images_path='results/image_gen/'\n",
118
+ "\n",
119
+ "overrides = {\"bpe_dir\": \"utils/BPE\",\n",
120
+ " \"eval_cider\": False,\n",
121
+ " \"beam\": 24,\n",
122
+ " \"max_len_b\": 1024,\n",
123
+ " \"max_len_a\": 0,\n",
124
+ " \"min_len\": 1024,\n",
125
+ " \"sampling_topk\": 256,\n",
126
+ " \"constraint_range\": \"50265,58457\",\n",
127
+ " \"clip_model_path\": clip_model_path,\n",
128
+ " \"vqgan_model_path\": vqgan_model_path,\n",
129
+ " \"vqgan_config_path\": vqgan_config_path,\n",
130
+ " \"seed\": 42,\n",
131
+ " \"video_model_path\": video_model_path, \n",
132
+ " \"resnet_model_path\": resnet_model_path,\n",
133
+ " \"gen_images_path\":gen_images_path,\n",
134
+ " \"patch_image_size\": 256,\n",
135
+ " \"temperature\": 1.5,\n",
136
+ " }\n",
137
+ "\n",
138
+ "models, cfg, task = checkpoint_utils.load_model_ensemble_and_task(\n",
139
+ " utils.split_paths(checkpoint_path),\n",
140
+ " arg_overrides=overrides\n",
141
+ ")\n",
142
+ "\n",
143
+ "task.cfg.sampling_times = 2\n",
144
+ "# Move models to GPU\n",
145
+ "for model in models:\n",
146
+ " model.eval()\n",
147
+ " if use_fp16:\n",
148
+ " model.half()\n",
149
+ " if use_cuda and not cfg.distributed_training.pipeline_model_parallel:\n",
150
+ " model.cuda()\n",
151
+ " model.prepare_for_inference_(cfg)\n",
152
+ "\n",
153
+ "# Initialize generator\n",
154
+ "generator = task.build_generator(models, cfg.generation)\n",
155
+ "\n",
156
+ "# Text preprocess\n",
157
+ "bos_item = torch.LongTensor([task.src_dict.bos()])\n",
158
+ "eos_item = torch.LongTensor([task.src_dict.eos()])\n",
159
+ "pad_idx = task.src_dict.pad()"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "markdown",
164
+ "id": "5e4a45ec-bce1-495b-8033-3b574367b360",
165
+ "metadata": {},
166
+ "source": [
167
+ "### Preprocess"
168
+ ]
169
+ },
170
+ {
171
+ "cell_type": "code",
172
+ "execution_count": 13,
173
+ "id": "9f2e7e32-c9a0-43b3-bf86-2419d9f7dfe0",
174
+ "metadata": {},
175
+ "outputs": [],
176
+ "source": [
177
+ "def encode_text(text, length=None, append_bos=False, append_eos=False):\n",
178
+ " s = task.tgt_dict.encode_line(\n",
179
+ " line=task.bpe.encode(text),\n",
180
+ " add_if_not_exist=False,\n",
181
+ " append_eos=False\n",
182
+ " ).long()\n",
183
+ " if length is not None:\n",
184
+ " s = s[:length]\n",
185
+ " if append_bos:\n",
186
+ " s = torch.cat([bos_item, s])\n",
187
+ " if append_eos:\n",
188
+ " s = torch.cat([s, eos_item])\n",
189
+ " return s\n",
190
+ "\n",
191
+ "\n",
192
+ "# Construct input for image generation task\n",
193
+ "def construct_sample(query: str):\n",
194
+ " code_mask = torch.tensor([True])\n",
195
+ " src_text = encode_text(\" what is the complete image? caption: {}\".format(query), append_bos=True,\n",
196
+ " append_eos=True).unsqueeze(0)\n",
197
+ " src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])\n",
198
+ " sample = {\n",
199
+ " \"id\": np.array(['42']),\n",
200
+ " \"net_input\": {\n",
201
+ " \"src_tokens\": src_text,\n",
202
+ " \"src_lengths\": src_length,\n",
203
+ " \"code_masks\": code_mask\n",
204
+ " }\n",
205
+ " }\n",
206
+ " return sample\n",
207
+ "\n",
208
+ "\n",
209
+ "# Function to turn FP32 to FP16\n",
210
+ "def apply_half(t):\n",
211
+ " if t.dtype is torch.float32:\n",
212
+ " return t.to(dtype=torch.half)\n",
213
+ " return t\n",
214
+ "\n",
215
+ "\n",
216
+ "# Function for image generation\n",
217
+ "def image_generation(caption):\n",
218
+ " sample = construct_sample(caption)\n",
219
+ " sample = utils.move_to_cuda(sample) if use_cuda else sample\n",
220
+ " sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample\n",
221
+ " print('|Start|', time.strftime(\"%Y-%m-%d %H:%M:%S\", time.localtime()), caption)\n",
222
+ " with torch.no_grad():\n",
223
+ " result, scores = eval_step(task, generator, models, sample)\n",
224
+ "\n",
225
+ " # return top-4 results (ranked by clip)\n",
226
+ " images = [result[i]['image'] for i in range(4)]\n",
227
+ " pic_size = 256\n",
228
+ " retImage = Image.new('RGB', (pic_size * 2, pic_size * 2))\n",
229
+ " print('|FINISHED|', time.strftime(\"%Y-%m-%d %H:%M:%S\", time.localtime()), caption)\n",
230
+ " for i in range(4):\n",
231
+ " loc = ((i % 2) * pic_size, int(i / 2) * pic_size)\n",
232
+ " retImage.paste(images[i], loc)\n",
233
+ " return retImage"
234
+ ]
235
+ },
236
+ {
237
+ "cell_type": "markdown",
238
+ "id": "44dec799-c5c2-4d22-8b08-7a7ca2cdf3c9",
239
+ "metadata": {},
240
+ "source": [
241
+ "### Inference"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "code",
246
+ "execution_count": 14,
247
+ "id": "02d5cd7a-8d63-4fa4-9da1-d4b79ec01445",
248
+ "metadata": {},
249
+ "outputs": [
250
+ {
251
+ "name": "stdout",
252
+ "output_type": "stream",
253
+ "text": [
254
+ "|Start| 2023-06-29 12:57:39 A brown horse in the street\n",
255
+ "|FINISHED| 2023-06-29 12:59:03 A brown horse in the street\n"
256
+ ]
257
+ }
258
+ ],
259
+ "source": [
260
+ "query = \"A brown horse in the street\"\n",
261
+ "# query = \"Cattle grazing on grass near a lake surrounded by mountain.\"\n",
262
+ "# query = 'A street scene with a double-decker bus on the road.'\n",
263
+ "# query = 'A path.'\n",
264
+ "\n",
265
+ "\n",
266
+ "retImage = image_generation(query)\n"
267
+ ]
268
+ },
269
+ {
270
+ "cell_type": "code",
271
+ "execution_count": null,
272
+ "id": "1a8a1654-1f17-41c7-b410-c7491a96dcee",
273
+ "metadata": {},
274
+ "outputs": [],
275
+ "source": [
276
+ "retImage.save(f'{query}.png')"
277
+ ]
278
+ }
279
+ ],
280
+ "metadata": {
281
+ "kernelspec": {
282
+ "display_name": "ofa",
283
+ "language": "python",
284
+ "name": "ofa"
285
+ },
286
+ "language_info": {
287
+ "codemirror_mode": {
288
+ "name": "ipython",
289
+ "version": 3
290
+ },
291
+ "file_extension": ".py",
292
+ "mimetype": "text/x-python",
293
+ "name": "python",
294
+ "nbconvert_exporter": "python",
295
+ "pygments_lexer": "ipython3",
296
+ "version": "3.7.4"
297
+ }
298
+ },
299
+ "nbformat": 4,
300
+ "nbformat_minor": 5
301
+ }
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 1999-2022 Alibaba Group Holding Ltd.
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,12 +1,618 @@
1
- ---
2
- title: UnIVAL
3
- emoji: 🌖
4
- colorFrom: green
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 3.35.2
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!---
2
+ Copyright 2022 The OFA-Sys Team.
3
+ All rights reserved.
4
+ This source code is licensed under the Apache 2.0 license found in the LICENSE file in the root directory.
5
+ -->
6
+
7
+ todo:
8
+ models
9
+ data
10
+ all readme
11
+ animation
12
+
13
+ readme of:
14
+ rewarded soups
15
+ and others
16
+
17
+ <p align="center">
18
+ <br>
19
+ <img src="examples/OFA_logo_tp_path.svg" width="150" />
20
+ <br>
21
+ <p>
22
+ <br>
23
+
24
+ <p align="center">
25
+ <a href="modelscope.md">ModelScope</a>&nbsp | &nbsp<a href="checkpoints.md">Checkpoints</a>&nbsp | &nbsp<a href="colab.md">Colab</a>&nbsp | &nbsp<a href="https://huggingface.co/ofa-sys">Demo</a>&nbsp | &nbsp<a href="http://arxiv.org/abs/2202.03052">Paper </a>&nbsp | &nbspBlog
26
+ </p>
27
+
28
+ <p align="center">
29
+ <br>
30
+ <img src="examples/demo.gif" width="800" />
31
+ <br>
32
+ <p>
33
+
34
+ [colab]: <https://colab.research.google.com/assets/colab-badge.svg>
35
+
36
+ OFA is a unified sequence-to-sequence pretrained model (support **English** and **Chinese**) that unifies modalities (i.e., cross-modality, vision, language) and tasks (**finetuning** and **prompt tuning** are supported): image captioning (1st at the [MSCOCO Leaderboard](https://competitions.codalab.org/competitions/3221#results)), VQA ([link](https://eval.ai/web/challenges/challenge-page/830/leaderboard/2278)), visual grounding, text-to-image generation, text classification, text generation, image classification, etc. We provide **step-by-step** instructions for pretraining and finetuning and corresponding checkpoints (check official ckpt \[[EN](checkpoints.md)|[CN](checkpoints_cn.md)\] or [huggingface ckpt](https://huggingface.co/OFA-Sys)).
37
+
38
+ We sincerely welcome contributions to our project. Feel free to contact us or send us issues / PRs!
39
+ <br></br>
40
+
41
+ # Our installation
42
+
43
+ after installling pycocoevalcap, donwload needed models:
44
+ ```
45
+ python -c "from pycocoevalcap.spice.spice import Spice; tmp = Spice()"
46
+
47
+ ```
48
+
49
+ # Online Demos
50
+ We provide online demo via Hugging Face Spaces for you to interact with our pretrained and finetuned models. Below are the links to the demos:
51
+ * Image Captioning \[[ModelScope](https://modelscope.cn/#/models/damo/ofa_image-caption_coco_large_en/summary) | [Spaces](https://huggingface.co/spaces/OFA-Sys/OFA-Image_Caption)\]
52
+ * Visual Grounding \[[ModelScope](https://modelscope.cn/#/models/damo/ofa_visual-grounding_refcoco_large_en/summary) | [Spaces](https://huggingface.co/spaces/OFA-Sys/OFA-Visual_Grounding)\]
53
+ * Visual Question Answering \[[ModelScope](https://modelscope.cn/#/models/damo/ofa_visual-question-answering_pretrain_large_en/summary) | [Spaces](https://huggingface.co/spaces/OFA-Sys/OFA-Visual_Question_Answering)\]
54
+ * Text-to-Image Generation \[[ModelScope](https://modelscope.cn/#/models/damo/ofa_text-to-image-synthesis_coco_large_en/summary) | [Spaces](https://huggingface.co/spaces/OFA-Sys/OFA-Text2Image_Generation)\]
55
+ * Generic Interface \[[Spaces](https://huggingface.co/spaces/OFA-Sys/OFA-Generic_Interface)\]
56
+
57
+ Also we provide Colab notebooks for you to better perceive the procedures. Click [here](colab.md) to check them out!
58
+ <br></br>
59
+
60
+ # Use in Huggingface Transformers
61
+ We support the inference of OFA in Huggingface Transformers. Check the [README](transformers.md) and [Colab Notebook](https://colab.research.google.com/drive/1Ho81RBV8jysZ7e0FhsSCk_v938QeDuy3?usp=sharing) for more information. Codes are released in this branch https://github.com/OFA-Sys/OFA/tree/feature/add_transformers
62
+ <br><br>
63
+
64
+
65
+ # News
66
+ * 2022.8.22: Released checkpoints and demos of **OFA** and **Chinese CLIP** on [ModelScope](https://modelscope.cn/). Check the [README](modelscope.md) for more details!
67
+ * 2022.8.16: Released the **Chinese** version of OFA. **OFA-CN** needs only switching to `bpe_dir=../../utils/BERT_CN_dict` and `bpe=bert` and using our provided Chinese checkpoints in [checkpoints_cn.md](checkpoints_cn.md). Temporarily, we only provide base-size and large-size pretrained checkpoints and finetuned checkpoints on [MUGE Caption](https://tianchi.aliyun.com/muge) and the Chinese version of RefCOCO(-/+/g) (to release soon).
68
+ * 2022.8.5: Released support of **prompt tuning** for OFA. Check our paper [here](https://arxiv.org/abs/2208.02532)! Please see the [prompt_tuning.md](prompt_tuning.md) for further details.
69
+ * 2022.7.7: Updated support of OFA on **huggingface transformers** (fixed bugs in forward, add sequence generator from Fairseq to ensure performance, etc.). Refer to the doc [transformers.md](transformers.md) and the branch `feature/add_transformers`.
70
+ * 2022.6.17: Released the pretrained checkpoint of **OFA-Huge**. To use it, set `--arch=ofa_huge` in the script.
71
+ * 2022.5.15: OFA was accepted by **ICML 2022**
72
+ * 2022.4.28: Add support of inference on **huggingface transformers**. For how to use it, please refer to the doc [transformers.md](transformers.md) and our [huggingface models](https://huggingface.co/OFA-Sys).
73
+ * 2022.4.16: Released lightweight pretrained models **OFA-Medium** (~93M params) and **OFA-Tiny** (~33M params) in [checkpoints.md](checkpoints.md). To use them, you just need to load the corresponding checkpoint and set `--arch=ofa_medium` or `--arch=ofa_tiny` in the scripts.
74
+
75
+ <details>
76
+ <summary><b>More News</b></summary>
77
+ <p>
78
+ <ul>
79
+ <li>2022.3.23: Added [Encouraging Loss](https://arxiv.org/pdf/2110.06537.pdf) as a feature. See [README_EncouragingLoss.md](README_EncouragingLoss.md). Leveraging this feature, OFA-Large has achieved improved results in both VQA (**test-std acc: 80.67**) and Image Classification (**test acc: 85.6**) recently.</li>
80
+ <li>2022.3.21: Released codes for pretraining OFA.</li>
81
+ <li>2022.3.18: Released the finetuned <b>OFA-Base</b> (~180M parameters) checkpoints and running scripts for vision & language tasks, including: <b>Caption (146.4 CIDEr), VQA (78.07 on test-std), SNLI-VE (89.3 on dev), RefCOCO (90.67 on testA), RefCOCO+ (87.15 on testA) and RefCOCOg (82.31 on test-u)</b>.</li>
82
+ <li>2022.3.11: Released the finetuning & inference code/checkpoints for <b>Gigaword</b>.</li>
83
+ <li>2022.3.08: Released the pretrained checkpoint of <b>OFA-Base</b> in <a href="https://github.com/OFA-Sys/OFA/blob/main/checkpoints.md">checkpoints.md</a>. To use OFA-Base, you just need to load <code>ofa_base.pt</code> and change <code>--arch=ofa_large</code> to <code>--arch=ofa_base</code> in the training scripts.</li>
84
+ <li>2022.3.07: Released the finetuning & inference code/checkpoints for <b>Image Classification</b>, which achieves <b>85.0</b> accuracy on ImageNet-1K, slightly better than reported in OFA paper.</li>
85
+ <li>2022.3.04: Released the finetuning & inference code/checkpoints for <b>Text-to-Image Generation</b>.</li>
86
+ <li>2022.3.03: Released the finetuning & inference code/checkpoints for <b>SNLI-VE</b> and <b>GLUE</b>.</li>
87
+ <li>2022.2.22: Released the finetuning & inference code/checkpoints for <b>Visual Question Answering</b>, which can reproduce <b>the reported VQA accuracy in OFA paper (80.02 on test-std)</b>. Check our results on the <a href="https://eval.ai/web/challenges/challenge-page/830/leaderboard/2278">VQA Challenge</a>.</li>
88
+ <li>2022.2.15: Released finetuning & inference code/checkpoints for <b>Referring Expression Comprehension</b></li>
89
+ <li>2022.2.10: Released the inference code & finetuned checkpoint for <b>Image captioning</b>, which can reproduce <b>the results on COCO Karparthy test split (149.6 CIDEr)</b>. OFA also achieves No.1 on the COCO image captioning online leaderboard <a href='https://competitions.codalab.org/competitions/3221#results'>Link</a> (marked as M6-Team).</li>
90
+ </ul>
91
+ </p>
92
+ </details>
93
+ <br></br>
94
+
95
+
96
+ # Model Card
97
+ We list the parameters and pretrained checkpoints of OFAs below. For finetuned checkpoints, please refer to [checkpoints.md](checkpoints.md).
98
+
99
+ <table border="1" width="100%">
100
+ <tr align="center">
101
+ <th>Model</th><th>Ckpt</th><th>Params</th><th>Backbone</th><th>Hidden size</th><th>Intermediate size</th><th>Num. of heads</th><th>Enc layers</th><th>Dec layers</th>
102
+ </tr>
103
+ <tr align="center">
104
+ <td>OFA<sub>Tiny</sub></td><td><a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_tiny.pt">Download</a></td><td>33M</td><td>ResNet50</td><td>256</td><td>1024</td><td>4</td><td>4</td><td>4</td>
105
+ </tr>
106
+ <tr align="center">
107
+ <td>OFA<sub>Medium</sub></td><td><a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_medium.pt">Download</a></td><td>93M</td><td>ResNet101</td><td>512</td></td><td>2048</td><td>8</td><td>4</td><td>4</td>
108
+ </tr>
109
+ <tr align="center">
110
+ <td>OFA<sub>Base</sub></td><td><a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_base.pt">Download</a></td><td>180M</td><td>ResNet101</td><td>768</td></td><td>3072</td><td>12</td><td>6</td><td>6</td>
111
+ </tr>
112
+ <tr align="center">
113
+ <td>OFA<sub>Large</sub></td><td><a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_large.pt">Download</a></td><td>470M</td><td>ResNet152</td><td>1024</td></td><td>4096</td><td>16</td><td>12</td><td>12</td>
114
+ </tr>
115
+ <tr align="center">
116
+ <td>OFA<sub>Huge</sub></td><td><a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_huge.pt">Download</a></td><td>930M</td><td>ResNet152</td><td>1280</td></td><td>5120</td><td>16</td><td>24</td><td>12</td>
117
+ </tr>
118
+ </table>
119
+ <br></br>
120
+
121
+ # Results
122
+ Below we demonstrate the results of OFAs on cross-modal understanding and generation.
123
+
124
+ <table border="1" width="100%">
125
+ <tr align="center">
126
+ <th>Task</th><th>Image Captioning</th><th>VQA</th><th>Visual Entailment</th><th colspan="3">Referring Expression Comprehension</th>
127
+ </tr>
128
+ <tr align="center">
129
+ <td>Dataset</td><td>COCO</td><td>VQA v2</td><td>SNLI-VE</td><td>RefCOCO</td><td>RefCOCO+</td><td>RefCOCOg</td>
130
+ </tr>
131
+ <tr align="center">
132
+ <td>Split</td><td>Karpathy test (CE/CIDEr)</td><td>test-dev/test-std</td><td>val/test</td><td>val/test-a/test-b</td><td>val/test-a/test-b</td><td>val-u/test-u</td>
133
+ </tr>
134
+ <tr align="center">
135
+ <td>Metric</td><td>CIDEr</td><td>Acc.</td><td>Acc.</td><td colspan="3">Acc.</td>
136
+ </tr>
137
+ <tr align="center">
138
+ <td>OFA<sub>Tiny</sub></td><td>119.0 / 128.7</td><td>70.3 / 70.4</td><td>85.3 / 85.2</td><td>80.20 / 84.07 / 75.00</td><td>68.22 / 75.13 / 57.66</td><td>72.02 / 69.74</td>
139
+ </tr>
140
+ <tr align="center">
141
+ <td>OFA<sub>Medium</sub></td><td>130.4 / 140.3</td><td>75.4 / 75.5</td><td>86.6 / 87.0</td><td>85.34 / 87.68 / 77.92</td><td>76.09 / 83.04 / 66.25</td><td>78.76 / 78.58</td>
142
+ </tr>
143
+ <tr align="center">
144
+ <td>OFA<sub>Base</sub></td><td>138.2 / 146.7</td><td>78.0 / 78.1</td><td>89.3 / 89.2</td><td>88.48 / 90.67 / 83.30</td><td>81.39 / 87.15 / 74.29</td><td>82.29 / 82.31</td>
145
+ </tr>
146
+ <tr align="center">
147
+ <td>OFA<sub>Large</sub></td><td>142.2 / 150.7</td><td>80.4 / 80.7</td><td>90.3 / 90.2</td><td>90.05 / 92.93 / 85.26</td><td>85.80 / 89.87 / 79.22</td><td>85.89 / 86.55</td>
148
+ </tr>
149
+ <tr align="center">
150
+ <td>OFA<sub>Huge</sub></td><td>145.3 / 154.9</td><td>82.0 / 82.0</td><td>91.0 / 91.2</td><td>92.04 / 94.03 / 88.44</td><td>87.86 / 91.70 / 80.71</td><td>88.07 / 88.78</td>
151
+ </tr>
152
+ </table>
153
+ <br></br>
154
+
155
+ # Requirements
156
+ * python 3.7.4
157
+ * pytorch 1.8.1
158
+ * torchvision 0.9.1
159
+ * JAVA 1.8 (for COCO evaluation)
160
+ <br></br>
161
+
162
+ # Installation
163
+ ```bash
164
+ git clone https://github.com/OFA-Sys/OFA
165
+ pip install -r requirements.txt
166
+ ```
167
+ <br></br>
168
+
169
+ # Datasets and Checkpoints
170
+ See [datasets.md](datasets.md) and [checkpoints.md](checkpoints.md).
171
+ <br></br>
172
+
173
+ # Training & Inference
174
+ Below we provide methods for training and inference on different tasks. We provide both pretrained OFA-Large and OFA-Base in [checkpoints.md](checkpoints.md). The scripts mentioned in this section are prepared for OFA-Large. For reproducing the downstreaming results of OFA-Base, we have also provided the corresponding finetuning and inference scripts for OFA-Base in the `run_scripts/` folder.
175
+
176
+ We recommend that your workspace directory should be organized like this:
177
+ ```
178
+ OFA/
179
+ ├── checkpoints/
180
+ │   ├── ofa_base.pt
181
+ │   ├── ofa_large.pt
182
+ │   ├── caption_large_best_clean.pt
183
+ │   └── ...
184
+ ├── criterions/
185
+ ├── data/
186
+ ├── dataset/
187
+ │   ├── caption_data/
188
+ │   ├── gigaword_data/
189
+ │   └── ...
190
+ ├── fairseq/
191
+ ├── models/
192
+ ├── run_scripts/
193
+ ├── tasks/
194
+ ├── train.py
195
+ ├── trainer.py
196
+ └── utils/
197
+ ```
198
+
199
+
200
+ ## Image Processing
201
+ To ensure the efficiency of processing data, we did not store images with small files, but instead we encode them to base64 strings.
202
+ Transforming image files to base64 strings is simple. Run the following code:
203
+ ```python
204
+ from PIL import Image
205
+ from io import BytesIO
206
+ import base64
207
+
208
+ img = Image.open(file_name) # path to file
209
+ img_buffer = BytesIO()
210
+ img.save(img_buffer, format=img.format)
211
+ byte_data = img_buffer.getvalue()
212
+ base64_str = base64.b64encode(byte_data) # bytes
213
+ base64_str = base64_str.decode("utf-8") # str
214
+ ```
215
+
216
+ ## Pretraining
217
+ Below we provide methods for pretraining OFA.
218
+
219
+ <details>
220
+ <summary><b>1. Prepare the Dataset</b></summary>
221
+ <p>
222
+ To pretrain OFA, you should first download the dataset we provide (<a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/datasets/pretrain_data/pretrain_data_examples.zip">pretrain_data_examples.zip</a>, a small subset of the original pretraining data). For your customed pretraining datasets, please prepare your training samples into the same format. <code>pretrain_data_examples.zip</code> contains 4 TSV files: <code>vision_language_examples.tsv</code>, <code>text_examples.tsv</code>, <code>image_examples.tsv</code> and <code>detection_examples.tsv</code>. Details of these files are as follows:
223
+ <br />
224
+ <ul type="circle">
225
+ <li><b>vision_language_examples.tsv</b>:
226
+ Each line contains uniq-id, image (base64 string), caption, question, answer, ground-truth objects (objects appearing in the caption or question), dataset name (source of the data) and task type (caption, qa or visual gronunding). Prepared for the pretraining tasks of visual grounding, grounded captioning, image-text matching, image captioning and visual question answering. </li>
227
+ <li><b>text_examples.tsv</b>: Each line contains uniq-id and text. Prepared for the pretraining task of text infilling. </li>
228
+ <li><b>image_examples.tsv</b>: Each line contains uniq-id, image (base64 string, should be resized to 256*256 resolution) and image-code (generate the sparse codes for the central part of image through VQ-GAN). Prepared for the pretraining task of image infilling. </li>
229
+ <li><b>detection_examples.tsv</b>: Each line contains uniq-id, image (base64 string) and bounding box annotations (contains the top-left and bottom-right coordinates of the bounding box, object_id and object_name, seperated by commas). Prepared for the pretraining task of detection. </li>
230
+ </ul>
231
+ In addition, the folder negative_sample in pretrain_data_examples.zip contains three files <code>all_captions.txt</code>, <code>object.txt</code> and <code>type2ans.json</code>. The data in these files are used as negative samples for the image-text matching (ITM) task.
232
+ </p>
233
+ </details>
234
+ <details>
235
+ <summary><b>2. Pretraining</b></summary>
236
+ <p>
237
+ By default, the pretraining script will attempt to restore the released pretrained checkpoints of OFA-Base or OFA-Large and perform continuous pretraining. Continuous pretraining is more recommended, which achieves much better results compared with pretraining from scratch. For continuous pretraining, please download the pretrained weights in advance (see <a href='checkpoints.md'>checkpoints.md</a>) and put them in the correct directory <code>OFA/checkpoints/</code>. If not, the pretraining will begin from scratch.
238
+ </p>
239
+ <pre>
240
+ cd run_scripts/pretraining
241
+ bash pretrain_ofa_large.sh # Pretrain OFA-Large. For OFA-Base, use pretrain_ofa_base.sh
242
+ </pre>
243
+ <p>
244
+ If the pretrained OFA checkpoint is restored successfully, you will see the following information in the log:
245
+ </p>
246
+ <pre>
247
+ INFO: Loaded checkpoint ../../checkpoints/ofa_large.pt
248
+ </pre>
249
+ </details>
250
+
251
+ ## Image Captioning
252
+ We provide procedures to reproduce our results of image captioning on our paper below.
253
+ <details>
254
+ <summary><b>1. Prepare the Dataset & Checkpoints</b></summary>
255
+ <p>
256
+ Download data (see <a href='datasets.md'>datasets.md</a>) and models (see <a href='checkpoints.md'>checkpoints.md</a>) and put them in the correct directory. The dataset zipfile <code>caption_data.zip</code> contains caption_stage1_train.tsv, caption_stage2_train.tsv, caption_val.tsv and caption_test.tsv. Each image corresponds to only 1 caption in <code>caption_stage1_train.tsv</code> and corresponds to multiple captions in other TSV files (about 5 captions per image). Each line of the dataset represents a caption sample with the following format. The information of uniq-id, image-id, caption, predicted object labels (taken from <a href='https://github.com/pzzhang/VinVL'>VinVL</a>, not used), image base64 string are separated by tabs.
257
+ </p>
258
+ <pre>
259
+ 162365 12455 the sun sets over the trees beyond some docks. sky&&water&&dock&&pole /9j/4AAQSkZJ....UCP/2Q==
260
+ </pre>
261
+ </details>
262
+ <details>
263
+ <summary><b>2. Finetuning</b></summary>
264
+ <p>
265
+ Following previous standard practice, we divide the finetuning process of image captioning into two stages. In stage 1, we finetune OFA with cross-entropy loss on 4 NVIDIA-V100 GPUs with 32GB memory (expected to obtain ~139.5 CIDEr on the validation set at this stage). In stage 2, we select the best checkpoint of stage 1 and train with CIDEr optimization on 8 NVIDIA-V100 GPUs. <b>Note that CIDEr optimization is very unstable and requires careful hyperparameter tuning. If you encounter training errors in the stage2 finetuning, you can increase the batch size or reduce the learning rate. If neither of these works, you can directly set </b><code>--freeze-resnet</code><b> to freeze the inner states of batch normalization.</b>
266
+ </p>
267
+ <pre>
268
+ cd run_scripts/caption
269
+ nohup sh train_caption_stage1.sh > train_stage1.out & # stage 1, train with cross-entropy loss
270
+ nohup sh train_caption_stage2.sh > train_stage2.out & # stage 2, load the best ckpt of stage1 and train with CIDEr optimization
271
+ </pre>
272
+ </details>
273
+ <details>
274
+ <summary><b>3. Inference</b></summary>
275
+ <p>
276
+ Run the following commands to get your results and evaluate your model.
277
+ </p>
278
+ <pre>
279
+ cd run_scripts/caption ; sh evaluate_caption.sh # inference & evaluate
280
+ </pre>
281
+ </details>
282
+
283
+ ## Text-to-Image Generation
284
+ This part provides procedures for the finetuning and inference of text-to-image generation. See below.
285
+
286
+ <details>
287
+ <summary><b>1. Prepare the Dataset & Checkpoints</b></summary>
288
+ <p>
289
+ Download data (see <a href="datasets.md">datasets.md</a>) and models (see <a href="checkpoints.md">checkpoints.md</a>) and put them in the correct directory. The dataset zipfile <code>coco_image_gen.zip</code> contains <code>coco_vqgan_train.tsv</code>, <code>coco_vqgan_dev.tsv</code> and <code>coco_vqgan_full_test.tsv</code>. Each line of the dataset represents a sample with the following format. The information of uniq-id, image-code (produced by <a href="https://github.com/CompVis/taming-transformers">vqgan</a>, a list of integers separated by single-whitespaces), lowercased caption are separated by tabs.
290
+ </p>
291
+ <pre>
292
+ 1 6674 4336 4532 5334 3251 5461 3615 2469 ...4965 4190 1846 the people are posing for a group photo.
293
+ </pre>
294
+ <p>
295
+ The checkpoint zipfile <code>image_gen_large_best.zip</code> contains <code>image_gen_large_best.pt</code>, <code>vqgan/last.ckpt</code>, <code>vqgan/model.yaml</code> and <code>clip/Vit-B-16.pt</code>.
296
+ </p>
297
+ </details>
298
+ <details>
299
+ <summary><b>2. Shuffle the Training Data</b></summary>
300
+ <p>
301
+ (Optional, but achieves better result): If the disk storage is sufficient, we recommend to prepare the shuffled training data for each epoch in advance.
302
+ </p>
303
+ <pre>
304
+ cd dataset/image_gen
305
+ ln coco_vqgan_train.tsv coco_vqgan_train_1.tsv
306
+ for idx in `seq 1 9`;do shuf coco_vqgan_train_${idx}.tsv > coco_vqgan_train_$[${idx}+1].tsv;done # each file is used for an epoch
307
+ </pre>
308
+ </details>
309
+ <details>
310
+ <summary><b>3. Finetuning</b></summary>
311
+ <p>
312
+ Following previous practice, we divide the finetuning process of image generating into two stages. In stage 1, we finetune OFA with cross-entropy loss on 4 8-V100-32G-GPU servers (expected to obtain ~32.5+ CLIP Score on the validation set at this stage). In stage 2, we select the last checkpoint of stage 1 and train with CLIP Score optimization on 4 8-V100-32G-GPU servers (expected to obtain ~34.0+ CLIP Score on the validation set at this stage). During the validation, the generated image will be dumped into <code>_GEN_IMAGE_PATH_</code>.
313
+ </p>
314
+ <pre>
315
+ # run on each worker after the distributed and data configs have been correctly set following the guide in train_image_gen_stage1_distributed.sh
316
+ cd run_scripts/image_gen
317
+ nohup sh train_image_gen_stage1_distributed.sh # stage 1, train with cross-entropy loss
318
+ nohup sh train_image_gen_stage2_distributed.sh # stage 2, load the last ckpt of stage1 and train with CLIP Score optimization
319
+ </pre>
320
+ </details>
321
+ <details>
322
+ <summary><b>4. Inference</b></summary>
323
+ <p>
324
+ Run the command below to generate your images.
325
+ </p>
326
+ <pre>
327
+ cd run_scripts/image_gen ; sh evaluate_image_gen.sh # inference & evaluate (FID, IS and CLIP Score)
328
+ </pre>
329
+ </details>
330
+
331
+ ## Visual Question Answering
332
+ Here we provide the finetuning and inference codes to reproduce the VQAv2 result reported in our paper (**test-std 80.02**). We believe much improvement on accuracy can still be achieved based on this codebase :)
333
+ <details>
334
+ <summary><b>1. Prepare the Dataset & Checkpoints</b></summary>
335
+ <p>
336
+ Download data (see <a href="datasets.md">datasets.md</a>) and models (see <a href="checkpoints.md">checkpoints.md</a>) and put them in the correct directory. The dataset zipfile <code>vqa_data.zip</code> is around 100G and the decompressed data costs around 135G disk storage, which contains the training, validation and testing samples together with other necessary data resources. (Since <code>vqa_data.zip</code> is large in size, we have also provided chunked parts of the dataset files for more convenient and stable downloading. Please refer to <a href="https://github.com/OFA-Sys/OFA/issues/68#issuecomment-1096837349">issue #68</a>.) Following common practice, VG-QA samples are also included in the training data. To adapt to the seq2seq paradigm of OFA, we transform original VQA training questions with multiple golden answers into multiple training samples. For the original VQA validation set, we keep around 10k samples for our validation and utilize the other samples for training. Each line of the dataset represents a VQA sample with the following format. The information of question-id, image-id, question, answer (with confidence), predicted object labels (taken from <a href="https://github.com/pzzhang/VinVL">VinVL</a>, slightly brings around +0.1 accuracy improvement), image base64 string are separated by tabs.
337
+ </p>
338
+ <pre>
339
+ 79459 79459 is this person wearing shorts? 0.6|!+no house&&short&&...&&sky /9j/4AAQS...tigZ/9k=
340
+ </pre>
341
+ <p>
342
+ For fine-tuning on customed VQA-formulated tasks, please refer to issue <a href="https://github.com/OFA-Sys/OFA/issues/76">#76</a>, <a href="https://github.com/OFA-Sys/OFA/issues/105">#105</a> and <a href="https://github.com/OFA-Sys/OFA/issues/73">#73</a> for more information.
343
+ </p>
344
+ </details>
345
+ <details>
346
+ <summary><b>2. Shuffle the Training Data</b></summary>
347
+ <p>
348
+ (Optional, but achieves better finetuning accuracy): If the disk storage is sufficient, we recommend to prepare the shuffled training data for each epoch in advance. In our experiments, we use shuffling which brings around <b>+0.3</b> improvement on VQA accuracy.
349
+ </p>
350
+ <pre>
351
+ cd dataset/vqa_data
352
+ ln vqa_train.tsv vqa_train_1.tsv
353
+ for idx in `seq 1 9`;do shuf vqa_train_${idx}.tsv > vqa_train_$[${idx}+1].tsv;done # each file is used for an epoch
354
+ </pre>
355
+ </details>
356
+ <details>
357
+ <summary><b>3. Finetuning</b></summary>
358
+ <p>
359
+ In our experiments, the VQA finetuning is performed on 4 8-A100-GPU servers (<i>with RDMA</i>). Here provides the finetuning script <code>train_vqa_distributed.sh</code>, which supports multi-server distributed training (as well as single-server training). Please refer to the comments in the beginning of the script and set the configs correctly according to your distribution environment. If you have shuffled the training data in the previous step, please correctly specify the training data path following the guide in the script comments. <b>The command should be run on each worker.</b>
360
+ </p>
361
+ <pre>
362
+ # run on each worker after the distributed and data configs have been correctly set following the guide in train_vqa_distributed.sh
363
+ cd run_scripts/vqa
364
+ bash train_vqa_distributed.sh
365
+ </pre>
366
+ <p>
367
+ In our experiments, the finetuning costs around 36 hours (for 12 epochs). After each epoch, an evaluation on validation set is performed. The best validation accuracy during finetuning will be around 80.8. The log is saved in <code>${log_dir}</code>.
368
+ </p>
369
+ <p>
370
+ <i>(Update on validation time-cost)</i> As will be mentioned in the <i>4. Inference</i> section, we prepare 2 types of inference: beam-search and all-candidate inference. By default, all-candidate inference is used for validation during fine-tuning, which achieves better accuracy but costs much time. Now we have added a new option in the training scripts called <code>--val-inference-type</code> to switch the validation inference type during fine-tuning. If you feel the validation takes too long, you can refer to <a href="https://github.com/OFA-Sys/OFA/pull/79">PR #79</a> to activate beam-search validation, which significantly takes much less time, with around 0.5-0.6 validation score degradation compared with all-candidate validation.
371
+ </p>
372
+ </details>
373
+ <details>
374
+ <summary><b>4. Inference</b></summary>
375
+ <p>
376
+ We provide 2 types of inference, <b>beam-search</b> (much faster but gets sub-optimal accuracy) and <b>all-candidate evaluation</b> (slower but best accuracy). <br></br>
377
+ For beam-search inference, use the script <code>evaluate_vqa_beam.sh</code>. Refer to the command below. The inference on test set costs around 16 GPU hours. After inference on test set, the result JSON file will be dumped in the <code>${result_path}</code> defined in the shell script. You can submit the result <code>test_predict.json</code> to <a href="https://eval.ai/web/challenges/challenge-page/830/overview">EvalAI</a>. Using our released finetuned checkpoint, beam-search inference will get 80.15 validation accuracy, 79.36 test-dev accuracy and 79.48 test-std accuracy (around 0.6 lower than all-candidate evaluation).
378
+ </p>
379
+ <pre>
380
+ cd run_scripts/vqa
381
+ bash evaluate_vqa_beam.sh val # specify 'val' or 'test'
382
+ </pre>
383
+ <p>
384
+ For all-candidate evaluation, we recommend to use the distributed script <code>evaluate_vqa_allcand_distributed.sh</code>. Please refer to the guide in the script to set the distributed configs before running. The result JSON file will be dumped in the <code>${result_path}</code> defined in the shell script of rank-0 server. All-candidate evaluation computes scores on all the candidate answers in the VQA dataset, which achieves <b>80.82</b> validation accuracy, <b>79.87</b> test-dev accuracy and <b>80.02</b> test-std accuracy, reproducing our reported results in the paper. However, the inference on test set costs around 1k GPU hours, which is much slower.
385
+ </p>
386
+ <pre>
387
+ # run on each worker after the distributed configs have been correctly set following the guide in evaluate_vqa_allcand_distributed.sh
388
+ cd run_scripts/vqa
389
+ bash evaluate_vqa_allcand_distributed.sh val # specify 'val' or 'test'
390
+ </pre>
391
+ </details>
392
+
393
+ ## Referring Expression Comprehension
394
+ Here provides procedures for you to prepare data, train, and evaluate your model on visual grounding.
395
+ <details>
396
+ <summary><b>1. Prepare the Dataset & Checkpoints</b></summary>
397
+ <p>
398
+ Download data (see <a href='datasets.md'>datasets.md</a>) and models (see <a href='checkpoints.md'>checkpoints.md</a>) and put them in the correct directory. We provide RefCOCO (split by UNC), RefCOCO+ (split by UNC) and RefCOCOg (split by UMD) datasets. See <a href='https://www.tensorflow.org/datasets/catalog/ref_coco'>RefCOCO</a> and <a href="https://github.com/lichengunc/refer">Refer</a> for more details. Note that in the original dataset, each region-coord (or bounding box) may corresponds to multiple descriptive texts. We split these texts into multiple samples so that the region-coord in each sample corresponds to only one text. Each line of the processed dataset represents a sample with the following format. The information of uniq-id, image-id, text, region-coord (separated by commas), image base64 string are separated by tabs.
399
+ </p>
400
+ <pre>
401
+ 79_1 237367 A woman in a white blouse holding a glass of wine. 230.79,121.75,423.66,463.06 9j/4AAQ...1pAz/9k=
402
+ </pre>
403
+ </details>
404
+ <details>
405
+ <summary><b>2. Finetuning</b></summary>
406
+ <p>
407
+ Unlike the original paper, we finetune OFA with a drop-path rate of 0.2, and found that training with this hyper-parameter achieves better results. We will update the reported results of the paper later.
408
+ </p>
409
+ <pre>
410
+ cd run_scripts/refcoco
411
+ nohup sh train_refcoco.sh > train_refcoco.out & # finetune for refcoco
412
+ nohup sh train_refcocoplus.sh > train_refcocoplus.out & # finetune for refcoco+
413
+ nohup sh train_refcocog.sh > train_refcocog.out & # finetune for refcocog
414
+ </pre>
415
+ </details>
416
+ <details>
417
+ <summary><b>3. Inference</b></summary>
418
+ <p>
419
+ Run the following commands for the evaluation.
420
+ </p>
421
+ <pre>
422
+ cd run_scripts/refcoco ; sh evaluate_refcoco.sh # inference & evaluate for refcoco/refcoco+/refcocog
423
+ </pre>
424
+ </details>
425
+
426
+ ## Visual Entailment
427
+ We provide steps for you to reproduce our results in visual entailment. See the details below.
428
+
429
+ <details>
430
+ <summary><b>1. Prepare the Dataset & Checkpoints</b></summary>
431
+ <p>
432
+ Download data (see <a href="datasets.md">datasets.md</a>) and models (see <a href="checkpoints.md">checkpoints.md</a>) and put them in the correct directory. Each line of the processed dataset represents a sample with the following format. The information of uniq-id, image-id, image base64 string, hypothesis, caption (or text premise), label are separated by tabs.
433
+ </p>
434
+ <pre>
435
+ 252244149.jpg#1r1n 252244149 /9j/4AAQ...MD/2Q== a man in pink and gold is chewing on a wooden toothpick. a man in pink is chewing a toothpick on the subway. neutral
436
+ </pre>
437
+ </details>
438
+ <details>
439
+ <summary><b>2. Finetuning</b></summary>
440
+ <p>
441
+ In our experiments, the SNLI-VE finetuning is performed on 8 NVIDIA-V100 GPUs with 32GB memory. In this task, we experimented with only a few sets of hyperparameters. We believe that proper hyperparameter tuning can lead to further accuracy improvement.
442
+ </p>
443
+ <pre>
444
+ cd run_scripts/snli_ve
445
+ nohup sh train_snli_ve.sh > train_snli_ve.out & # finetune for snli_ve
446
+ </pre>
447
+ </details>
448
+ <details>
449
+ <summary><b>3. Inference</b></summary>
450
+ <p>
451
+ Run the following command to obtain the results.
452
+ </p>
453
+ <pre>
454
+ cd run_scripts/snli_ve ; sh evaluate_snli_ve.sh dev # specify 'dev' or 'test'
455
+ </pre>
456
+ </details>
457
+
458
+ ## GLUE
459
+ Here we provide steps for you to finetune and evaluate our model on language understanding tasks. We demonstrate our practice for the GLUE benchmark.
460
+
461
+ <details>
462
+ <summary><b>1. Prepare the Dataset & Checkpoints</b></summary>
463
+ <p>
464
+ Download data (see <a href="datasets.md">datasets.md</a>) and models (see <a href="checkpoints.md">checkpoints.md</a>) and put them in the correct directory. we provide 7 language understanding datasets from GLUE benchmark, including COLA, MNLI, MRPC, QNLI, QQP, RTE and SST2. More details about these datasets can be found in this <a href="https://openreview.net/pdf?id=rJ4km2R5t7">link</a>.
465
+ </p>
466
+ </details>
467
+ <details>
468
+ <summary><b>2. Finetuning</b></summary>
469
+ <p>
470
+ For each task, we have tried multiple sets of hyperparameters (including learning rate, batch size, training epochs). The results under different sets of hyperparameters can be found in <code>${log_dir}</code>.
471
+ </p>
472
+ <pre>
473
+ cd run_scripts/glue
474
+ nohup sh train_cola.sh > train_cola.out & # finetune for cola
475
+ nohup sh train_mnli.sh > train_mnli.out & # finetune for mnli
476
+ nohup sh train_mrpc.sh > train_mrpc.out & # finetune for mrpc
477
+ nohup sh train_qnli.sh > train_qnli.out & # finetune for qnli
478
+ nohup sh train_qqp.sh > train_qqp.out & # finetune for qqp
479
+ nohup sh train_rte.sh > train_rte.out & # finetune for rte
480
+ nohup sh train_sst2.sh > train_sst2.out & # finetune for sst2
481
+ </pre>
482
+ </details>
483
+
484
+ ## Image Classification on ImageNet-1K
485
+ We provide the finetuning and inference codes which reproduce **85.0 ImageNet-1K accuracy**, slightly better than reported in our paper.
486
+
487
+ <details>
488
+ <summary><b>1. Prepare the Dataset & Checkpoints</b></summary>
489
+ <p>
490
+ Download data (see <a href="datasets.md">datasets.md</a>) and models (see <a href="checkpoints.md">checkpoints.md</a>) and put them in the correct directory. Our provided data is derived from the original <a href="http://image-net.org/">ImageNet-1K</a> (ILSVRC2012 train & validation) dataset and shares the same data split with it. To formulate the classification task into seq2seq paradigm, we use the <a href="https://github.com/HoldenCaulfieldRye/caffe/blob/master/data/ilsvrc12/synset_words.txt">synset words</a> provided by Caffe as the generation target for each image class. Each line of the processed dataset represents a sample with the following format. The information of image base64 string, classification label (1-indexed, conform to the order in <code>synset_words.txt</code>), synset words of the label are separated by tabs.
491
+ </p>
492
+ <pre>
493
+ _9j_4AAQS...fzX__Z 769 rugby ball
494
+ </pre>
495
+ </details>
496
+ <details>
497
+ <summary><b>2. Shuffle the Training Data</b></summary>
498
+ <p>
499
+ (Optional, but achieves better finetuning accuracy): If the disk storage is sufficient, we recommend to prepare the shuffled training data for each epoch in advance. In our experiments, we use shuffling which brings around <b>+0.2</b> improvement on ImageNet-1K accuracy.
500
+ </p>
501
+ <pre>
502
+ cd dataset/imagenet_1k_data
503
+ ln imagenet_1k_train.tsv imagenet_1k_train_1.tsv
504
+ for idx in `seq 1 9`;do shuf imagenet_1k_train_${idx}.tsv > imagenet_1k_train_$[${idx}+1].tsv;done # each file is used for an epoch one by one
505
+ </pre>
506
+ </details>
507
+ <details>
508
+ <summary><b>3. Finetuning</b></summary>
509
+ <p>
510
+ In our experiments, the ImageNet-1K finetuning is performed on 2 8-A100-GPU servers (<i>with RDMA</i>). Here provides the finetuning script <code>train_imagenet_distributed.sh</code>, which supports multi-server distributed training (as well as single-server training). Please refer to the comments in the beginning of the script and set the configs correctly according to your distribution environment. If you have shuffled the training data in the previous step, please correctly specify the training data path following the guide in the script comments. <b>The command should be run on each worker.</b> For quick evaluation during finetuning, by default we sample 20% of the original validation split and report accuracy on this subset after each epoch. The accuracy on the validation subset is generally ±0.1 relative to accuracy on the whole validation split.
511
+ </p>
512
+ <pre>
513
+ # run on each worker after the distributed and data configs have been correctly set following the guide in train_imagenet_distributed.sh
514
+ cd run_scripts/image_classify
515
+ bash train_imagenet_distributed.sh
516
+ </pre>
517
+ <p>
518
+ In our experiments, the finetuning costs around 80 hours (for 32 epochs). The best accuracy on validation subset during finetuning will be around 85.0. The log is saved in <code>${log_dir}</code>.
519
+ </p>
520
+ </details>
521
+ <details>
522
+ <summary><b>4. Inference</b></summary>
523
+ <p>
524
+ To get the validation accuracy on the whole ImageNet-1K validation set, run the following command. The evaluation costs around 10 GPU hours. The accuracy will be reported in the stdout (expected to be around <b>85.0</b>).
525
+ </p>
526
+ <pre>
527
+ cd run_scripts/image_classify ; sh evaluate_imagenet.sh # inference & evaluate for imagenet-1k
528
+ </pre>
529
+ </details>
530
+
531
+ ## Gigaword
532
+ We provide steps for you to reproduce our results in Gigaword. See the details below.
533
+
534
+ <details>
535
+ <summary><b>1. Prepare the Dataset & Checkpoints</b></summary>
536
+ <p>
537
+ Download data (see <a href="datasets.md">datasets.md</a>) and models (see <a href="checkpoints.md">checkpoints.md</a>) and put them in the correct directory. The original dataset is taken from <a href="https://github.com/microsoft/unilm/">UniLM</a> and we organized the data into the tsv format. Each line of the processed dataset represents a sample with the following format. The information of source and target texts are separated by tabs.
538
+ </p>
539
+ <pre>
540
+ factory orders for manufactured goods rose #.# percent in september... us september factory orders up #.# percent
541
+ </pre>
542
+ </details>
543
+ <details>
544
+ <summary><b>2. Finetuning</b></summary>
545
+ <p>
546
+ Run the following command to train the model.
547
+ </p>
548
+ <pre>
549
+ cd run_scripts/gigaword
550
+ nohup sh train_gigaword.sh > train_gigaword.out & # finetune for gigaword
551
+ </pre>
552
+ </details>
553
+ <details>
554
+ <summary><b>3. Inference</b></summary>
555
+ <p>
556
+ Run the following command to obtain the results (~36.43 rougeL).
557
+ </p>
558
+ <pre>
559
+ cd run_scripts/gigaword ; sh evaluate_gigaword.sh # inference & evaluate for gigaword
560
+ </pre>
561
+ </details>
562
+
563
+ <br></br>
564
+
565
+ # Gallery
566
+ Below we provide examples of OFA in text-to-image generation and open-ended VQA. Also, we demonstrate its performance in unseen task (Grounded QA) as well as unseen domain (Visual Grounding on images from unseen domains).
567
+
568
+ ## Text-to-Image Generation
569
+
570
+ ![case1](examples/case1.png)
571
+
572
+
573
+ ## Open-Ended VQA
574
+ ![open_vqa](examples/open_vqa.png)
575
+
576
+ ## Grounded QA (unseen task)
577
+ ![grounded_qa](examples/grounded_qa.png)
578
+
579
+ ## Visual Grounding (unseen domain)
580
+ ![vg](examples/viusal_grounding.png)
581
+ <br></br>
582
+
583
+ # Related Codebase
584
+ * [Fairseq](https://github.com/pytorch/fairseq)
585
+ * [taming-transformers](https://github.com/CompVis/taming-transformers)
586
+ <br></br>
587
+
588
+
589
+ # Getting Involved
590
+ Feel free to submit Github issues or pull requests. Welcome to contribute to our project!
591
+
592
+ To contact us, never hestitate to send an email to `zheluo.wp@alibaba-inc.com` or `junyang.ljy@alibaba-inc.com`!
593
+ <br></br>
594
+
595
+
596
+ # Citation
597
+ Please cite our paper if you find it helpful :)
598
+
599
+ ```
600
+ @article{wang2022ofa,
601
+ author = {Peng Wang and
602
+ An Yang and
603
+ Rui Men and
604
+ Junyang Lin and
605
+ Shuai Bai and
606
+ Zhikang Li and
607
+ Jianxin Ma and
608
+ Chang Zhou and
609
+ Jingren Zhou and
610
+ Hongxia Yang},
611
+ title = {OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence
612
+ Learning Framework},
613
+ journal = {CoRR},
614
+ volume = {abs/2202.03052},
615
+ year = {2022}
616
+ }
617
+ ```
618
+ <br></br>
README_EncouragingLoss.md ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Finetuning with Encouraging Loss (EL)
2
+ Below we provide methods for finetuning with label smoothed encouraging loss proposed in [_Well-classified Examples are Underestimated in Classification with Deep Neural Networks_](https://arxiv.org/pdf/2110.06537.pdf) on different downstream tasks.
3
+ The implementation is in [label_smoothed_encouraging_loss.py](criterions/label_smoothed_encouraging_loss.py).
4
+ You can set the `--criterion` to `adjust_label_smoothed_encouraging_loss` to use it. This criterion has a hyper-parameter `--log-end`.
5
+ `--log-end < 1` results in a approximated and conservative version of the full encouraging loss.
6
+ A high log_end will more strongly weaken the gradient vanishing, enhance the modeling of the data, and increase the growth rate of the margin, but it will also bring a larger gradient norm, which will bring challenges to the existing optimization system.
7
+ We recommend higher log_end for cases with higher performance, and 0.75 or 0.5 as your first try.
8
+ ## Image Captioning
9
+ We provide procedures for image captioning with EL below. The preprocessing is identical to default setting.
10
+
11
+ <details>
12
+ <summary><b>Finetuning</b></summary>
13
+ <p>
14
+ We propose two scripts for stage1. </b>
15
+ </p>
16
+ <pre>
17
+ cd run_scripts/caption
18
+ nohup sh train_caption_stage1_el.sh > train_stage1_el.out & # stage 1, train with encouraging loss, expected cider 1.403
19
+ nohup sh train_caption_stage1_el_db.sh > train_stage1_el.out & # stage 1, train with encouraging loss, and drop best examples, expected cider 1.404
20
+ </pre>
21
+ </details>
22
+
23
+ ## Referring Expression Comprehension
24
+ We provide procedures for image captioning with EL below. The preprocessing is identical to default setting.
25
+ <details>
26
+ <summary><b>Finetuning</b></summary>
27
+ <pre>
28
+ cd run_scripts/refcoco
29
+ nohup sh train_refcoco_el.sh > train_refcoco_el.out & # finetune for refcoco
30
+ nohup sh train_refcocoplus_el.sh > train_refcocoplus_el.out & # finetune for refcoco+
31
+ nohup sh train_refcocog_el.sh > train_refcocog_el.out & # finetune for refcocog
32
+ </pre>
33
+ </details>
34
+ Evaluation is also the same as the default setting.
VG.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
VQA.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
Video_Captioning.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
__pycache__/trainer.cpython-37.pyc ADDED
Binary file (35.9 kB). View file
 
__pycache__/trainer.cpython-38.pyc ADDED
Binary file (36.4 kB). View file
 
__pycache__/trainer.cpython-39.pyc ADDED
Binary file (36.9 kB). View file
 
app.py ADDED
@@ -0,0 +1,297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ os.system('cd fairseq;'
4
+ 'pip install ./; cd ..')
5
+ os.system('ls -l')
6
+
7
+ import torch
8
+ import numpy as np
9
+ import gradio as gr
10
+ import cv2
11
+ from PIL import Image
12
+ from torchvision import transforms
13
+
14
+ from fairseq import utils, tasks, options
15
+ from fairseq import checkpoint_utils
16
+ from fairseq.dataclass.utils import convert_namespace_to_omegaconf
17
+
18
+ from tasks.mm_tasks.caption import CaptionTask
19
+ from tasks.mm_tasks.refcoco import RefcocoTask
20
+ from tasks.mm_tasks.vqa_gen import VqaGenTask
21
+
22
+
23
+ def move2gpu(models, cfg):
24
+ for model in models:
25
+ model.eval()
26
+ if use_fp16:
27
+ model.half()
28
+ if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
29
+ model.cuda()
30
+ model.prepare_for_inference_(cfg)
31
+
32
+
33
+ def construct_transform(patch_image_size):
34
+ mean = [0.5, 0.5, 0.5]
35
+ std = [0.5, 0.5, 0.5]
36
+
37
+ patch_resize_transform = transforms.Compose([
38
+ lambda image: image.convert("RGB"),
39
+ transforms.Resize((patch_image_size, patch_image_size), interpolation=Image.BICUBIC),
40
+ transforms.ToTensor(),
41
+ transforms.Normalize(mean=mean, std=std),
42
+ ])
43
+
44
+ return patch_resize_transform
45
+
46
+
47
+ # Register tasks
48
+ tasks.register_task('caption', CaptionTask)
49
+ tasks.register_task('refcoco', RefcocoTask)
50
+ tasks.register_task('vqa_gen', VqaGenTask)
51
+ # turn on cuda if GPU is available
52
+ use_cuda = torch.cuda.is_available()
53
+ # use fp16 only when GPU is available
54
+ use_fp16 = False
55
+
56
+ # # download checkpoints
57
+ # os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/caption_demo.pt; '
58
+ # 'mkdir -p checkpoints; mv caption_demo.pt checkpoints/caption_demo.pt')
59
+ # os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/refcoco_demo.pt; '
60
+ # 'mkdir -p checkpoints; mv refcoco_demo.pt checkpoints/refcoco_demo.pt')
61
+ # os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/general_demo.pt; '
62
+ # 'mkdir -p checkpoints; mv general_demo.pt checkpoints/general_demo.pt')
63
+
64
+
65
+ checkpoint_path = 'checkpoints/unival_s2_hs/checkpoint1.pt'
66
+
67
+ # Load ckpt & config for Image Captioning
68
+ caption_overrides={"eval_cider":False, "beam":5, "max_len_b":22, "no_repeat_ngram_size":3, "seed":7, "unnormalized": False,
69
+ "bpe_dir":"utils/BPE", "video_model_path": None,}
70
+
71
+ caption_models, caption_cfg, caption_task = checkpoint_utils.load_model_ensemble_and_task(
72
+ utils.split_paths(checkpoint_path),
73
+ arg_overrides=caption_overrides
74
+ )
75
+
76
+ # Load ckpt & config for Refcoco
77
+ refcoco_overrides = {"bpe_dir":"utils/BPE", "video_model_path": None}
78
+
79
+ refcoco_models, refcoco_cfg, refcoco_task = checkpoint_utils.load_model_ensemble_and_task(
80
+ utils.split_paths(checkpoint_path),
81
+ arg_overrides=refcoco_overrides
82
+ )
83
+ refcoco_cfg.common.seed = 7
84
+ refcoco_cfg.generation.beam = 5
85
+ refcoco_cfg.generation.min_len = 4
86
+ refcoco_cfg.generation.max_len_a = 0
87
+ refcoco_cfg.generation.max_len_b = 4
88
+ refcoco_cfg.generation.no_repeat_ngram_size = 3
89
+
90
+ # Load pretrained ckpt & config for VQA
91
+ parser = options.get_generation_parser()
92
+ input_args = ["", "--task=vqa_gen", "--beam=100", "--unnormalized", f"--path={checkpoint_path}", "--bpe-dir=utils/BPE"]
93
+ args = options.parse_args_and_arch(parser, input_args)
94
+ vqa_cfg = convert_namespace_to_omegaconf(args)
95
+ vqa_task = tasks.setup_task(vqa_cfg.task)
96
+ vqa_models, vqa_cfg = checkpoint_utils.load_model_ensemble(
97
+ utils.split_paths(vqa_cfg.common_eval.path),
98
+ task=vqa_task
99
+ )
100
+
101
+ # Load pretrained ckpt & config for Generic Interface
102
+ parser = options.get_generation_parser()
103
+ input_args = ["", "--task=refcoco", "--beam=10", f"--path={checkpoint_path}", "--bpe-dir=utils/BPE", "--no-repeat-ngram-size=3", "--patch-image-size=384"]
104
+ args = options.parse_args_and_arch(parser, input_args)
105
+ general_cfg = convert_namespace_to_omegaconf(args)
106
+ general_task = tasks.setup_task(general_cfg.task)
107
+ general_models, general_cfg = checkpoint_utils.load_model_ensemble(
108
+ utils.split_paths(general_cfg.common_eval.path),
109
+ task=general_task
110
+ )
111
+
112
+ # move models to gpu
113
+ move2gpu(caption_models, caption_cfg)
114
+ move2gpu(refcoco_models, refcoco_cfg)
115
+ move2gpu(vqa_models, vqa_cfg)
116
+ move2gpu(general_models, general_cfg)
117
+
118
+ # Initialize generator
119
+ caption_generator = caption_task.build_generator(caption_models, caption_cfg.generation)
120
+ refcoco_generator = refcoco_task.build_generator(refcoco_models, refcoco_cfg.generation)
121
+ vqa_generator = vqa_task.build_generator(vqa_models, vqa_cfg.generation)
122
+ vqa_generator.zero_shot = True
123
+ vqa_generator.constraint_trie = None
124
+ general_generator = general_task.build_generator(general_models, general_cfg.generation)
125
+
126
+ # Construct image transforms
127
+ caption_transform = construct_transform(caption_cfg.task.patch_image_size)
128
+ refcoco_transform = construct_transform(refcoco_cfg.task.patch_image_size)
129
+ vqa_transform = construct_transform(vqa_cfg.task.patch_image_size)
130
+ general_transform = construct_transform(general_cfg.task.patch_image_size)
131
+
132
+ # Text preprocess
133
+ bos_item = torch.LongTensor([caption_task.src_dict.bos()])
134
+ eos_item = torch.LongTensor([caption_task.src_dict.eos()])
135
+ pad_idx = caption_task.src_dict.pad()
136
+
137
+
138
+ def get_symbols_to_strip_from_output(generator):
139
+ if hasattr(generator, "symbols_to_strip_from_output"):
140
+ return generator.symbols_to_strip_from_output
141
+ else:
142
+ return {generator.bos, generator.eos}
143
+
144
+
145
+ def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None):
146
+ x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator))
147
+ token_result = []
148
+ bin_result = []
149
+ img_result = []
150
+ for token in x.strip().split():
151
+ if token.startswith('<bin_'):
152
+ bin_result.append(token)
153
+ elif token.startswith('<code_'):
154
+ img_result.append(token)
155
+ else:
156
+ if bpe is not None:
157
+ token = bpe.decode('{}'.format(token))
158
+ if tokenizer is not None:
159
+ token = tokenizer.decode(token)
160
+ if token.startswith(' ') or len(token_result) == 0:
161
+ token_result.append(token.strip())
162
+ else:
163
+ token_result[-1] += token
164
+
165
+ return ' '.join(token_result), ' '.join(bin_result), ' '.join(img_result)
166
+
167
+
168
+ def bin2coord(bins, w_resize_ratio, h_resize_ratio, cfg):
169
+ bin_list = [int(bin[5:-1]) for bin in bins.strip().split()]
170
+ coord_list = []
171
+ coord_list += [bin_list[0] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / w_resize_ratio]
172
+ coord_list += [bin_list[1] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / h_resize_ratio]
173
+ coord_list += [bin_list[2] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / w_resize_ratio]
174
+ coord_list += [bin_list[3] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / h_resize_ratio]
175
+ return coord_list
176
+
177
+
178
+ def encode_text(text, length=None, append_bos=False, append_eos=False):
179
+ line = [
180
+ caption_task.bpe.encode(' {}'.format(word.strip()))
181
+ if not word.startswith('<code_') and not word.startswith('<bin_') else word
182
+ for word in text.strip().split()
183
+ ]
184
+ line = ' '.join(line)
185
+ s = caption_task.tgt_dict.encode_line(
186
+ line=line,
187
+ add_if_not_exist=False,
188
+ append_eos=False
189
+ ).long()
190
+ if length is not None:
191
+ s = s[:length]
192
+ if append_bos:
193
+ s = torch.cat([bos_item, s])
194
+ if append_eos:
195
+ s = torch.cat([s, eos_item])
196
+ return s
197
+
198
+
199
+ def construct_sample(image: Image, instruction: str, transform):
200
+ patch_image = transform(image).unsqueeze(0)
201
+ patch_mask = torch.tensor([True])
202
+
203
+ instruction = encode_text(' {}'.format(instruction.lower().strip()), append_bos=True, append_eos=True).unsqueeze(0)
204
+ instruction_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in instruction])
205
+ sample = {
206
+ "id": np.array(['42']),
207
+ "net_input": {
208
+ "src_tokens": instruction,
209
+ "src_lengths": instruction_length,
210
+ "patch_images": patch_image,
211
+ "patch_masks": patch_mask,
212
+ }
213
+ }
214
+ return sample
215
+
216
+
217
+ # Function to turn FP32 to FP16
218
+ def apply_half(t):
219
+ if t.dtype is torch.float32:
220
+ return t.to(dtype=torch.half)
221
+ return t
222
+
223
+
224
+ def inference(image, task_type, instruction):
225
+ if task_type == 'Image Captioning':
226
+ task = caption_task
227
+ models = caption_models
228
+ generator = caption_generator
229
+ instruction = 'what does the image describe?'
230
+ transform = caption_transform
231
+ cfg = caption_cfg
232
+ elif task_type == 'Visual Question Answering':
233
+ task = vqa_task
234
+ models = vqa_models
235
+ generator = vqa_generator
236
+ transform = vqa_transform
237
+ cfg = vqa_cfg
238
+ elif task_type == 'Visual Grounding':
239
+ task = refcoco_task
240
+ models = refcoco_models
241
+ generator = refcoco_generator
242
+ instruction = 'which region does the text " {} " describe?'.format(instruction)
243
+ transform = refcoco_transform
244
+ cfg = refcoco_cfg
245
+ elif task_type == 'General':
246
+ task = general_task
247
+ models = general_models
248
+ generator = general_generator
249
+ transform = general_transform
250
+ cfg = general_cfg
251
+ else:
252
+ raise NotImplementedError
253
+
254
+ # Construct input sample & preprocess for GPU if cuda available
255
+ sample = construct_sample(image, instruction, transform)
256
+ sample = utils.move_to_cuda(sample) if use_cuda else sample
257
+ sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
258
+
259
+ # Generate result
260
+ with torch.no_grad():
261
+ hypos = task.inference_step(generator, models, sample)
262
+ tokens, bins, imgs = decode_fn(hypos[0][0]["tokens"], task.tgt_dict, task.bpe, generator)
263
+
264
+ if bins.strip() != '':
265
+ w, h = image.size
266
+ w_resize_ratio = task.cfg.patch_image_size / w
267
+ h_resize_ratio = task.cfg.patch_image_size / h
268
+ img = np.asarray(image)
269
+ coord_list = bin2coord(bins, w_resize_ratio, h_resize_ratio, cfg)
270
+ cv2.rectangle(
271
+ img,
272
+ (int(coord_list[0]), int(coord_list[1])),
273
+ (int(coord_list[2]), int(coord_list[3])),
274
+ (0, 255, 0),
275
+ 3
276
+ )
277
+ return img, None
278
+ else:
279
+ return None, tokens
280
+
281
+ inputs = [gr.inputs.Image(type='pil'), gr.inputs.Radio(choices=['Image Captioning',"Visual Question Answering", "Visual Grounding", "General"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
282
+ outputs = [gr.outputs.Image(type='pil'), 'text']
283
+ examples = [
284
+ ['examples/pokemons.jpeg', 'Image Captioning', None],
285
+ ['examples/cats.jpeg', 'Visual Question Answering', 'where are the cats?'],
286
+ ['examples/one_piece.jpeg', 'Visual Grounding', 'a man in a straw hat and a red dress'],
287
+ ['examples/three_houses.jpeg', 'General', 'which region does the text " a grey car " describe?'],
288
+ ['examples/three_houses.jpeg', 'General', 'what color is the left car?']
289
+ ]
290
+
291
+ title = "OFA"
292
+ description = "Gradio Demo for OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework"
293
+ article = "<p style='text-align: center'><a href='http://arxiv.org/abs/2202.03052' target='_blank'>Paper</a> | <a href='https://github.com/OFA-Sys/OFA' target='_blank'>Github Repo</a></p>"
294
+
295
+ io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
296
+ title=title, description=description, article=article, examples=examples, cache_examples=False)
297
+ io.launch()
checkpoints.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Checkpoints
2
+
3
+ We provide links for you to download our checkpoints, including pretrained and finetuned models on different tasks. If you would like to use OFA with Transformers, please download checkpoints at [https://huggingface.co/OFA-Sys](https://huggingface.co/OFA-Sys), and check the code in the branch `feature/add_transformers`.
4
+
5
+ ## Pretraining
6
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_huge.pt"> Pre-trained checkpoint (OFA-Huge) </a> (~930M parameters)
7
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_large.pt"> Pre-trained checkpoint (OFA-Large) </a> (~470M parameters)
8
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_base.pt"> Pre-trained checkpoint (OFA-Base) </a> (~180M parameters)
9
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_medium.pt"> Pre-trained checkpoint (OFA-Medium) </a> (~93M parameters)
10
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_tiny.pt"> Pre-trained checkpoint (OFA-Tiny) </a> (~33M parameters)
11
+
12
+ ## Finetuning (OFA-Huge)
13
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/caption_huge_best.pt"> Finetuned checkpoint for Caption on COCO </a>
14
+
15
+ ## Finetuning (OFA-Large)
16
+
17
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/caption_large_best_clean.pt"> Finetuned checkpoint for Caption on COCO </a>
18
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/caption_stage1_best.pt"> Finetuned checkpoint for Caption on COCO During Stage1 Finetuning </a>
19
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/refcoco_large_best.pt"> Finetuned checkpoint for RefCOCO </a>
20
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/refcocoplus_large_best.pt"> Finetuned checkpoint for RefCOCO+ </a>
21
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/refcocog_large_best.pt"> Finetuned checkpoint for RefCOCOg </a>
22
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/vqa_large_best.pt"> Finetuned checkpoint for VQAv2 </a>
23
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/snli_ve_large_best.pt"> Finetuned checkpoint for SNLI-VE </a>
24
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/image_gen_large_best.zip"> Finetuned checkpoint for Text-to-Image Generation on COCO && CLIP checkpoint && VQGAN checkpoint </a>
25
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/imagenet_1k_large_best.pt"> Finetuned checkpoint for ImageNet-1K </a>
26
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/gigaword_large_best.pt"> Finetuned checkpoint for Gigaword </a>
27
+
28
+
29
+ ## Finetuning (OFA-Base)
30
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/caption_base_best.pt"> Finetuned base checkpoint for Caption on COCO </a>
31
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/refcoco_base_best.pt"> Finetuned base checkpoint for RefCOCO </a>
32
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/refcocoplus_base_best.pt"> Finetuned base checkpoint for RefCOCO+ </a>
33
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/refcocog_base_best.pt"> Finetuned base checkpoint for RefCOCOg </a>
34
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/vqa_base_best.pt"> Finetuned base checkpoint for VQAv2 </a>
35
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/snli_ve_base_best.pt"> Finetuned base checkpoint for SNLI-VE </a>
36
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/image_gen_base_best.pt"> Finetuned base checkpoint for Text-to-Image Generation on COCO </a>
checkpoints/unival_s2_hs/checkpoint1.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b062bb0fa7c45266ee36326391e355724cccaee3119a9d3ee55d93488838a33
3
+ size 2570641445
checkpoints_cn.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Checkpoints (OFA-CN)
2
+
3
+ We provide checkpoints of OFA-CN, which is the Chinese version of OFA. We provide Base-size and Large-size models, including pretrained and finetuned models on image captioning and referring expression comprehension. Note that we translated the texts in the RefCOCO(-/+/g) datasets and finetuned OFA-CN on them. We plan to release the related new datasets in the near future.
4
+ <br>
5
+
6
+ ## Checkpoints
7
+ Below we provide the links for downloading the Chinese OFA checkpoints.
8
+
9
+ ### Pretraining
10
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_cn_large.pt"> Pretrained checkpoint (OFA-CN-Large) </a> (~443M parameters)
11
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_cn_base.pt "> Pretrained checkpoint (OFA-CN-Base) </a> (~160M parameters)
12
+
13
+ ### Finetuning (OFA-Large)
14
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/caption_cn_large.pt"> Finetuned checkpoint for MUGE Caption (Stage 1) </a>
15
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/refcoco_cn_large.pt"> Finetuned checkpoint for RefCOCO-CN </a>
16
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/refcocoplus_cn_large.pt"> Finetuned checkpoint for RefCOCO+-CN </a>
17
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/refcocog_cn_large.pt"> Finetuned checkpoint for RefCOCOg-CN </a>
18
+
19
+ ### Finetuning (OFA-Base)
20
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/caption_cn_base.pt"> Finetuned checkpoint for MUGE Caption (Stage 1) </a>
21
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/refcoco_cn_base.pt"> Finetuned checkpoint for RefCOCO-CN </a>
22
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/refcocoplus_cn_base.pt"> Finetuned checkpoint for RefCOCO+-CN </a>
23
+ * <a href="https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/refcocog_cn_base.pt"> Finetuned checkpoint for RefCOCOg-CN </a>
24
+ <br>
25
+
26
+ ## Model Card
27
+ Below we provide the basic information of the base-size and large-size OFA-CN.
28
+
29
+ <table border="1" width="100%">
30
+ <tr align="center">
31
+ <th>Model</th><th>#Params</th><th>Backbone</th><th>Hidden Size</th><th>Intermediate Size</th><th>#Heads</th><th>#Enc. Layers</th><th>#Dec. Layers</th>
32
+ </tr>
33
+ <tr align="center">
34
+ <td>OFA<sub>Base</sub><td>160M</td><td>ResNet101</td><td>768</td></td><td>3072</td><td>12</td><td>6</td><td>6</td>
35
+ </tr>
36
+ <tr align="center">
37
+ <td>OFA<sub>Large</sub></td><td>443M</td><td>ResNet152</td><td>1024</td></td><td>4096</td><td>16</td><td>12</td><td>12</td>
38
+ </tr>
39
+ </tr>
40
+ </table>
41
+ <br>
42
+
43
+ ## Results
44
+ Below we provide the results of OFA-CN and the baselines for comparison.
45
+
46
+ ### [MUGE Caption]("https://tianchi.aliyun.com/muge")
47
+ <table border="1" width="100%">
48
+ <tr align="center">
49
+ <td>Model</td><td>BLEU@4</td><td>ROUGE-L</td><td>CIDEr-D</td>
50
+ </tr>
51
+ <tr align="center">
52
+ <td>Trm </td><td>7.33</td><td>51.51</td><td>11.00</td>
53
+ </tr>
54
+ <tr align="center">
55
+ <td>M6</td><td>16.19</td><td>55.06</td><td>30.75</td>
56
+ </tr>
57
+ <tr align="center">
58
+ <td>OFA<sub>Base</sub></td><td>26.23</td><td>58.95</td><td>50.70</td>
59
+ </tr>
60
+ <tr align="center">
61
+ <td>OFA<sub>Large</sub></td><td><b>27.32</b></td><td><b>59.20</b></td><td><b>53.51</b></td>
62
+ </tr>
63
+ </table>
64
+
65
+ ### RefCOCO-CN Series
66
+ <table border="1" width="100%">
67
+ <tr align="center">
68
+ <td>Model</td><td>RefCOCO(val/testA/testB)</td><td>RefCOCO+(val/testA/testB)</td><td>RefCOCOg(val/test-u)</td>
69
+ </tr>
70
+ <tr align="center">
71
+ <td>OFA<sub>Base</sub>(random-init)</td><td>30.13/35.07/25.03</td><td>17.89/20.90/15.83</td><td>20.30/20.45</td>
72
+ </tr>
73
+ <tr align="center">
74
+ <td>OFA<sub>Base</sub></td><td>82.18/86.07/<b>76.68</b></td><td>69.38/77.26/60.14</td><td><b>73.57/72.53</b></td>
75
+ </tr>
76
+ <tr align="center">
77
+ <td>OFA<sub>Large</sub></td><td><b>82.84/86.54</b>/76.50</td><td><b>71.30/78.56/61.85</b></td><td>71.96/71.30</td>
78
+ </tr>
79
+ </table>
80
+ <br>
81
+
82
+
colab.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Colab Notebooks
2
+
3
+ We provide Colab notebooks of different downstream tasks for you guys to enjoy OFA. See below.
4
+
5
+ * [Image Captioning in Huggingface Transformers](https://colab.research.google.com/drive/1Ho81RBV8jysZ7e0FhsSCk_v938QeDuy3?usp=sharing)
6
+ * [Generic Interface](https://colab.research.google.com/drive/1jogyZ-2rdHU3XxZOf3TBfhex1XHqX-1m?usp=sharing#scrollTo=s9Vni6YUZOpC) (using different instructions to perform various tasks with just one model.)
7
+ * [Image Captioning](https://colab.research.google.com/drive/1Q4eNhhhLcgOP4hHqwZwU1ijOlabgve1W?usp=sharing)
8
+ * [Referring Expression Comprehension](https://colab.research.google.com/drive/1AHQNRdaUpRTgr3XySHSlba8aXwBAjwPB?usp=sharing)
9
+ * [Open-Domain Visual Question Answering](https://colab.research.google.com/drive/14v6OQe_MxV_HMnsiKfnEeMR1UMqhzZNb?usp=sharing)
criterions/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .label_smoothed_cross_entropy import AdjustLabelSmoothedCrossEntropyCriterion
2
+ from .clip_scst_loss import ClipScstRewardCriterion
3
+ from .label_smoothed_encouraging_loss import AdjustLabelSmoothedEncouragingLossCriterion
4
+ from .label_smoothed_cross_entropy_scst import AdjustLabelSmoothedCrossEntropySCSTCriterion
5
+ from .refcoco_scst_loss import RefCOCOScstRewardCriterion
criterions/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (457 Bytes). View file
 
criterions/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (438 Bytes). View file
 
criterions/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (634 Bytes). View file
 
criterions/__pycache__/clip_scst_loss.cpython-37.pyc ADDED
Binary file (9.59 kB). View file
 
criterions/__pycache__/clip_scst_loss.cpython-38.pyc ADDED
Binary file (9.74 kB). View file
 
criterions/__pycache__/clip_scst_loss.cpython-39.pyc ADDED
Binary file (9.73 kB). View file
 
criterions/__pycache__/label_smoothed_cross_entropy.cpython-37.pyc ADDED
Binary file (10.7 kB). View file
 
criterions/__pycache__/label_smoothed_cross_entropy.cpython-38.pyc ADDED
Binary file (10.8 kB). View file
 
criterions/__pycache__/label_smoothed_cross_entropy.cpython-39.pyc ADDED
Binary file (10.7 kB). View file
 
criterions/__pycache__/label_smoothed_cross_entropy_scst.cpython-39.pyc ADDED
Binary file (15.3 kB). View file
 
criterions/__pycache__/label_smoothed_encouraging_loss.cpython-37.pyc ADDED
Binary file (11.7 kB). View file
 
criterions/__pycache__/label_smoothed_encouraging_loss.cpython-38.pyc ADDED
Binary file (11.8 kB). View file
 
criterions/__pycache__/label_smoothed_encouraging_loss.cpython-39.pyc ADDED
Binary file (11.8 kB). View file
 
criterions/__pycache__/refcoco_scst_loss.cpython-39.pyc ADDED
Binary file (13.7 kB). View file
 
criterions/__pycache__/scst_loss.cpython-37.pyc ADDED
Binary file (9.93 kB). View file
 
criterions/__pycache__/scst_loss.cpython-38.pyc ADDED
Binary file (10.1 kB). View file
 
criterions/__pycache__/scst_loss.cpython-39.pyc ADDED
Binary file (11 kB). View file
 
criterions/clip_scst_loss.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The OFA-Sys Team.
2
+ # All rights reserved.
3
+ # This source code is licensed under the Apache 2.0 license
4
+ # found in the LICENSE file in the root directory.
5
+
6
+ import math
7
+ from dataclasses import dataclass, field
8
+ from typing import Optional
9
+ from PIL import Image
10
+ from torchvision import transforms
11
+
12
+ import torch
13
+ import numpy as np
14
+ from fairseq import metrics
15
+ from fairseq.data import data_utils
16
+ from fairseq.criterions import FairseqCriterion, register_criterion
17
+ from fairseq.dataclass import FairseqDataclass
18
+ from fairseq import utils
19
+ from omegaconf import II
20
+
21
+ from models import clip
22
+
23
+
24
+ def custom_to_pil(x):
25
+ x = x.detach().cpu()
26
+ x = torch.clamp(x, -1., 1.)
27
+ x = (x + 1.) / 2.
28
+ x = x.permute(1, 2, 0).numpy()
29
+ x = (255 * x).astype(np.uint8)
30
+ x = Image.fromarray(x)
31
+ if not x.mode == "RGB":
32
+ x = x.convert("RGB")
33
+ return x
34
+
35
+
36
+ def scst_loss(lprobs, target, reward, ignore_index=None, reduce=True):
37
+ loss = -lprobs.gather(dim=-1, index=target.unsqueeze(-1)).squeeze() * reward.unsqueeze(-1)
38
+ if ignore_index is not None:
39
+ pad_mask = target.eq(ignore_index)
40
+ loss.masked_fill_(pad_mask, 0.0)
41
+ ntokens = (~pad_mask).sum()
42
+ else:
43
+ loss = loss.squeeze(-1)
44
+ ntokens = target.numel()
45
+ if reduce:
46
+ loss = loss.sum()
47
+ return loss, ntokens
48
+
49
+
50
+ @dataclass
51
+ class ClipScstRewardCriterionConfig(FairseqDataclass):
52
+ ignore_prefix_size: int = field(
53
+ default=0,
54
+ metadata={"help": "Ignore first N tokens"},
55
+ )
56
+ sentence_avg: bool = II("optimization.sentence_avg")
57
+ constraint_range: Optional[str] = field(
58
+ default=None,
59
+ metadata={"help": "constraint range"}
60
+ )
61
+
62
+
63
+ @register_criterion(
64
+ "clip_scst_reward_criterion", dataclass=ClipScstRewardCriterionConfig
65
+ )
66
+ class ClipScstRewardCriterion(FairseqCriterion):
67
+ CLIP_REWARD_WEIGHT = 2.5
68
+
69
+ def __init__(
70
+ self,
71
+ task,
72
+ sentence_avg,
73
+ ignore_prefix_size=0,
74
+ constraint_range=None
75
+ ):
76
+ super().__init__(task)
77
+ self.sentence_avg = sentence_avg
78
+ self.ignore_prefix_size = ignore_prefix_size
79
+
80
+ self.constraint_start = None
81
+ self.constraint_end = None
82
+ if constraint_range is not None:
83
+ constraint_start, constraint_end = constraint_range.split(',')
84
+ self.constraint_start = int(constraint_start)
85
+ self.constraint_end = int(constraint_end)
86
+
87
+ def forward(self, model, sample, update_num=0, reduce=True):
88
+ """Compute the loss for the given sample.
89
+
90
+ Returns a tuple with three elements:
91
+ 1) the loss
92
+ 2) the sample size, which is used as the denominator for the gradient
93
+ 3) logging outputs to display while training
94
+ """
95
+ loss, score, ntokens, nsentences = self.compute_loss(model, sample, reduce=reduce)
96
+
97
+ sample_size = (
98
+ nsentences if self.sentence_avg else ntokens
99
+ )
100
+ logging_output = {
101
+ "loss": loss.data,
102
+ "score": score,
103
+ "ntokens": ntokens,
104
+ "nsentences": nsentences,
105
+ "sample_size": sample_size,
106
+ }
107
+ return loss, sample_size, logging_output
108
+
109
+ def _calculate_clip_scores(self, gen_res, gt_text, device):
110
+ '''
111
+ gen_res: generated images, list of Image
112
+ gt_text: input captions.
113
+ device: device for clip model
114
+ '''
115
+ batch_size = len(gt_text)
116
+ gen_res_size = len(gen_res)
117
+ img_per_seq = gen_res_size // batch_size
118
+
119
+ hyp_images = torch.stack(
120
+ [self.task.clip_preprocess(gen_image) for gen_image in gen_res], dim=0
121
+ ).to(device)
122
+
123
+ clip_input = clip.tokenize([text for text in gt_text]).to(device)
124
+ with torch.no_grad():
125
+ image_features = self.task.clip_model.encode_image(hyp_images)
126
+ text_features = self.task.clip_model.encode_text(clip_input)
127
+ image_features /= image_features.norm(dim=-1, keepdim=True)
128
+ text_features /= text_features.norm(dim=-1, keepdim=True)
129
+ image_features = image_features.view(batch_size, img_per_seq, -1)
130
+ text_features = text_features.view(batch_size, 1, -1)
131
+ ti_similarity = image_features @ text_features.transpose(1, 2)
132
+ ti_similarity = ti_similarity.view(-1)
133
+
134
+ scores = self.CLIP_REWARD_WEIGHT * ti_similarity
135
+ return scores
136
+
137
+ def get_generator_out(self, model, sample):
138
+ model.eval()
139
+ with torch.no_grad():
140
+ self.task.scst_generator.model.eval()
141
+ gen_out = self.task.scst_generator.generate([model], sample)
142
+
143
+ gen_target = []
144
+ gen_res = []
145
+ gt_text = []
146
+ for i in range(len(gen_out)):
147
+ with torch.no_grad():
148
+ tokens = torch.stack([item['tokens'][:-1] for item in gen_out[i]], dim=0)
149
+ tokens += -len(self.task.src_dict) + self.task.cfg.code_dict_size + self.task.cfg.num_bins
150
+ images = self.task.image_tokenizer.decode_code(
151
+ tokens.view(-1, self.task.cfg.code_image_size // 8, self.task.cfg.code_image_size // 8)
152
+ )
153
+ images = [custom_to_pil(image) for image in images]
154
+
155
+ gen_target += [item['tokens'] for item in gen_out[i]]
156
+ gen_res += images
157
+ gt_text.append(
158
+ self.task.bpe.decode(
159
+ self.task.tgt_dict.string(
160
+ utils.strip_pad(sample['net_input']['src_tokens'][i], self.padding_idx).cpu().int()
161
+ )
162
+ )[38:] # remove task instruction.
163
+ )
164
+
165
+ return gen_target, gen_res, gt_text
166
+
167
+ def get_reward_and_scores(self, gen_res, gt_text, device):
168
+ batch_size = len(gt_text)
169
+ gen_res_size = len(gen_res)
170
+ img_per_sample = gen_res_size // batch_size
171
+
172
+ scores = self._calculate_clip_scores(gen_res, gt_text, device)
173
+ sc_ = scores.reshape(batch_size, img_per_sample)
174
+ baseline = (sc_.sum(1, keepdim=True) - sc_) / (sc_.shape[1] - 1)
175
+ # sample - baseline
176
+ reward = scores.reshape(batch_size, img_per_sample)
177
+ reward = reward - baseline
178
+ reward = reward.view(-1)
179
+
180
+ return reward, scores
181
+
182
+ def get_net_output(self, model, sample, gen_target):
183
+ def merge(sample_list, eos=self.task.tgt_dict.eos(), move_eos_to_beginning=False):
184
+ return data_utils.collate_tokens(
185
+ sample_list,
186
+ pad_idx=self.padding_idx,
187
+ eos_idx=eos,
188
+ left_pad=False,
189
+ move_eos_to_beginning=move_eos_to_beginning,
190
+ )
191
+
192
+ batch_size = len(sample["target"])
193
+ gen_target_size = len(gen_target)
194
+ img_per_sample = gen_target_size // batch_size
195
+
196
+ model.train()
197
+ sample_src_tokens = torch.repeat_interleave(
198
+ sample['net_input']['src_tokens'], img_per_sample, dim=0
199
+ )
200
+ sample_src_lengths = torch.repeat_interleave(
201
+ sample['net_input']['src_lengths'], img_per_sample, dim=0
202
+ )
203
+ sample_code_masks = torch.repeat_interleave(
204
+ sample['net_input']['code_masks'], img_per_sample, dim=0
205
+ )
206
+ gen_prev_output_tokens = torch.as_tensor(
207
+ merge(gen_target, eos=self.task.tgt_dict.bos(), move_eos_to_beginning=True),
208
+ device=sample["target"].device, dtype=torch.int64
209
+ )
210
+ gen_target_tokens = torch.as_tensor(
211
+ merge(gen_target), device=sample["target"].device, dtype=torch.int64
212
+ )
213
+ net_output = model(
214
+ src_tokens=sample_src_tokens, src_lengths=sample_src_lengths,
215
+ code_masks=sample_code_masks, prev_output_tokens=gen_prev_output_tokens
216
+ )
217
+
218
+ return net_output, gen_target_tokens
219
+
220
+ def get_lprobs_and_target(self, model, net_output, gen_target):
221
+ if self.constraint_start is not None and self.constraint_end is not None:
222
+ net_output[0][:, :, 4:self.constraint_start] = -math.inf
223
+ net_output[0][:, :, self.constraint_end:] = -math.inf
224
+ lprobs = model.get_normalized_probs(net_output, log_probs=True)
225
+ if self.ignore_prefix_size > 0:
226
+ if getattr(lprobs, "batch_first", False):
227
+ lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
228
+ gen_target = gen_target[:, self.ignore_prefix_size :].contiguous()
229
+ else:
230
+ lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous()
231
+ gen_target = gen_target[self.ignore_prefix_size :, :].contiguous()
232
+ return lprobs, gen_target
233
+
234
+ def compute_loss(self, model, sample, reduce=True):
235
+ gen_target, gen_res, gt_text = self.get_generator_out(model, sample)
236
+ reward, scores = self.get_reward_and_scores(gen_res, gt_text, device=sample["target"].device)
237
+ net_output, gen_target_tokens = self.get_net_output(model, sample, gen_target)
238
+ gen_lprobs, gen_target_tokens = self.get_lprobs_and_target(model, net_output, gen_target_tokens)
239
+ loss, ntokens = scst_loss(gen_lprobs, gen_target_tokens, reward, ignore_index=self.padding_idx, reduce=reduce)
240
+ nsentences = gen_target_tokens.size(0)
241
+
242
+ return loss, scores.sum(), ntokens, nsentences
243
+
244
+ @classmethod
245
+ def reduce_metrics(cls, logging_outputs) -> None:
246
+ """Aggregate logging outputs from data parallel training."""
247
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
248
+ score_sum = sum(log.get("score", 0) for log in logging_outputs)
249
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
250
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
251
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
252
+
253
+ metrics.log_scalar(
254
+ "loss", loss_sum / sample_size, sample_size, round=3
255
+ )
256
+ metrics.log_scalar(
257
+ "score", score_sum / nsentences, nsentences, round=3
258
+ )
259
+
260
+ metrics.log_scalar(
261
+ "ntokens", ntokens, 1, round=3
262
+ )
263
+ metrics.log_scalar(
264
+ "nsentences", nsentences, 1, round=3
265
+ )
266
+ metrics.log_scalar(
267
+ "sample_size", sample_size, 1, round=3
268
+ )
269
+
270
+ @staticmethod
271
+ def logging_outputs_can_be_summed() -> bool:
272
+ """
273
+ Whether the logging outputs returned by `forward` can be summed
274
+ across workers prior to calling `reduce_metrics`. Setting this
275
+ to True will improves distributed training speed.
276
+ """
277
+ return True
criterions/label_smoothed_cross_entropy.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The OFA-Sys Team.
2
+ # All rights reserved.
3
+ # This source code is licensed under the Apache 2.0 license
4
+ # found in the LICENSE file in the root directory.
5
+
6
+ import math
7
+ from dataclasses import dataclass, field
8
+ from typing import Optional
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import numpy as np
13
+ from fairseq import metrics, utils
14
+ from fairseq.criterions import FairseqCriterion, register_criterion
15
+ from fairseq.dataclass import FairseqDataclass
16
+ from omegaconf import II
17
+
18
+
19
+ @dataclass
20
+ class AdjustLabelSmoothedCrossEntropyCriterionConfig(FairseqDataclass):
21
+ label_smoothing: float = field(
22
+ default=0.0,
23
+ metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
24
+ )
25
+ report_accuracy: bool = field(
26
+ default=False,
27
+ metadata={"help": "report accuracy metric"},
28
+ )
29
+ ignore_prefix_size: int = field(
30
+ default=0,
31
+ metadata={"help": "Ignore first N tokens"},
32
+ )
33
+ ignore_eos: bool = field(
34
+ default=False,
35
+ metadata={"help": "Ignore eos token"},
36
+ )
37
+ sentence_avg: bool = II("optimization.sentence_avg")
38
+ drop_worst_ratio: float = field(
39
+ default=0.0,
40
+ metadata={"help": "ratio for discarding bad samples"},
41
+ )
42
+ drop_worst_after: int = field(
43
+ default=0,
44
+ metadata={"help": "steps for discarding bad samples"},
45
+ )
46
+ use_rdrop: bool = field(
47
+ default=False, metadata={"help": "use R-Drop"}
48
+ )
49
+ reg_alpha: float = field(
50
+ default=1.0, metadata={"help": "weight for R-Drop"}
51
+ )
52
+ sample_patch_num: int = field(
53
+ default=196, metadata={"help": "sample patches for v1"}
54
+ )
55
+ constraint_range: Optional[str] = field(
56
+ default=None,
57
+ metadata={"help": "constraint range"}
58
+ )
59
+
60
+
61
+ def construct_rdrop_sample(x):
62
+ if isinstance(x, dict):
63
+ for key in x:
64
+ x[key] = construct_rdrop_sample(x[key])
65
+ return x
66
+ elif isinstance(x, torch.Tensor):
67
+ return x.repeat(2, *([1] * (x.dim()-1)))
68
+ elif isinstance(x, int):
69
+ return x * 2
70
+ elif isinstance(x, np.ndarray):
71
+ return x.repeat(2)
72
+ else:
73
+ raise NotImplementedError
74
+
75
+
76
+ def kl_loss(p, q):
77
+ p_loss = F.kl_div(p, torch.exp(q), reduction='sum')
78
+ q_loss = F.kl_div(q, torch.exp(p), reduction='sum')
79
+ loss = (p_loss + q_loss) / 2
80
+ return loss
81
+
82
+
83
+ def label_smoothed_nll_loss(
84
+ lprobs, target, epsilon, update_num, reduce=True,
85
+ drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0,
86
+ constraint_masks=None, constraint_start=None, constraint_end=None
87
+ ):
88
+ if target.dim() == lprobs.dim() - 1:
89
+ target = target.unsqueeze(-1)
90
+ nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1)
91
+ if constraint_masks is not None:
92
+ smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1)
93
+ eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6)
94
+ elif constraint_start is not None and constraint_end is not None:
95
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
96
+ smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1)
97
+ eps_i = epsilon / (len(constraint_range) - 1 + 1e-6)
98
+ else:
99
+ smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1)
100
+ eps_i = epsilon / (lprobs.size(-1) - 1)
101
+ loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
102
+ if drop_worst_ratio > 0 and update_num > drop_worst_after:
103
+ if use_rdrop:
104
+ true_batch_size = loss.size(0) // 2
105
+ _, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False)
106
+ loss = torch.cat([loss[indices], loss[indices+true_batch_size]])
107
+ nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]])
108
+ lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]])
109
+ else:
110
+ loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False)
111
+ nll_loss = nll_loss[indices]
112
+ lprobs = lprobs[indices]
113
+
114
+ ntokens = loss.numel()
115
+ nll_loss = nll_loss.sum()
116
+ loss = loss.sum()
117
+ if use_rdrop:
118
+ true_batch_size = lprobs.size(0) // 2
119
+ p = lprobs[:true_batch_size]
120
+ q = lprobs[true_batch_size:]
121
+ if constraint_start is not None and constraint_end is not None:
122
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
123
+ p = p[:, constraint_range]
124
+ q = q[:, constraint_range]
125
+ loss += kl_loss(p, q) * reg_alpha
126
+
127
+ return loss, nll_loss, ntokens
128
+
129
+
130
+ @register_criterion(
131
+ "adjust_label_smoothed_cross_entropy", dataclass=AdjustLabelSmoothedCrossEntropyCriterionConfig
132
+ )
133
+ class AdjustLabelSmoothedCrossEntropyCriterion(FairseqCriterion):
134
+ def __init__(
135
+ self,
136
+ task,
137
+ sentence_avg,
138
+ label_smoothing,
139
+ ignore_prefix_size=0,
140
+ ignore_eos=False,
141
+ report_accuracy=False,
142
+ drop_worst_ratio=0,
143
+ drop_worst_after=0,
144
+ use_rdrop=False,
145
+ reg_alpha=1.0,
146
+ sample_patch_num=196,
147
+ constraint_range=None
148
+ ):
149
+ super().__init__(task)
150
+ self.sentence_avg = sentence_avg
151
+ self.eps = label_smoothing
152
+ self.ignore_prefix_size = ignore_prefix_size
153
+ self.ignore_eos = ignore_eos
154
+ self.report_accuracy = report_accuracy
155
+ self.drop_worst_ratio = drop_worst_ratio
156
+ self.drop_worst_after = drop_worst_after
157
+ self.use_rdrop = use_rdrop
158
+ self.reg_alpha = reg_alpha
159
+ self.sample_patch_num = sample_patch_num
160
+
161
+ self.constraint_start = None
162
+ self.constraint_end = None
163
+ if constraint_range is not None:
164
+ constraint_start, constraint_end = constraint_range.split(',')
165
+ self.constraint_start = int(constraint_start)
166
+ self.constraint_end = int(constraint_end)
167
+
168
+ def forward(self, model, sample, update_num=0, reduce=True):
169
+ """Compute the loss for the given sample.
170
+
171
+ Returns a tuple with three elements:
172
+ 1) the loss
173
+ 2) the sample size, which is used as the denominator for the gradient
174
+ 3) logging outputs to display while training
175
+ """
176
+ if isinstance(sample, list):
177
+ if self.sample_patch_num > 0:
178
+ sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num
179
+ # change to support len(samples) > 2
180
+ loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce)
181
+ loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce)
182
+ loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2
183
+ sample_size = 1
184
+ logging_output = {
185
+ "loss": loss.data,
186
+ "loss_v1": loss_v1.data,
187
+ "loss_v2": loss_v2.data,
188
+ "nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2,
189
+ "ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"],
190
+ "nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"],
191
+ "sample_size": 1,
192
+ "sample_size_v1": sample_size_v1,
193
+ "sample_size_v2": sample_size_v2,
194
+ }
195
+ return loss, sample_size, logging_output
196
+
197
+ if self.use_rdrop:
198
+ construct_rdrop_sample(sample)
199
+
200
+ net_output = model(**sample["net_input"])
201
+ loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce)
202
+ sample_size = (
203
+ sample["target"].size(0) if self.sentence_avg else ntokens
204
+ )
205
+ logging_output = {
206
+ "loss": loss.data,
207
+ "nll_loss": nll_loss.data,
208
+ "ntokens": sample["ntokens"],
209
+ "nsentences": sample["nsentences"],
210
+ "sample_size": sample_size,
211
+ }
212
+ if self.report_accuracy:
213
+ n_correct, total = self.compute_accuracy(model, net_output, sample)
214
+ logging_output["n_correct"] = utils.item(n_correct.data)
215
+ logging_output["total"] = utils.item(total.data)
216
+
217
+ return loss, sample_size, logging_output
218
+
219
+ def get_lprobs_and_target(self, model, net_output, sample):
220
+ conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1
221
+ constraint_masks = None
222
+ if "constraint_masks" in sample and sample["constraint_masks"] is not None:
223
+ constraint_masks = sample["constraint_masks"]
224
+ net_output[0].masked_fill_(~constraint_masks, -math.inf)
225
+ if self.constraint_start is not None and self.constraint_end is not None:
226
+ net_output[0][:, :, 4:self.constraint_start] = -math.inf
227
+ net_output[0][:, :, self.constraint_end:] = -math.inf
228
+ lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf
229
+ target = model.get_targets(sample, net_output)
230
+ if self.ignore_prefix_size > 0:
231
+ lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
232
+ target = target[:, self.ignore_prefix_size :].contiguous()
233
+ if constraint_masks is not None:
234
+ constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous()
235
+ if self.ignore_eos:
236
+ bsz, seq_len, embed_dim = lprobs.size()
237
+ eos_indices = target.eq(self.task.tgt_dict.eos())
238
+ lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
239
+ target = target[~eos_indices].reshape(bsz, seq_len-1)
240
+ if constraint_masks is not None:
241
+ constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
242
+ if constraint_masks is not None:
243
+ constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1))
244
+ return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks
245
+
246
+ def compute_loss(self, model, net_output, sample, update_num, reduce=True):
247
+ lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample)
248
+ if constraint_masks is not None:
249
+ constraint_masks = constraint_masks[target != self.padding_idx]
250
+ # print(target.shape, self.padding_idx, lprobs.shape, target, lprobs)
251
+ lprobs = lprobs[target != self.padding_idx]
252
+ target = target[target != self.padding_idx]
253
+ loss, nll_loss, ntokens = label_smoothed_nll_loss(
254
+ lprobs,
255
+ target,
256
+ self.eps,
257
+ update_num,
258
+ reduce=reduce,
259
+ drop_worst_ratio=self.drop_worst_ratio,
260
+ drop_worst_after=self.drop_worst_after,
261
+ use_rdrop=self.use_rdrop,
262
+ reg_alpha=self.reg_alpha,
263
+ constraint_masks=constraint_masks,
264
+ constraint_start=self.constraint_start,
265
+ constraint_end=self.constraint_end
266
+ )
267
+ return loss, nll_loss, ntokens
268
+
269
+ def compute_accuracy(self, model, net_output, sample):
270
+ lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
271
+ mask = target.ne(self.padding_idx)
272
+ n_correct = torch.sum(
273
+ lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
274
+ )
275
+ total = torch.sum(mask)
276
+ return n_correct, total
277
+
278
+ @classmethod
279
+ def reduce_metrics(cls, logging_outputs) -> None:
280
+ """Aggregate logging outputs from data parallel training."""
281
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
282
+ loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs)
283
+ loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs)
284
+ nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
285
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
286
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
287
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
288
+ sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs)
289
+ sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs)
290
+
291
+ metrics.log_scalar(
292
+ "loss", loss_sum / sample_size, sample_size, round=3
293
+ )
294
+ metrics.log_scalar(
295
+ "loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3
296
+ )
297
+ metrics.log_scalar(
298
+ "loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3
299
+ )
300
+ metrics.log_scalar(
301
+ "nll_loss", nll_loss_sum / sample_size, ntokens, round=3
302
+ )
303
+ metrics.log_derived(
304
+ "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
305
+ )
306
+
307
+ metrics.log_scalar(
308
+ "ntokens", ntokens, 1, round=3
309
+ )
310
+ metrics.log_scalar(
311
+ "nsentences", nsentences, 1, round=3
312
+ )
313
+ metrics.log_scalar(
314
+ "sample_size", sample_size, 1, round=3
315
+ )
316
+ metrics.log_scalar(
317
+ "sample_size_v1", sample_size_v1, 1, round=3
318
+ )
319
+ metrics.log_scalar(
320
+ "sample_size_v2", sample_size_v2, 1, round=3
321
+ )
322
+
323
+ total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
324
+ if total > 0:
325
+ metrics.log_scalar("total", total)
326
+ n_correct = utils.item(
327
+ sum(log.get("n_correct", 0) for log in logging_outputs)
328
+ )
329
+ metrics.log_scalar("n_correct", n_correct)
330
+ metrics.log_derived(
331
+ "accuracy",
332
+ lambda meters: round(
333
+ meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
334
+ )
335
+ if meters["total"].sum > 0
336
+ else float("nan"),
337
+ )
338
+
339
+ @staticmethod
340
+ def logging_outputs_can_be_summed() -> bool:
341
+ """
342
+ Whether the logging outputs returned by `forward` can be summed
343
+ across workers prior to calling `reduce_metrics`. Setting this
344
+ to True will improves distributed training speed.
345
+ """
346
+ return True
criterions/label_smoothed_cross_entropy_scst.py ADDED
@@ -0,0 +1,555 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The OFA-Sys Team.
2
+ # All rights reserved.
3
+ # This source code is licensed under the Apache 2.0 license
4
+ # found in the LICENSE file in the root directory.
5
+
6
+ import math
7
+ from dataclasses import dataclass, field
8
+ from typing import Optional
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import numpy as np
13
+ from fairseq import metrics, utils
14
+ from fairseq.criterions import FairseqCriterion, register_criterion
15
+ from fairseq.dataclass import FairseqDataclass
16
+ from omegaconf import II
17
+
18
+
19
+ from mapcalc import calculate_map, calculate_map_range
20
+
21
+ @dataclass
22
+ class AdjustLabelSmoothedCrossEntropySCSTCriterionConfig(FairseqDataclass):
23
+ label_smoothing: float = field(
24
+ default=0.0,
25
+ metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
26
+ )
27
+ report_accuracy: bool = field(
28
+ default=False,
29
+ metadata={"help": "report accuracy metric"},
30
+ )
31
+ ignore_prefix_size: int = field(
32
+ default=0,
33
+ metadata={"help": "Ignore first N tokens"},
34
+ )
35
+ ignore_eos: bool = field(
36
+ default=False,
37
+ metadata={"help": "Ignore eos token"},
38
+ )
39
+ sentence_avg: bool = II("optimization.sentence_avg")
40
+ drop_worst_ratio: float = field(
41
+ default=0.0,
42
+ metadata={"help": "ratio for discarding bad samples"},
43
+ )
44
+ drop_worst_after: int = field(
45
+ default=0,
46
+ metadata={"help": "steps for discarding bad samples"},
47
+ )
48
+ use_rdrop: bool = field(
49
+ default=False, metadata={"help": "use R-Drop"}
50
+ )
51
+ reg_alpha: float = field(
52
+ default=1.0, metadata={"help": "weight for R-Drop"}
53
+ )
54
+ sample_patch_num: int = field(
55
+ default=196, metadata={"help": "sample patches for v1"}
56
+ )
57
+ constraint_range: Optional[str] = field(
58
+ default=None,
59
+ metadata={"help": "constraint range"}
60
+ )
61
+ acc_thresh: Optional[float] = field(
62
+ default=None, metadata={"help": "acc thresh for refcoco"}
63
+ )
64
+ metric: Optional[str] = field(
65
+ default='acc',
66
+ metadata={"help": "metric"}
67
+ )
68
+
69
+ max_area_size: Optional[float] = field(
70
+ default=None, metadata={"help": "max_area_size"}
71
+ )
72
+
73
+ min_area_size: Optional[float] = field(
74
+ default=None, metadata={"help": "min_area_size"}
75
+ )
76
+ logprob: Optional[bool] = field(
77
+ default=False, metadata={"help": "maximise log prob"}
78
+ )
79
+
80
+ pos_reward: Optional[float] = field(
81
+ default=None, metadata={"help": "pos_reward"}
82
+ )
83
+
84
+ neg_reward: Optional[float] = field(
85
+ default=None, metadata={"help": "neg_reward"}
86
+ )
87
+
88
+ reinforce: Optional[bool] = field(
89
+ default=False, metadata={"help": "reinforce"}
90
+ )
91
+
92
+ lambda_reinforce: Optional[float] = field(
93
+ default=0, metadata={"help": "lambda_reinforce"}
94
+ )
95
+
96
+
97
+
98
+ def construct_rdrop_sample(x):
99
+ if isinstance(x, dict):
100
+ for key in x:
101
+ x[key] = construct_rdrop_sample(x[key])
102
+ return x
103
+ elif isinstance(x, torch.Tensor):
104
+ return x.repeat(2, *([1] * (x.dim()-1)))
105
+ elif isinstance(x, int):
106
+ return x * 2
107
+ elif isinstance(x, np.ndarray):
108
+ return x.repeat(2)
109
+ else:
110
+ raise NotImplementedError
111
+
112
+
113
+ def kl_loss(p, q):
114
+ p_loss = F.kl_div(p, torch.exp(q), reduction='sum')
115
+ q_loss = F.kl_div(q, torch.exp(p), reduction='sum')
116
+ loss = (p_loss + q_loss) / 2
117
+ return loss
118
+
119
+
120
+ def label_smoothed_nll_loss(
121
+ lprobs, target, epsilon, update_num, reduce=True,
122
+ drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0,
123
+ constraint_masks=None, constraint_start=None, constraint_end=None
124
+ ):
125
+ if target.dim() == lprobs.dim() - 1:
126
+ target = target.unsqueeze(-1)
127
+ nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1)
128
+ if constraint_masks is not None:
129
+ smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1)
130
+ eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6)
131
+ elif constraint_start is not None and constraint_end is not None:
132
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
133
+ smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1)
134
+ eps_i = epsilon / (len(constraint_range) - 1 + 1e-6)
135
+ else:
136
+ smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1)
137
+ eps_i = epsilon / (lprobs.size(-1) - 1)
138
+ loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
139
+ if drop_worst_ratio > 0 and update_num > drop_worst_after:
140
+ if use_rdrop:
141
+ true_batch_size = loss.size(0) // 2
142
+ _, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False)
143
+ loss = torch.cat([loss[indices], loss[indices+true_batch_size]])
144
+ nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]])
145
+ lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]])
146
+ else:
147
+ loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False)
148
+ nll_loss = nll_loss[indices]
149
+ lprobs = lprobs[indices]
150
+
151
+ ntokens = loss.numel()
152
+ nll_loss = nll_loss.sum()
153
+ # loss = loss.sum()
154
+ if use_rdrop:
155
+ true_batch_size = lprobs.size(0) // 2
156
+ p = lprobs[:true_batch_size]
157
+ q = lprobs[true_batch_size:]
158
+ if constraint_start is not None and constraint_end is not None:
159
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
160
+ p = p[:, constraint_range]
161
+ q = q[:, constraint_range]
162
+ loss = loss + ((kl_loss(p, q) * reg_alpha)/loss.shape[0])
163
+
164
+ return loss, nll_loss, ntokens
165
+
166
+
167
+ @register_criterion(
168
+ "adjust_label_smoothed_cross_entropy_scst", dataclass=AdjustLabelSmoothedCrossEntropySCSTCriterionConfig
169
+ )
170
+ class AdjustLabelSmoothedCrossEntropySCSTCriterion(FairseqCriterion):
171
+ def __init__(
172
+ self,
173
+ task,
174
+ sentence_avg,
175
+ label_smoothing,
176
+ ignore_prefix_size=0,
177
+ ignore_eos=False,
178
+ report_accuracy=False,
179
+ drop_worst_ratio=0,
180
+ drop_worst_after=0,
181
+ use_rdrop=False,
182
+ reg_alpha=1.0,
183
+ sample_patch_num=196,
184
+ constraint_range=None,
185
+ acc_thresh=None,
186
+ metric='acc',
187
+ max_area_size=None,
188
+ min_area_size=None,
189
+ logprob=False,
190
+ pos_reward=None,
191
+ neg_reward=None,
192
+ reinforce=False,
193
+ lambda_reinforce=0,
194
+ ):
195
+ super().__init__(task)
196
+ self.sentence_avg = sentence_avg
197
+ self.eps = label_smoothing
198
+ self.ignore_prefix_size = ignore_prefix_size
199
+ self.ignore_eos = ignore_eos
200
+ self.report_accuracy = report_accuracy
201
+ self.drop_worst_ratio = drop_worst_ratio
202
+ self.drop_worst_after = drop_worst_after
203
+ self.use_rdrop = use_rdrop
204
+ self.reg_alpha = reg_alpha
205
+ self.sample_patch_num = sample_patch_num
206
+
207
+
208
+
209
+ self.constraint_start = None
210
+ self.constraint_end = None
211
+ if constraint_range is not None:
212
+ constraint_start, constraint_end = constraint_range.split(',')
213
+ self.constraint_start = int(constraint_start)
214
+ self.constraint_end = int(constraint_end)
215
+
216
+ self.acc_thresh = acc_thresh
217
+ self.metric = metric
218
+ self.min_area_size = min_area_size
219
+ self.max_area_size = max_area_size
220
+ self.logprob = logprob
221
+
222
+ self.pos_reward = pos_reward
223
+ self.neg_reward = neg_reward
224
+
225
+ self.reinforce = reinforce
226
+ self.lambda_reinforce = lambda_reinforce
227
+
228
+ def get_generator_out(self, model, sample):
229
+
230
+ model.eval()
231
+ with torch.no_grad():
232
+ self.task.scst_generator.model.eval()
233
+ gen_out = self.task.scst_generator.generate([model], sample)
234
+
235
+ hyps, refs = [], []
236
+ for i in range(len(gen_out)):
237
+ hyps.append(gen_out[i][0]["tokens"][:-1] - len(self.task.src_dict) + self.task.cfg.num_bins)
238
+ refs.append(sample["target"][i][:-1] - len(self.task.src_dict) + self.task.cfg.num_bins)
239
+
240
+ return torch.stack(hyps, dim=0), torch.stack(refs, dim=0)
241
+
242
+ def _calculate_map_score(self, hyps, refs, thresh=0.5):
243
+
244
+
245
+ ground_truth = {
246
+ 'boxes': refs.cpu().numpy().tolist(),
247
+
248
+ 'labels': [1 for i in range(refs.shape[0])]
249
+ }
250
+
251
+ result_dict = {
252
+ 'boxes': hyps.cpu().numpy().tolist(),
253
+
254
+ 'labels': [1 for i in range(hyps.shape[0])],
255
+ }
256
+
257
+ score = calculate_map(ground_truth, result_dict, thresh)
258
+
259
+ score = torch.tensor(score).unsqueeze(0).repeat(refs.shape[0]).to(hyps.device)
260
+ return score
261
+
262
+ def _calculate_ap_score(self, hyps, refs, thresh=0.5, min_area_size=None, max_area_size=None):
263
+ interacts = torch.cat(
264
+ [torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]),
265
+ torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])],
266
+ dim=1
267
+ )
268
+ area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1]) ## x1, y1, x2, y2, x1 < x2
269
+ area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1])
270
+ interacts_w = interacts[:, 2] - interacts[:, 0]
271
+ interacts_h = interacts[:, 3] - interacts[:, 1]
272
+ area_interacts = interacts_w * interacts_h
273
+ ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6)
274
+
275
+
276
+ if max_area_size is not None and min_area_size is not None:
277
+ ious = ious * (torch.logical_or(area_targets < max_area_size, area_targets > min_area_size).float())
278
+
279
+ elif min_area_size is not None:
280
+ ious = ious * (area_targets > min_area_size).float()
281
+
282
+ elif max_area_size is not None:
283
+ ious = ious * (area_targets < max_area_size).float()
284
+
285
+ if thresh is None:
286
+ return ious
287
+ else:
288
+ return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float()
289
+
290
+ def reward_step(self, sample, model):
291
+
292
+ hyps, refs = self.get_generator_out(model, sample)
293
+ hyps = hyps / (self.task.cfg.num_bins - 1) * self.task.cfg.max_image_size
294
+ refs = refs / (self.task.cfg.num_bins - 1) * self.task.cfg.max_image_size
295
+ hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
296
+ hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
297
+ refs[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
298
+ refs[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
299
+
300
+ # scores = self._calculate_ap_score(hyps, refs)
301
+ if self.metric == 'acc':
302
+ scores = self._calculate_ap_score(hyps, sample['region_coords'].float(), thresh=self.acc_thresh,
303
+ min_area_size=self.min_area_size, max_area_size=self.max_area_size)
304
+ elif self.metric == 'map':
305
+ scores = self._calculate_map_score(hyps, sample['region_coords'].float(), thresh=self.acc_thresh)
306
+ else:
307
+ raise NotImplemented
308
+
309
+ # logging_output["_score_sum"] = scores.sum().item()
310
+ # logging_output["_score_cnt"] = scores.size(0)
311
+
312
+ if self.pos_reward:
313
+ scores = torch.where(scores > 0, self.pos_reward, scores)
314
+ if self.neg_reward:
315
+ scores = torch.where(scores == 0, self.neg_reward, scores)
316
+
317
+
318
+ return scores
319
+
320
+ def forward(self, model, sample, update_num=0, reduce=True):
321
+ """Compute the loss for the given sample.
322
+
323
+ Returns a tuple with three elements:
324
+ 1) the loss
325
+ 2) the sample size, which is used as the denominator for the gradient
326
+ 3) logging outputs to display while training
327
+ """
328
+ if isinstance(sample, list):
329
+ if self.sample_patch_num > 0:
330
+ sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num
331
+ # change to support len(samples) > 2
332
+ loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce)
333
+ loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce)
334
+ loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2
335
+ sample_size = 1
336
+ logging_output = {
337
+ "loss": loss.data,
338
+ "loss_v1": loss_v1.data,
339
+ "loss_v2": loss_v2.data,
340
+ "nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2,
341
+ "ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"],
342
+ "nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"],
343
+ "sample_size": 1,
344
+ "sample_size_v1": sample_size_v1,
345
+ "sample_size_v2": sample_size_v2,
346
+ "reward": (logging_output_v1["reward"] + logging_output_v2["reward"])/2,
347
+ }
348
+ return loss, sample_size, logging_output
349
+
350
+ if self.use_rdrop:
351
+ construct_rdrop_sample(sample)
352
+
353
+ ### scst
354
+ reward = self.reward_step(sample, model) # shape = bs
355
+ model.train()
356
+ net_output = model(**sample["net_input"])
357
+ loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce, reward=reward)
358
+
359
+
360
+
361
+
362
+ # loss = loss*reward
363
+
364
+ loss = loss.sum()
365
+ sample_size = (
366
+ sample["target"].size(0) if self.sentence_avg else ntokens
367
+ )
368
+ logging_output = {
369
+ "loss": loss.data,
370
+ "nll_loss": nll_loss.data,
371
+ "ntokens": sample["ntokens"],
372
+ "nsentences": sample["nsentences"],
373
+ "sample_size": sample_size,
374
+ "reward": reward.mean(),
375
+ }
376
+ if self.report_accuracy:
377
+ n_correct, total = self.compute_accuracy(model, net_output, sample)
378
+ logging_output["n_correct"] = utils.item(n_correct.data)
379
+ logging_output["total"] = utils.item(total.data)
380
+
381
+ return loss, sample_size, logging_output
382
+
383
+ def get_lprobs_and_target(self, model, net_output, sample, reward=None):
384
+ conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1
385
+ constraint_masks = None
386
+ if "constraint_masks" in sample and sample["constraint_masks"] is not None:
387
+ constraint_masks = sample["constraint_masks"]
388
+ net_output[0].masked_fill_(~constraint_masks, -math.inf)
389
+ if self.constraint_start is not None and self.constraint_end is not None:
390
+ net_output[0][:, :, 4:self.constraint_start] = -math.inf
391
+ net_output[0][:, :, self.constraint_end:] = -math.inf
392
+ lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf
393
+ target = model.get_targets(sample, net_output)
394
+ if self.ignore_prefix_size > 0:
395
+ lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
396
+ target = target[:, self.ignore_prefix_size :].contiguous()
397
+ if constraint_masks is not None:
398
+ constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous()
399
+ if self.ignore_eos:
400
+ bsz, seq_len, embed_dim = lprobs.size()
401
+ eos_indices = target.eq(self.task.tgt_dict.eos())
402
+ lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
403
+ target = target[~eos_indices].reshape(bsz, seq_len-1)
404
+ if constraint_masks is not None:
405
+ constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
406
+ if constraint_masks is not None:
407
+ constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1))
408
+
409
+ if reward is not None:
410
+ reward = reward.unsqueeze(1).unsqueeze(1)
411
+ lprobs = lprobs*reward
412
+ return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks
413
+
414
+ def compute_loss(self, model, net_output, sample, update_num, reduce=True, reward=None):
415
+ lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample, reward=reward)
416
+
417
+ if constraint_masks is not None:
418
+ constraint_masks = constraint_masks[target != self.padding_idx]
419
+ # print(target.shape, self.padding_idx, lprobs.shape, target, lprobs)
420
+ lprobs = lprobs[target != self.padding_idx]
421
+ target = target[target != self.padding_idx]
422
+
423
+
424
+ loss, nll_loss, ntokens = label_smoothed_nll_loss(
425
+ lprobs,
426
+ target,
427
+ self.eps,
428
+ update_num,
429
+ reduce=reduce,
430
+ drop_worst_ratio=self.drop_worst_ratio,
431
+ drop_worst_after=self.drop_worst_after,
432
+ use_rdrop=self.use_rdrop,
433
+ reg_alpha=self.reg_alpha,
434
+ constraint_masks=constraint_masks,
435
+ constraint_start=self.constraint_start,
436
+ constraint_end=self.constraint_end
437
+ )
438
+
439
+ if self.logprob and self.reinforce:
440
+ # print(-lprobs.max(dim=-1)[0].squeeze(-1).sum(), loss)
441
+ if self.lambda_reinforce > 0:
442
+ lprobs_, target_, constraint_masks_ = self.get_lprobs_and_target(model, net_output, sample, reward=None)
443
+
444
+ loss_, _, ntokens = label_smoothed_nll_loss(
445
+ lprobs_,
446
+ target_,
447
+ self.eps,
448
+ update_num,
449
+ reduce=reduce,
450
+ drop_worst_ratio=self.drop_worst_ratio,
451
+ drop_worst_after=self.drop_worst_after,
452
+ use_rdrop=self.use_rdrop,
453
+ reg_alpha=self.reg_alpha,
454
+ constraint_masks=constraint_masks_,
455
+ constraint_start=self.constraint_start,
456
+ constraint_end=self.constraint_end
457
+ )
458
+ # print(-lprobs.max(dim=-1)[0].squeeze(-1).sum(), loss_)
459
+ # loss = -lprobs.max(dim=-1)[0].squeeze(-1).sum()*self.lambda_reinforce + loss_
460
+
461
+ loss = loss*self.lambda_reinforce + loss_ # only supervised with more weights via reward
462
+
463
+ else:
464
+ loss = -lprobs.max(dim=-1)[0].squeeze(-1).sum()
465
+
466
+ elif self.logprob:
467
+ loss = nll_loss
468
+
469
+ return loss, nll_loss, ntokens
470
+
471
+ def compute_accuracy(self, model, net_output, sample):
472
+ lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
473
+ mask = target.ne(self.padding_idx)
474
+ n_correct = torch.sum(
475
+ lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
476
+ )
477
+ total = torch.sum(mask)
478
+ return n_correct, total
479
+
480
+ @classmethod
481
+ def reduce_metrics(cls, logging_outputs) -> None:
482
+ """Aggregate logging outputs from data parallel training."""
483
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
484
+ loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs)
485
+ loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs)
486
+ nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
487
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
488
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
489
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
490
+ sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs)
491
+ sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs)
492
+
493
+
494
+ reward = sum(log.get("reward", 0) for log in logging_outputs)
495
+
496
+ metrics.log_scalar(
497
+ "loss", loss_sum / sample_size, sample_size, round=3
498
+ )
499
+ metrics.log_scalar(
500
+ "loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3
501
+ )
502
+ metrics.log_scalar(
503
+ "loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3
504
+ )
505
+ metrics.log_scalar(
506
+ "nll_loss", nll_loss_sum / sample_size, ntokens, round=3
507
+ )
508
+ metrics.log_derived(
509
+ "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
510
+ )
511
+
512
+ metrics.log_scalar(
513
+ "ntokens", ntokens, 1, round=3
514
+ )
515
+ metrics.log_scalar(
516
+ "nsentences", nsentences, 1, round=3
517
+ )
518
+ metrics.log_scalar(
519
+ "sample_size", sample_size, 1, round=3
520
+ )
521
+ metrics.log_scalar(
522
+ "sample_size_v1", sample_size_v1, 1, round=3
523
+ )
524
+ metrics.log_scalar(
525
+ "sample_size_v2", sample_size_v2, 1, round=3
526
+ )
527
+
528
+ metrics.log_scalar(
529
+ "reward", reward / sample_size, sample_size, round=3
530
+ )
531
+
532
+ total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
533
+ if total > 0:
534
+ metrics.log_scalar("total", total)
535
+ n_correct = utils.item(
536
+ sum(log.get("n_correct", 0) for log in logging_outputs)
537
+ )
538
+ metrics.log_scalar("n_correct", n_correct)
539
+ metrics.log_derived(
540
+ "accuracy",
541
+ lambda meters: round(
542
+ meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
543
+ )
544
+ if meters["total"].sum > 0
545
+ else float("nan"),
546
+ )
547
+
548
+ @staticmethod
549
+ def logging_outputs_can_be_summed() -> bool:
550
+ """
551
+ Whether the logging outputs returned by `forward` can be summed
552
+ across workers prior to calling `reduce_metrics`. Setting this
553
+ to True will improves distributed training speed.
554
+ """
555
+ return True
criterions/label_smoothed_encouraging_loss.py ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import math
7
+ from dataclasses import dataclass, field
8
+ from typing import Optional
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import numpy as np
13
+ from fairseq import metrics, utils
14
+ from fairseq.criterions import FairseqCriterion, register_criterion
15
+ from fairseq.dataclass import FairseqDataclass
16
+ from omegaconf import II
17
+
18
+
19
+ @dataclass
20
+ class AdjustLabelSmoothedEncouragingLossConfig(FairseqDataclass):
21
+ label_smoothing: float = field(
22
+ default=0.0,
23
+ metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
24
+ )
25
+ report_accuracy: bool = field(
26
+ default=False,
27
+ metadata={"help": "report accuracy metric"},
28
+ )
29
+ ignore_prefix_size: int = field(
30
+ default=0,
31
+ metadata={"help": "Ignore first N tokens"},
32
+ )
33
+ ignore_eos: bool = field(
34
+ default=False,
35
+ metadata={"help": "Ignore eos token"},
36
+ )
37
+ sentence_avg: bool = II("optimization.sentence_avg")
38
+ drop_worst_ratio: float = field(
39
+ default=0.0,
40
+ metadata={"help": "ratio for discarding bad samples"},
41
+ )
42
+ drop_worst_after: int = field(
43
+ default=0,
44
+ metadata={"help": "steps for discarding bad samples"},
45
+ )
46
+ use_rdrop: bool = field(
47
+ default=False, metadata={"help": "use R-Drop"}
48
+ )
49
+ reg_alpha: float = field(
50
+ default=1.0, metadata={"help": "weight for R-Drop"}
51
+ )
52
+ sample_patch_num: int = field(
53
+ default=196, metadata={"help": "sample patchs for v1"}
54
+ )
55
+ constraint_range: Optional[str] = field(
56
+ default=None,
57
+ metadata={"help": "constraint range"}
58
+ )
59
+ log_end: float = field(
60
+ default=0.75,
61
+ metadata={"help": "higher log_end is for cases with higher performance,"
62
+ " we recommend 0.75 or 0.5 as your first try."}
63
+ )
64
+ drop_best_ratio: float = field(
65
+ default=0.0,
66
+ metadata={"help": "ratio for discarding best samples"},
67
+ )
68
+ drop_best_after: int = field(
69
+ default=0,
70
+ metadata={"help": "steps for discarding best samples"},
71
+ )
72
+
73
+
74
+
75
+ def construct_rdrop_sample(x):
76
+ if isinstance(x, dict):
77
+ for key in x:
78
+ x[key] = construct_rdrop_sample(x[key])
79
+ return x
80
+ elif isinstance(x, torch.Tensor):
81
+ return x.repeat(2, *([1] * (x.dim()-1)))
82
+ elif isinstance(x, int):
83
+ return x * 2
84
+ elif isinstance(x, np.ndarray):
85
+ return x.repeat(2)
86
+ else:
87
+ raise NotImplementedError
88
+
89
+
90
+ def kl_loss(p, q):
91
+ p_loss = F.kl_div(p, torch.exp(q), reduction='sum')
92
+ q_loss = F.kl_div(q, torch.exp(p), reduction='sum')
93
+ loss = (p_loss + q_loss) / 2
94
+ return loss
95
+
96
+
97
+ def label_smoothed_nll_loss(
98
+ lprobs, target, epsilon, update_num, reduce=True,
99
+ drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0,
100
+ constraint_masks=None, constraint_start=None, constraint_end=None, drop_best_ratio=0.0,
101
+ drop_best_after=0,
102
+ ):
103
+ if target.dim() == lprobs.dim() - 1:
104
+ target = target.unsqueeze(-1)
105
+ nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1)
106
+ if constraint_masks is not None:
107
+ smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1)
108
+ eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6)
109
+ elif constraint_start is not None and constraint_end is not None:
110
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
111
+ smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1)
112
+ eps_i = epsilon / (len(constraint_range) - 1 + 1e-6)
113
+ else:
114
+ smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1)
115
+ eps_i = epsilon / (lprobs.size(-1) - 1)
116
+ loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
117
+ if drop_worst_ratio > 0 and update_num > drop_worst_after:
118
+ if use_rdrop:
119
+ true_batch_size = loss.size(0) // 2
120
+ _, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False)
121
+ loss = torch.cat([loss[indices], loss[indices+true_batch_size]])
122
+ nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]])
123
+ lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]])
124
+ else:
125
+ loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False)
126
+ nll_loss = nll_loss[indices]
127
+ lprobs = lprobs[indices]
128
+ target = target[indices]
129
+ if update_num > drop_best_after:
130
+ loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_best_ratio)), largest=True)
131
+ nll_loss = nll_loss[indices]
132
+ lprobs = lprobs[indices]
133
+ target = target[indices]
134
+
135
+ ntokens = loss.numel()
136
+ nll_loss = nll_loss.sum()
137
+ loss = loss.sum()
138
+ if use_rdrop:
139
+ true_batch_size = lprobs.size(0) // 2
140
+ p = lprobs[:true_batch_size]
141
+ q = lprobs[true_batch_size:]
142
+ if constraint_start is not None and constraint_end is not None:
143
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
144
+ p = p[:, constraint_range]
145
+ q = q[:, constraint_range]
146
+ loss += kl_loss(p, q) * reg_alpha
147
+
148
+ return loss, nll_loss, ntokens,lprobs,target
149
+
150
+
151
+ @register_criterion(
152
+ "adjust_label_smoothed_encouraging_loss", dataclass=AdjustLabelSmoothedEncouragingLossConfig
153
+ )
154
+ class AdjustLabelSmoothedEncouragingLossCriterion(FairseqCriterion):
155
+ def __init__(
156
+ self,
157
+ task,
158
+ sentence_avg,
159
+ label_smoothing,
160
+ ignore_prefix_size=0,
161
+ ignore_eos=False,
162
+ report_accuracy=False,
163
+ drop_worst_ratio=0,
164
+ drop_worst_after=0,
165
+ use_rdrop=False,
166
+ reg_alpha=1.0,
167
+ sample_patch_num=196,
168
+ constraint_range=None,
169
+ log_end=0.75,
170
+ drop_best_ratio=0.0,
171
+ drop_best_after=0,
172
+ ):
173
+ super().__init__(task)
174
+ self.sentence_avg = sentence_avg
175
+ self.eps = label_smoothing
176
+ self.ignore_prefix_size = ignore_prefix_size
177
+ self.ignore_eos = ignore_eos
178
+ self.report_accuracy = report_accuracy
179
+ self.drop_worst_ratio = drop_worst_ratio
180
+ self.drop_worst_after = drop_worst_after
181
+ self.use_rdrop = use_rdrop
182
+ self.reg_alpha = reg_alpha
183
+ self.sample_patch_num = sample_patch_num
184
+
185
+ self.constraint_start = None
186
+ self.constraint_end = None
187
+ if constraint_range is not None:
188
+ constraint_start, constraint_end = constraint_range.split(',')
189
+ self.constraint_start = int(constraint_start)
190
+ self.constraint_end = int(constraint_end)
191
+ self.log_end = log_end
192
+ self.drop_best_ratio = drop_best_ratio
193
+ self.drop_best_after = drop_best_after
194
+ print('el, self.log_end=', self.log_end)
195
+ # @staticmethod
196
+ # def add_args(parser):
197
+ # """Add criterion-specific arguments to the parser."""
198
+ # # fmt: off
199
+ # parser.add_argument('--log_end', type=float, default=1.0)
200
+
201
+ def forward(self, model, sample, update_num=0, reduce=True):
202
+ """Compute the loss for the given sample.
203
+
204
+ Returns a tuple with three elements:
205
+ 1) the loss
206
+ 2) the sample size, which is used as the denominator for the gradient
207
+ 3) logging outputs to display while training
208
+ """
209
+ if isinstance(sample, list):
210
+ if self.sample_patch_num > 0:
211
+ sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num
212
+ loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce)
213
+ loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce)
214
+ loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2
215
+ sample_size = 1
216
+ logging_output = {
217
+ "loss": loss.data,
218
+ "loss_v1": loss_v1.data,
219
+ "loss_v2": loss_v2.data,
220
+ "nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2,
221
+ "ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"],
222
+ "nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"],
223
+ "sample_size": 1,
224
+ "sample_size_v1": sample_size_v1,
225
+ "sample_size_v2": sample_size_v2,
226
+ }
227
+ return loss, sample_size, logging_output
228
+
229
+ if self.use_rdrop:
230
+ construct_rdrop_sample(sample)
231
+
232
+ net_output = model(**sample["net_input"])
233
+ loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce)
234
+ sample_size = (
235
+ sample["target"].size(0) if self.sentence_avg else ntokens
236
+ )
237
+ logging_output = {
238
+ "loss": loss.data,
239
+ "nll_loss": nll_loss.data,
240
+ "ntokens": sample["ntokens"],
241
+ "nsentences": sample["nsentences"],
242
+ "sample_size": sample_size,
243
+ }
244
+ if self.report_accuracy:
245
+ n_correct, total = self.compute_accuracy(model, net_output, sample)
246
+ logging_output["n_correct"] = utils.item(n_correct.data)
247
+ logging_output["total"] = utils.item(total.data)
248
+ return loss, sample_size, logging_output
249
+
250
+ def get_lprobs_and_target(self, model, net_output, sample):
251
+ conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1
252
+ constraint_masks = None
253
+ if "constraint_masks" in sample and sample["constraint_masks"] is not None:
254
+ constraint_masks = sample["constraint_masks"]
255
+ net_output[0].masked_fill_(~constraint_masks, -math.inf)
256
+ if self.constraint_start is not None and self.constraint_end is not None:
257
+ net_output[0][:, :, 4:self.constraint_start] = -math.inf
258
+ net_output[0][:, :, self.constraint_end:] = -math.inf
259
+ lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf
260
+ target = model.get_targets(sample, net_output)
261
+ if self.ignore_prefix_size > 0:
262
+ lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
263
+ target = target[:, self.ignore_prefix_size :].contiguous()
264
+ if constraint_masks is not None:
265
+ constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous()
266
+ if self.ignore_eos:
267
+ bsz, seq_len, embed_dim = lprobs.size()
268
+ eos_indices = target.eq(self.task.tgt_dict.eos())
269
+ lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
270
+ target = target[~eos_indices].reshape(bsz, seq_len-1)
271
+ if constraint_masks is not None:
272
+ constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
273
+ if constraint_masks is not None:
274
+ constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1))
275
+ return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks
276
+
277
+ def compute_loss(self, model, net_output, sample, update_num, reduce=True):
278
+ lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample)
279
+ if constraint_masks is not None:
280
+ constraint_masks = constraint_masks[target != self.padding_idx]
281
+ lprobs = lprobs[target != self.padding_idx]
282
+ target = target[target != self.padding_idx]
283
+ loss, nll_loss, ntokens, lprobs, target = label_smoothed_nll_loss(
284
+ lprobs,
285
+ target,
286
+ self.eps,
287
+ update_num,
288
+ reduce=reduce,
289
+ drop_worst_ratio=self.drop_worst_ratio,
290
+ drop_worst_after=self.drop_worst_after,
291
+ use_rdrop=self.use_rdrop,
292
+ reg_alpha=self.reg_alpha,
293
+ constraint_masks=constraint_masks,
294
+ constraint_start=self.constraint_start,
295
+ constraint_end=self.constraint_end
296
+ )
297
+ # for encouraging loss
298
+ probs = torch.exp(lprobs)
299
+ bonus = torch.log(torch.clamp((torch.ones_like(probs) - probs), min=1e-5)) # likelihood bonus
300
+ log_end = self.log_end
301
+ if log_end != 1.0: # e.g. 0.9
302
+ y_log_end = torch.log(torch.ones_like(probs) - log_end)
303
+ bonus_after_log_end = 1 / (log_end - torch.ones_like(probs)) * (probs - log_end) + y_log_end
304
+ # x:log_end, y torch.log(torch.clamp((torch.ones_like(probs) - probs), min=self.cl_eps))
305
+ bonus = torch.where(probs > log_end, bonus_after_log_end, bonus)
306
+ c_loss = F.nll_loss(
307
+ -bonus,
308
+ target.view(-1),
309
+ reduction='sum',
310
+ )
311
+ smoothing_c_loss = bonus.sum(dim=-1)
312
+ smoothing_c_loss = smoothing_c_loss.sum()
313
+ c_loss = c_loss * (1 - self.eps) + (self.eps / lprobs.size(-1)) * smoothing_c_loss
314
+ loss = loss + c_loss
315
+ # end for encouraging loss
316
+ return loss, nll_loss, ntokens
317
+
318
+ def compute_accuracy(self, model, net_output, sample):
319
+ lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
320
+ mask = target.ne(self.padding_idx)
321
+ n_correct = torch.sum(
322
+ lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
323
+ )
324
+ total = torch.sum(mask)
325
+ return n_correct, total
326
+
327
+ @classmethod
328
+ def reduce_metrics(cls, logging_outputs) -> None:
329
+ """Aggregate logging outputs from data parallel training."""
330
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
331
+ loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs)
332
+ loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs)
333
+ nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
334
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
335
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
336
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
337
+ sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs)
338
+ sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs)
339
+
340
+ metrics.log_scalar(
341
+ "loss", loss_sum / sample_size, sample_size, round=3
342
+ )
343
+ metrics.log_scalar(
344
+ "loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3
345
+ )
346
+ metrics.log_scalar(
347
+ "loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3
348
+ )
349
+ metrics.log_scalar(
350
+ "nll_loss", nll_loss_sum / sample_size, ntokens, round=3
351
+ )
352
+ metrics.log_derived(
353
+ "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
354
+ )
355
+
356
+ metrics.log_scalar(
357
+ "ntokens", ntokens, 1, round=3
358
+ )
359
+ metrics.log_scalar(
360
+ "nsentences", nsentences, 1, round=3
361
+ )
362
+ metrics.log_scalar(
363
+ "sample_size", sample_size, 1, round=3
364
+ )
365
+ metrics.log_scalar(
366
+ "sample_size_v1", sample_size_v1, 1, round=3
367
+ )
368
+ metrics.log_scalar(
369
+ "sample_size_v2", sample_size_v2, 1, round=3
370
+ )
371
+
372
+ total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
373
+ if total > 0:
374
+ metrics.log_scalar("total", total)
375
+ n_correct = utils.item(
376
+ sum(log.get("n_correct", 0) for log in logging_outputs)
377
+ )
378
+ metrics.log_scalar("n_correct", n_correct)
379
+ metrics.log_derived(
380
+ "accuracy",
381
+ lambda meters: round(
382
+ meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
383
+ )
384
+ if meters["total"].sum > 0
385
+ else float("nan"),
386
+ )
387
+
388
+ @staticmethod
389
+ def logging_outputs_can_be_summed() -> bool:
390
+ """
391
+ Whether the logging outputs returned by `forward` can be summed
392
+ across workers prior to calling `reduce_metrics`. Setting this
393
+ to True will improves distributed training speed.
394
+ """
395
+ return True
criterions/refcoco_scst_loss.py ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified from OFA code.
2
+ # Copyright 2022 The OFA-Sys Team.
3
+ # All rights reserved.
4
+ # This source code is licensed under the Apache 2.0 license
5
+ # found in the LICENSE file in the root directory.
6
+
7
+ import math
8
+ import string
9
+ from dataclasses import dataclass, field
10
+ from collections import OrderedDict
11
+ from typing import Optional
12
+
13
+ import torch
14
+ from fairseq import metrics, utils
15
+ from fairseq.criterions import FairseqCriterion, register_criterion
16
+ from fairseq.dataclass import FairseqDataclass
17
+ from omegaconf import II
18
+
19
+ from data import data_utils
20
+ from utils.cider.pyciderevalcap.ciderD.ciderD import CiderD
21
+
22
+
23
+
24
+ def scst_loss(lprobs, target, reward, ignore_index=None, reduce=True, ce=False):
25
+
26
+ if ce:
27
+ loss = -lprobs.gather(dim=-1, index=target.unsqueeze(-1)).squeeze(-1)
28
+ elif isinstance(reward, float):
29
+ loss = -lprobs.gather(dim=-1, index=target.unsqueeze(-1)).squeeze() * reward
30
+ else:
31
+ loss = -lprobs.gather(dim=-1, index=target.unsqueeze(-1)).squeeze() * reward.unsqueeze(-1)
32
+
33
+ if ignore_index is not None:
34
+ pad_mask = target.eq(ignore_index)
35
+ loss.masked_fill_(pad_mask, 0.0)
36
+ ntokens = (~pad_mask).sum()
37
+ else:
38
+ loss = loss.squeeze(-1)
39
+ ntokens = target.numel()
40
+ if reduce:
41
+ loss = loss.sum()
42
+ return loss, ntokens
43
+
44
+
45
+ @dataclass
46
+ class RefCOCOScstRewardCriterionConfig(FairseqDataclass):
47
+ scst_cider_cached_tokens: Optional[str] = field(
48
+ default="coco-train-words.p",
49
+ metadata={"help": "path to cached cPickle file used to calculate CIDEr scores"},
50
+ )
51
+ ignore_prefix_size: int = field(
52
+ default=0,
53
+ metadata={"help": "Ignore first N tokens"},
54
+ )
55
+ sentence_avg: bool = II("optimization.sentence_avg")
56
+ constraint_range: Optional[str] = field(
57
+ default=None,
58
+ metadata={"help": "constraint range"}
59
+ )
60
+
61
+
62
+ acc_thresh: Optional[float] = field(
63
+ default=None, metadata={"help": "acc thresh for refcoco"}
64
+ )
65
+ metric: Optional[str] = field(
66
+ default='acc',
67
+ metadata={"help": "metric"}
68
+ )
69
+
70
+ max_area_size: Optional[float] = field(
71
+ default=None, metadata={"help": "max_area_size"}
72
+ )
73
+
74
+ min_area_size: Optional[float] = field(
75
+ default=None, metadata={"help": "min_area_size"}
76
+ )
77
+ logprob: Optional[bool] = field(
78
+ default=False, metadata={"help": "maximise log prob"}
79
+ )
80
+
81
+ pos_reward: Optional[float] = field(
82
+ default=None, metadata={"help": "pos_reward"}
83
+ )
84
+
85
+ neg_reward: Optional[float] = field(
86
+ default=None, metadata={"help": "neg_reward"}
87
+ )
88
+
89
+ reinforce: Optional[bool] = field(
90
+ default=False, metadata={"help": "reinforce"}
91
+ )
92
+
93
+ lambda_reinforce: Optional[float] = field(
94
+ default=0, metadata={"help": "lambda_reinforce"}
95
+ )
96
+
97
+ medium_area: Optional[bool] = field(
98
+ default=False, metadata={"help": "reinforce"}
99
+ )
100
+
101
+ @register_criterion(
102
+ "refcoco_scst_reward_criterion", dataclass=RefCOCOScstRewardCriterionConfig
103
+ )
104
+ class RefCOCOScstRewardCriterion(FairseqCriterion):
105
+ CIDER_REWARD_WEIGHT = 1
106
+
107
+ def __init__(
108
+ self,
109
+ task,
110
+ scst_cider_cached_tokens,
111
+ sentence_avg,
112
+ ignore_prefix_size=0,
113
+ constraint_range=None,
114
+ acc_thresh=None,
115
+ metric='acc',
116
+ max_area_size=None,
117
+ min_area_size=None,
118
+ logprob=False,
119
+ pos_reward=None,
120
+ neg_reward=None,
121
+ reinforce=False,
122
+ lambda_reinforce=0,
123
+ medium_area=False,
124
+ ):
125
+ super().__init__(task)
126
+ self.sentence_avg = sentence_avg
127
+ self.ignore_prefix_size = ignore_prefix_size
128
+ self.transtab = str.maketrans({key: None for key in string.punctuation})
129
+
130
+ self.constraint_start = None
131
+ self.constraint_end = None
132
+ if constraint_range is not None:
133
+ constraint_start, constraint_end = constraint_range.split(',')
134
+ self.constraint_start = int(constraint_start)
135
+ self.constraint_end = int(constraint_end)
136
+
137
+ self.metric = metric
138
+ print("metric", metric)
139
+
140
+ self.acc_thresh = acc_thresh
141
+ self.metric = metric
142
+ self.min_area_size = min_area_size
143
+ self.max_area_size = max_area_size
144
+ self.logprob = logprob
145
+
146
+ self.pos_reward = pos_reward
147
+ self.neg_reward = neg_reward
148
+
149
+ self.reinforce = reinforce
150
+ self.lambda_reinforce = lambda_reinforce
151
+
152
+ self.medium_area = medium_area
153
+
154
+
155
+
156
+
157
+ def forward(self, model, sample, update_num=0, reduce=True):
158
+ """Compute the loss for the given sample.
159
+
160
+ Returns a tuple with three elements:
161
+ 1) the loss
162
+ 2) the sample size, which is used as the denominator for the gradient
163
+ 3) logging outputs to display while training
164
+ """
165
+ loss, score, ntokens, nsentences = self.compute_loss(model, sample, reduce=reduce)
166
+
167
+ sample_size = (
168
+ nsentences if self.sentence_avg else ntokens
169
+ )
170
+ logging_output = {
171
+ "loss": loss.data,
172
+ "score": score,
173
+ "ntokens": ntokens,
174
+ "nsentences": nsentences,
175
+ "sample_size": sample_size,
176
+ }
177
+ return loss, sample_size, logging_output
178
+
179
+ def _calculate_eval_scores(self, gen_res, gt_idx, gt_res):
180
+ '''
181
+ gen_res: generated captions, list of str
182
+ gt_idx: list of int, of the same length as gen_res
183
+ gt_res: ground truth captions, list of list of str.
184
+ gen_res[i] corresponds to gt_res[gt_idx[i]]
185
+ Each image can have multiple ground truth captions
186
+ '''
187
+
188
+ gen_res_size = len(gen_res)
189
+
190
+ res = OrderedDict()
191
+ for i in range(gen_res_size):
192
+ res[i] = [self._wrap_sentence(gen_res[i].strip().translate(self.transtab))]
193
+
194
+ gts = OrderedDict()
195
+ gt_res_ = [
196
+ [self._wrap_sentence(gt_res[i][j].strip().translate(self.transtab)) for j in range(len(gt_res[i]))]
197
+ for i in range(len(gt_res))
198
+ ]
199
+ for i in range(gen_res_size):
200
+ gts[i] = gt_res_[gt_idx[i]]
201
+
202
+ res_ = [{'image_id':i, 'caption': res[i]} for i in range(len(res))]
203
+
204
+ # replace with other metrics
205
+ if self.metric != 'cider':
206
+ predicts = [res[i][0] if isinstance(res[i], list) else res[i] for i in range(len(res))]
207
+
208
+ answers = [gts[i] for i in range(gen_res_size)]
209
+
210
+ results = self.evaluator.run_evaluation(predicts, answers)
211
+ batch_cider_scores = results[self.metric]
212
+
213
+ batch_cider_scores = torch.tensor(batch_cider_scores).repeat(gen_res_size)
214
+ else:
215
+ _, batch_cider_scores = self.scst_cider_scorer.compute_score(gts, res_)
216
+
217
+ scores = self.CIDER_REWARD_WEIGHT * batch_cider_scores
218
+ return scores
219
+
220
+ @classmethod
221
+ def _wrap_sentence(self, s):
222
+ # ensure the sentence ends with <eos> token
223
+ # in order to keep consisitent with cider_cached_tokens
224
+ r = s.strip()
225
+ if r.endswith('.'):
226
+ r = r[:-1]
227
+ r += ' <eos>'
228
+ return r
229
+
230
+
231
+ def get_generator_out(self, model, sample):
232
+
233
+
234
+ model.eval()
235
+ with torch.no_grad():
236
+ self.task.scst_generator.model.eval()
237
+ gen_out = self.task.scst_generator.generate([model], sample)
238
+
239
+ gen_target = []
240
+ gen_res = []
241
+ gt_res = []
242
+ for i in range(len(gen_out)):
243
+ gen_res.append(gen_out[i][0]["tokens"][:-1] - len(self.task.src_dict) + self.task.cfg.num_bins)
244
+ gt_res.append(sample["target"][i][:-1] - len(self.task.src_dict) + self.task.cfg.num_bins)
245
+ gen_target.append(gen_out[i][0]["tokens"][:-1].int().cpu())
246
+
247
+ return gen_target, gen_res, gt_res
248
+
249
+ def _calculate_ap_score(self, hyps, refs, thresh=0.5, min_area_size=None, max_area_size=None, medium_area=False):
250
+ interacts = torch.cat(
251
+ [torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]),
252
+ torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])],
253
+ dim=1
254
+ )
255
+ area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1]) ## x1, y1, x2, y2, x1 < x2
256
+ area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1])
257
+ interacts_w = interacts[:, 2] - interacts[:, 0]
258
+ interacts_h = interacts[:, 3] - interacts[:, 1]
259
+ area_interacts = interacts_w * interacts_h
260
+ ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6)
261
+
262
+
263
+ if max_area_size is not None and min_area_size is not None:
264
+ if medium_area:
265
+ ious = ious * (torch.logical_and(area_targets > max_area_size, area_targets < min_area_size).float())
266
+
267
+ else:
268
+ ious = ious * (torch.logical_or(area_targets < max_area_size, area_targets > min_area_size).float())
269
+
270
+ elif min_area_size is not None:
271
+ if medium_area:
272
+ ious = ious * (area_targets < min_area_size).float() # as max areas
273
+ else:
274
+ ious = ious * (area_targets > min_area_size).float()
275
+
276
+ elif max_area_size is not None:
277
+ if medium_area:
278
+ ious = ious * (area_targets > max_area_size).float()
279
+ else:
280
+ ious = ious * (area_targets < max_area_size).float()
281
+
282
+ if thresh is None:
283
+ return ious
284
+ else:
285
+ return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float()
286
+
287
+
288
+ def get_reward_and_scores(self, gen_res, gt_res, device, sample):
289
+
290
+
291
+ hyps_, refs_ = torch.stack(gen_res, dim=0), torch.stack(gt_res, dim=0)
292
+
293
+ hyps = hyps_ / (self.task.cfg.num_bins - 1) * self.task.cfg.max_image_size
294
+ refs = refs_ / (self.task.cfg.num_bins - 1) * self.task.cfg.max_image_size
295
+
296
+ hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
297
+ hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
298
+ refs[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
299
+ refs[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
300
+
301
+ if self.metric == 'acc':
302
+ scores = self._calculate_ap_score(hyps, sample['region_coords'].float(), thresh=self.acc_thresh,
303
+ min_area_size=self.min_area_size, max_area_size=self.max_area_size, medium_area=self.medium_area)
304
+ else:
305
+ raise NotImplemented
306
+
307
+
308
+ if self.pos_reward:
309
+ scores = torch.where(scores > 0, self.pos_reward, scores)
310
+ if self.neg_reward:
311
+ scores = torch.where(scores == 0, self.neg_reward, scores)
312
+
313
+ return scores, scores
314
+
315
+
316
+ def get_net_output(self, model, sample, gen_target):
317
+ def merge(sample_list, eos=self.task.tgt_dict.eos(), move_eos_to_beginning=False):
318
+ return data_utils.collate_tokens(
319
+ sample_list,
320
+ pad_idx=self.padding_idx,
321
+ eos_idx=eos,
322
+ left_pad=False,
323
+ move_eos_to_beginning=move_eos_to_beginning,
324
+ )
325
+
326
+ batch_size = len(sample["target"])
327
+ gen_target_size = len(gen_target)
328
+ seq_per_img = gen_target_size // batch_size
329
+
330
+ model.train()
331
+ sample_src_tokens = torch.repeat_interleave(
332
+ sample['net_input']['src_tokens'], seq_per_img, dim=0
333
+ )
334
+ sample_src_lengths = torch.repeat_interleave(
335
+ sample['net_input']['src_lengths'], seq_per_img, dim=0
336
+ )
337
+ sample_patch_images = torch.repeat_interleave(
338
+ sample['net_input']['patch_images'], seq_per_img, dim=0
339
+ )
340
+ sample_patch_masks = torch.repeat_interleave(
341
+ sample['net_input']['patch_masks'], seq_per_img, dim=0
342
+ )
343
+ gen_prev_output_tokens = torch.as_tensor(
344
+ merge(gen_target, eos=self.task.tgt_dict.bos(), move_eos_to_beginning=True),
345
+ device=sample["target"].device, dtype=torch.int64
346
+ )
347
+ gen_target_tokens = torch.as_tensor(
348
+ merge(gen_target), device=sample["target"].device, dtype=torch.int64
349
+ )
350
+
351
+ net_output = model(
352
+ src_tokens=sample_src_tokens, src_lengths=sample_src_lengths,
353
+ patch_images=sample_patch_images, patch_masks=sample_patch_masks,
354
+ prev_output_tokens=gen_prev_output_tokens
355
+ )
356
+
357
+ return net_output, gen_target_tokens
358
+
359
+ def get_lprobs_and_target(self, model, net_output, gen_target):
360
+ if self.constraint_start is not None and self.constraint_end is not None:
361
+ net_output[0][:, :, 4:self.constraint_start] = -math.inf
362
+ net_output[0][:, :, self.constraint_end:] = -math.inf
363
+ lprobs = model.get_normalized_probs(net_output, log_probs=True)
364
+ if self.ignore_prefix_size > 0:
365
+ if getattr(lprobs, "batch_first", False):
366
+ lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
367
+ gen_target = gen_target[:, self.ignore_prefix_size :].contiguous()
368
+ else:
369
+ lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous()
370
+ gen_target = gen_target[self.ignore_prefix_size :, :].contiguous()
371
+ return lprobs, gen_target
372
+
373
+ def compute_loss(self, model, sample, reduce=True):
374
+ gen_target, gen_res, gt_res = self.get_generator_out(model, sample)
375
+ reward, scores = self.get_reward_and_scores(gen_res, gt_res, device=sample["target"].device, sample=sample)
376
+
377
+ net_output, gen_target_tokens = self.get_net_output(model, sample, gen_target)
378
+
379
+ gen_lprobs, gen_target_tokens = self.get_lprobs_and_target(model, net_output, gen_target_tokens)
380
+ loss, ntokens = scst_loss(gen_lprobs, gen_target_tokens, reward, ignore_index=self.padding_idx, reduce=reduce)
381
+ nsentences = gen_target_tokens.size(0)
382
+
383
+ if self.lambda_reinforce > 0:
384
+ target = model.get_targets(sample, net_output)[:, :-1] # ignore eos token
385
+ if self.ignore_prefix_size > 0:
386
+ target = target[:, self.ignore_prefix_size :].contiguous()
387
+
388
+ loss_ce, ntokens_ = scst_loss(gen_lprobs, target, reward=1, ignore_index=self.padding_idx, reduce=reduce, ce=True)
389
+
390
+ loss = loss_ce + self.lambda_reinforce*loss
391
+
392
+ return loss, scores.sum(), ntokens, nsentences
393
+
394
+ @classmethod
395
+ def reduce_metrics(cls, logging_outputs) -> None:
396
+ """Aggregate logging outputs from data parallel training."""
397
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
398
+ score_sum = sum(log.get("score", 0) for log in logging_outputs)
399
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
400
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
401
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
402
+
403
+ metrics.log_scalar(
404
+ "loss", loss_sum / sample_size, sample_size, round=3
405
+ )
406
+ metrics.log_scalar(
407
+ "score", score_sum / nsentences, nsentences, round=3
408
+ )
409
+
410
+ metrics.log_scalar(
411
+ "ntokens", ntokens, 1, round=3
412
+ )
413
+ metrics.log_scalar(
414
+ "nsentences", nsentences, 1, round=3
415
+ )
416
+ metrics.log_scalar(
417
+ "sample_size", sample_size, 1, round=3
418
+ )
419
+
420
+ @staticmethod
421
+ def logging_outputs_can_be_summed() -> bool:
422
+ """
423
+ Whether the logging outputs returned by `forward` can be summed
424
+ across workers prior to calling `reduce_metrics`. Setting this
425
+ to True will improves distributed training speed.
426
+ """
427
+ return True
data/.ipynb_checkpoints/file_dataset-checkpoint.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The OFA-Sys Team.
2
+ # All rights reserved.
3
+ # This source code is licensed under the Apache 2.0 license
4
+ # found in the LICENSE file in the root directory.
5
+
6
+ import os
7
+ import torch
8
+ import pickle
9
+
10
+
11
+ class FileDataset:
12
+ def __init__(self, file_path, selected_col_ids=None, dtypes=None, separator="\t", cached_index=False):
13
+ self.file_path = file_path
14
+ assert os.path.exists(self.file_path), "Error: The local datafile {} not exists!".format(self.file_path)
15
+
16
+ self.separator = separator
17
+ if selected_col_ids is None:
18
+ # default to all fields
19
+ self.selected_col_ids = list(
20
+ range(len(open(self.file_path).readline().rstrip("\n").split(self.separator))))
21
+ else:
22
+ self.selected_col_ids = [int(col_id) for col_id in selected_col_ids.split(",")]
23
+ if dtypes is None:
24
+ # default to str
25
+ self.dtypes = [str for col_id in self.selected_col_ids]
26
+ else:
27
+ self.dtypes = [eval(col_dtype) for col_dtype in dtypes.split(",")]
28
+ assert len(self.dtypes) == len(self.selected_col_ids)
29
+
30
+ self.data_cnt = 0
31
+ try:
32
+ self.slice_id = torch.distributed.get_rank()
33
+ self.slice_count = torch.distributed.get_world_size()
34
+ except Exception:
35
+ self.slice_id = 0
36
+ self.slice_count = 1
37
+ self.cached_index = cached_index
38
+ self._init_seek_index()
39
+ self._reader = self._get_reader()
40
+ print("file {} slice_id {} row count {} total row count {}".format(
41
+ self.file_path, self.slice_id, self.row_count, self.total_row_count)
42
+ )
43
+
44
+ def _init_seek_index(self):
45
+ if self.cached_index:
46
+ cache_path = "{}.index".format(self.file_path)
47
+ assert os.path.exists(cache_path), "cache file {} not exists!".format(cache_path)
48
+ self.total_row_count, self.lineid_to_offset = pickle.load(open(cache_path, "rb"))
49
+ print("local datafile {} slice_id {} use cached row_count and line_idx-to-offset mapping".format(
50
+ self.file_path, self.slice_id))
51
+ else:
52
+ # make an iteration over the file to get row_count and line_idx-to-offset mapping
53
+ fp = open(self.file_path, "r")
54
+ print("local datafile {} slice_id {} begin to initialize row_count and line_idx-to-offset mapping".format(
55
+ self.file_path, self.slice_id))
56
+ self.total_row_count = 0
57
+ offset = 0
58
+ self.lineid_to_offset = []
59
+ for line in fp:
60
+ self.lineid_to_offset.append(offset)
61
+ self.total_row_count += 1
62
+ offset += len(line.encode('utf-8'))
63
+ self._compute_start_pos_and_row_count()
64
+ print("local datafile {} slice_id {} finished initializing row_count and line_idx-to-offset mapping".format(
65
+ self.file_path, self.slice_id))
66
+
67
+ def _compute_start_pos_and_row_count(self):
68
+ self.row_count = self.total_row_count // self.slice_count
69
+ if self.slice_id < self.total_row_count - self.row_count * self.slice_count:
70
+ self.row_count += 1
71
+ self.start_pos = self.row_count * self.slice_id
72
+ else:
73
+ self.start_pos = self.row_count * self.slice_id + (self.total_row_count - self.row_count * self.slice_count)
74
+
75
+ def _get_reader(self):
76
+ fp = open(self.file_path, "r")
77
+ fp.seek(self.lineid_to_offset[self.start_pos])
78
+ return fp
79
+
80
+ def _seek(self, offset=0):
81
+ try:
82
+ print("slice_id {} seek offset {}".format(self.slice_id, self.start_pos + offset))
83
+ self._reader.seek(self.lineid_to_offset[self.start_pos + offset])
84
+ self.data_cnt = offset
85
+ except Exception:
86
+ print("slice_id {} seek offset {}".format(self.slice_id, offset))
87
+ self._reader.seek(self.lineid_to_offset[offset])
88
+ self.data_cnt = offset
89
+
90
+ def __del__(self):
91
+ self._reader.close()
92
+
93
+ def __len__(self):
94
+ return self.row_count
95
+
96
+ def get_total_row_count(self):
97
+ return self.total_row_count
98
+
99
+ def __getitem__(self, index):
100
+ if self.data_cnt == self.row_count:
101
+ print("reach the end of datafile, start a new reader")
102
+ self.data_cnt = 0
103
+ self._reader = self._get_reader()
104
+ column_l = self._reader.readline().rstrip("\n").split(self.separator)
105
+ self.data_cnt += 1
106
+ column_l = [dtype(column_l[col_id]) for col_id, dtype in zip(self.selected_col_ids, self.dtypes)]
107
+ return column_l
data/__init__.py ADDED
File without changes
data/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (124 Bytes). View file
 
data/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (125 Bytes). View file
 
data/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (151 Bytes). View file
 
data/__pycache__/audio_utils.cpython-37.pyc ADDED
Binary file (4.95 kB). View file
 
data/__pycache__/audio_utils.cpython-39.pyc ADDED
Binary file (5.04 kB). View file
 
data/__pycache__/data_utils.cpython-37.pyc ADDED
Binary file (18.3 kB). View file
 
data/__pycache__/data_utils.cpython-38.pyc ADDED
Binary file (18.5 kB). View file
 
data/__pycache__/data_utils.cpython-39.pyc ADDED
Binary file (18.5 kB). View file